Free-Text Keystroke Dynamics Authentication with a Reduced Need for Training and Language Independency

Total Page:16

File Type:pdf, Size:1020Kb

Free-Text Keystroke Dynamics Authentication with a Reduced Need for Training and Language Independency UNIVERSITY OF READING Free-Text Keystroke Dynamics Authentication with a Reduced Need for Training and Language Independency Submitted by: Arwa Alsultan Submitted for the Degree of Doctor of Philosophy Supervisor(s): Prof. Kevin Warwick & Dr. Hong Wei Department of Computer Science School of Mathematical, Physical and Computational Sciences September 2016 To my caring parents - Aljoharah & Fahad - who encouraged me during my educational journey since I was very young. I would not have been able to achieve any of this without their love and prayers. To my loving husband - Rawad - who stood by my side during this journey. He has never stopped believing in me and his love and support is the reason for all my success. i Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Arwa Alsultan ii Acknowledgment I would like to express my deep appreciation to my supervisor Prof. Kevin Warwick for all the support he provided me with during my study. Without his guidance and continuous help, this research would not have been possible. I would also like to convey my sincerer gratitude to my supervisor Dr. Hong Wei for her guidance and encouragement throughout my research. She never stopped reassuring me and reinforcing me to achieve my goals. She was there when I needed her the most. I would like to thank Dr. Tristan Fletcher for granting me permission to use one of the figures produced by him in this thesis. I also would like to express my appreciation to Dr. Luis Gonzalo Sánchez Giraldo for his cooperation with the progressive MANOVA algorithm. He was very helpful and provided me with all the information I needed to use this algorithm. I wish to extend my thanks to the participants who were involved in this research for the time they took out of their busy schedules to contribute in this study. Finally, I would like to deeply thank my brothers & sisters, family members and friends for their continuous love and support. iii Abstract This research aims to overcome the drawback of the large amount of training data required for free-text keystroke dynamics authentication. A new key-pairing method, which is based on the keyboard’s key-layout, has been suggested to achieve that. The method extracts several timing features from specific key-pairs. The level of similarity between a user’s profile data and his or her test data is then used to decide whether the test data was provided by the genuine user. The key-pairing technique was developed to use the smallest amount of training data in the best way possible which reduces the requirement for typing long text in the training stage. In addition, non-conventional features were also defined and extracted from the input stream typed by the user in order to understand more of the users typing behaviours. This helps the system to assemble a better idea about the user’s identity from the smallest amount of training data. Non-conventional features compute the average of users performing certain actions when typing a whole piece of text. Results were obtained from the tests conducted on each of the key-pair timing features and the non-conventional features, separately. An FAR of 0.013, 0.0104 and an FRR of 0.384, 0.25 were produced by the timing features and non-conventional features, respectively. Moreover, the fusion of these two feature sets was utilized to enhance the error rates. The feature-level fusion thrived to reduce the error rates to an FAR of 0.00896 and an FRR of 0.215 whilst decision-level fusion succeeded in achieving zero FAR and FRR. In addition, keystroke dynamics research suffers from the fact that almost all text included in the studies is typed in English. Nevertheless, the key-pairing method has the advantage of being language-independent. This allows for it to be applied on text typed in other languages. In this research, the key-pairing method was applied to text in Arabic. The results produced from the test conducted on Arabic text were similar to those produced from English text. This proves the applicability of the key-pairing method on a language other than English even if that language has a completely different alphabet and characteristics. Moreover, experimenting with texts in English and Arabic produced results showing a direct relation between the users’ familiarity with the language and the performance of the authentication system. iv Glossary ACO Ant colony optimisation ANOVA Analysis of variance ATM Automatic teller machines DD Down-down time for a key-pair Di-graph Combination of two keys DSS Decision support systems DTs Decision trees EER Equal error rate FAR False accept rate FRR False reject rate GA Genetic algorithm GUI Graphical user interface H1 Hold time for the first key H2 Hold time for the second key LSA Percentage of left shifts released after letter LSB Percentage of left shifts released before letter MANOVA Multivariate analysis of variance ms Millisecond NegUD Percentage of negative up-down NegUU Percentage of negative up-up N-graph Combination of n keys NN Neural networks PCA Principal component analysis v PDA Personal digital assistants PSO Particle swarm optimization RBF Radial basis kernel ROC Receiver operating characteristic RSA Percentage of right shifts released after letter RSB Percentage of right shifts released before SVMs Support vector machine TAR True accept rate Tri-graph Combination of three keys UD Up-down time for a key-pair UU Up-up time for a key-pair WPM Word-per-minute vi Table of Contents Declaration............................................................................................................................................. ii Acknowledgment .................................................................................................................................. iii Abstract ................................................................................................................................................. iv Glossary ................................................................................................................................................. v Table of Contents ................................................................................................................................ vii List of Figures ...................................................................................................................................... xii List of Tables ...................................................................................................................................... xiv 1 Introduction ........................................................................................................................................ 1 1.1 Introduction ............................................................................................................................. 1 1.2 Overview of User Authentication ........................................................................................... 3 1.2.1 Knowledge-based Authentication ................................................................................... 5 1.2.2 Possession-based Authentication .................................................................................... 6 1.2.3 Biometric-based Authentication ..................................................................................... 6 1.2.4 Other Authentication Methods ........................................................................................ 7 1.2.5 Multi-factor Authentication ............................................................................................ 8 1.3 Problem Statement .................................................................................................................. 9 1.4 Aims and Objectives ............................................................................................................. 11 1.5 Thesis Structure .................................................................................................................... 11 2 Overview of Keystroke Dynamics .................................................................................................. 14 2.1 Introduction ........................................................................................................................... 14 2.2 Biometric Characteristic of Keystroke Dynamics ................................................................. 15 2.3 Phases of Keystroke Dynamics Authentication .................................................................... 16 2.4 Advantages and Limitations .................................................................................................. 17 2.5 Classes of Keystroke Dynamics ............................................................................................ 19 2.6 Keystroke Features ................................................................................................................ 22 2.7 Performance .......................................................................................................................... 25 2.8 State of the Art in the Area of Keystroke Dynamics Recognition ........................................ 29 2.8.1 Fixed-text Keystroke Dynamics .................................................................................... 30 2.8.2 Free-text Keystroke Dynamics ...................................................................................... 38 2.9 Factors Affecting Performance ............................................................................................
Recommended publications
  • Using Xgboost to Classify the Beihang Keystroke Dynamics Database
    UPTEC F 18049 Examensarbete 30 hp 15 Augusti 2018 Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Abstract Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Teknisk- naturvetenskaplig fakultet UTH-enheten Keystroke Dynamics enable biometric security systems by collecting and analyzing computer keyboard usage data. There are different Besöksadress: approaches to classifying keystroke data and a method that has been Ångströmlaboratoriet Lägerhyddsvägen 1 gaining a lot of attention in the machine learning industry lately is Hus 4, Plan 0 the decision tree framework of XGBoost. XGBoost has won several Kaggle competitions in the last couple of years, but its capacity in Postadress: the keystroke dynamics field has not yet been widely explored. Box 536 751 21 Uppsala Therefore, this thesis has attempted to classify the existing Beihang Keystroke Dynamics Database using XGBoost. To do this, keystroke Telefon: features such as dwell time and flight time were extracted from the 018 – 471 30 03 dataset, which contains 47 usernames and passwords. XGBoost was then Telefax: applied to a binary classification problem, where the model attempts 018 – 471 30 00 to distinguish keystroke feature sequences from genuine users from those of `impostors'. In this way, the ratio of inaccurately and Hemsida: accurately labeled password inputs can be analyzed. http://www.teknat.uu.se/student The result showed that, after tuning of the hyperparameters, the XGBoost yielded Equal Error Rates (EER) at best 0.31 percentage points better than the SVM used in the original study of the database at 11.52%, and a highest AUC of 0.9792.
    [Show full text]
  • Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence
    International Conference and Workshop on Emerging Trends in Technology (ICWET 2011) – TCET, Mumbai, India Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence Euclidian Distance H B Kekre, V A Bharadi P Shaktia, V Shah A A Ambardekar Computer Science Department IT Department, TCET Computer Science and Engineering, MPSTME, NMIMS University Mumbai University University of Nevada Mumbai, India Mumbai, India RENO, USA +91-9323557897, +91-9819125676 +91-7738343494 +1-7753131894 [email protected], [email protected], [email protected] [email protected] [email protected] ABSTRACT traits or even more than one biometric traits can be combined to Biometric authentication systems are becoming more and more implement multimodal biometric systems [1], [2], [3]. In this popular because of increased security concerns. Keystroke paper keystroke dynamics based biometric authentication method Dynamics is one of the important behavior based biometric trait. is discussed. The way one user presses different keys on a It has moderate uniqueness level and low user cooperation is keyboard is peculiar and unique. Along with the characters in a required. In this paper keystroke dynamics analysis using relative password this dynamic information can be used for identifying entropy and Euclidian distance between keystroke timing correct person. sequence is discussed. In this approach keystroke timing sequence are calculated and normalized then this information is used for 1.1 Keystroke Dynamics Keystroke dynamics, or typing dynamics, is the detailed timing generating normalized probability distribution of dynamic information that describes exactly when each key was pressed and passwords, two distance measures namely relative entropy & when it was released as a person is typing at a computer keyboard Euclidian distance are used for classification.
    [Show full text]
  • Identification of User Behavioural Biometrics for Authentication Using Keystroke Dynamics and Machine Learning
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 4-20-2018 Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning Sowndarya Krishnamoorthy University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Krishnamoorthy, Sowndarya, "Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning" (2018). Electronic Theses and Dissertations. 7440. https://scholar.uwindsor.ca/etd/7440 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning By Sowndarya Krishnamoorthy A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2018 ©2018 Sowndarya Krishnamoorthy Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning by Sowndarya Krishnamoorthy APPROVED BY: G.
    [Show full text]
  • Shared Data Set for Free-Text Keystroke Dynamics Authentica- Tion Algorithms
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0255.v1 Article Shared Data Set for Free-Text Keystroke Dynamics Authentica- tion Algorithms Augustin-Catalin Iapa 1,* and Vladimir-Ioan Cretu 1 1 Timișoara Politehnica University; Department of Computer and Information Technology; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: +40769054995 Abstract: Identifying or authenticating a computer user are necessary steps to keep systems secure on the network and to prevent fraudulent users from accessing accounts. Keystroke dynamics au- thentication can be used as an additional authentication method. Keystroke dynamics involves in-depth analysis of how you type on the keyboard, analysis of how long a key is pressed or the time between two consecutive keys. This field has seen a continuous growth in scientific research. In the last five years alone, about 10,000 scientific researches in this field have been published. One of the main problems facing researchers is the small number of public data sets that include how users type on the keyboard. This paper aims to provide researchers with a data set that includes how to type free text on the keyboard by 80 users. The data were collected in a single session via a web platform. The dataset contains 410,633 key-events collected in a total time interval of almost 24 hours. In similar research, most datasets are with texts written by users in English. The language in which the users wrote for this research is Romanian. This paper also provides an extensive analysis of the data set collected and presents relevant information for the analysis of the data set in future research.
    [Show full text]
  • Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works
    IEEE 6th International Conference on Biometrics, BTAS 2013. Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works John V. Monaco, John C. Stewart, Sung-Hyuk Cha, and Charles C. Tappert Seidenberg School of CSIS, Pace University, White Plains, NY 10606 difficult to duplicate [4, 10]. The keystroke biometric is a Abstract behavioral biometric, and most of the systems developed Keystroke and stylometry behavioral biometrics were previously have been experimental in nature. Nevertheless, investigated with the objective of developing a robust system there has been a long history of commercially unsuccessful to authenticate students taking online examinations. This implementations aimed at continuous recognition of a typist. work responds to the 2008 U.S. Higher Education While most previous work dealt with short input (passwords Opportunity Act that requires institutions of higher learning or short name strings) [1, 7, 14, 15, 16], some used long free undertake greater access control efforts, by adopting (arbitrary) text input [2, 8, 11, 13, 19, 20]. Free-text input identification technologies as they become available, to as the user continues typing allows for continuous assure that students of record are those actually accessing authentication [5, 12, 13, 17] which can be important in the systems and taking the exams in online courses. online exam applications [6, 19]. Performance statistics on keystroke, stylometry, and Stylometry is the study of determining authorship from combined keystroke-stylometry systems were obtained on the authors’ linguistic styles. Traditionally, it has been data from 30 students taking examinations in a university used to attribute authorship to anonymous or disputed course.
    [Show full text]
  • Enhancing Online Banking Authentication Using Keystroke Dynamics
    UNIVERSIDAD POLITECNICA´ DE MADRID FACULTAD DE INFORMATICA´ MASTER´ UNIVERSITARIO EN SOFTWARE Y SISTEMAS Enhancing Online Banking Authentication Using Keystroke Dynamics Master Thesis Author: Mar´ıa del Carmen S´anchez Medrano Directors: Manuel Carro Juan Caballero July 2017 Master Thesis MUSS Master thesis from UPM done by: Author’s Surname and name: S´anchez Medrano, Mar´ıa del Carmen Title: Enhancing Online Banking Authentication Using Keystroke Dynamics Date: July 2017 Directors: Manuel Carro Juan Caballero 2 Abstract The most common method for banks to authenticate users is through a user identifier and password. Unfortunately, this is a method of easy impersonation, because although many banks control brute force attacks by blocking the account after a maximum number of failed login attempts, credentials may be stolen. A big challenge for banks is to identify whether the user is or not the one he is supposed to be. The security measures based on biometrics are the ones that have given better results against this type of attacks. But as a drawback, most of these methods are very expensive to implement and their usability is low since they require special hardware. There are other types of biometric methods based on patterns, like keystroke dynamics. Each user has their own typing pattern which is very difficult to replicate. The different speeds between typing keys or the number of uses of a control key can be the difference between one person to the other. In this thesis, we study how to improve bank authentication using keystroke dy- namics. In order to achieve this objective, we had to perform data acquisition, data preprocessing and feature extraction processes.
    [Show full text]
  • Interaction Techniques for Finger Sensing Input Devices
    PreSense: Interaction Techniques for Finger Sensing Input Devices ££ £ £ Jun Rekimoto £ Takaaki Ishizawa Carsten Schwesig Haruo Oba £ Interaction Laboratory ££ Graduate School of Media and Governance Sony Computer Science Laboratories, Inc. Keio University 3-14-13 Higashigotanda Shonan Fujisawa Campus Shinagawa-ku, Tokyo 141-0022 Japan 5322 Endo, Fujisawa 252-8520 Japan Phone: +81 3 5448 4380, Fax +81 3 5448 4273 [email protected] rekimoto,oba @csl.sony.co.jp http://www.csl.sony.co.jp/person/rekimoto.html ABSTRACT Although graphical user interfaces started as imitations of the physical world, many interaction techniques have since been invented that are not available in the real world. This paper focuses on one of these “previewing”, and how a sen- sory enhanced input device called “PreSense Keypad” can provide a preview for users before they actually execute the commands. Preview important in the real world because it is often not possible to undo an action. This previewable fea- Figure 1: PreSense Keypad senses finger contact ture helps users to see what will occur next. It is also helpful (proximity) and position before the key press. when the command assignment of the keypad dynamically changes, such as for universal commanders. We present sev- eral interaction techniques based on this input device, includ- touch sensor, finger motions on the keypad are recognized ing menu and map browsing systems and a text input system. by integrating each keytop’s information. We also discuss finger gesture recognition for the PreSense This sensor and keytop combination makes it possible to rec- Keypad. ognize “which button is about to be pressed”, and the system KEYWORDS: input devices, previewable user interfaces, can provide appropriate information to users.
    [Show full text]
  • Using Action-Level Metrics to Report the Performance of Multi-Step Keyboards
    Using Action-Level Metrics to Report the Performance of Multi-Step Keyboards Gulnar Rakhmetulla* Ahmed Sabbir Arif† Steven J. Castellucci‡ Human-Computer Interaction Group Human-Computer Interaction Group Independent Researcher University of California, Merced University of California, Merced Toronto I. Scott MacKenzie§ Caitlyn E. Seim¶ Electrical Engineering and Computer Science Mechanical Engineering York University Stanford University Table 1: Conventional error rate (ER) and action-level unit error rate ABSTRACT (UnitER) for a constructive method (Morse code). This table illustrates Computer users commonly use multi-step text entry methods on the phenomenon of using Morse code to enter “quickly” with one handheld devices and as alternative input methods for accessibility. character error (“l”) in each attempt. ER is 14.28% for each attempt. These methods are also commonly used to enter text in languages One of our proposed action-level metrics, UnitER, gives a deeper with large alphabets or complex writing systems. These methods insight by accounting for the entered input sequence. It yields an error require performing multiple actions simultaneously (chorded) or rate of 7.14% for the first attempt (with two erroneous dashes), and in a specific sequence (constructive) to produce input. However, an improved error rate of 3.57% for the second attempt (with only evaluating these methods is difficult since traditional performance one erroneous dash). The action-level metric shows that learning has metrics were designed explicitly for non-ambiguous, uni-step meth- occurred with a minor improvement in error rate, but this phenomenon ods (e.g., QWERTY). They fail to capture the actual performance of is omitted in the ER metric, which is the same for both attempts.
    [Show full text]
  • Downloaded From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-space: Manchester Metropolitan University's Research Repository Teh, PS and Zhang, N and Teoh, ABJ and Chen, K (2016)A survey on touch dynamics authentication in mobile devices. Computers and Security, 59. pp. 210-235. ISSN 0167-4048 Downloaded from: http://e-space.mmu.ac.uk/625411/ Version: Accepted Version Publisher: Elsevier DOI: https://doi.org/10.1016/j.cose.2016.03.003 Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva- tive Works 4.0 Please cite the published version https://e-space.mmu.ac.uk A Survey on Touch Dynamics Authentication in Mobile Devices Pin Shen Teh1, Ning Zhang1, Andrew Beng Jin Teoh2, Ke Chen1 1 School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 2 School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea. E-mail: {pinshen.teh; ning.zhang-2; ke.chen}@manchester.ac.uk; [email protected] ABSTRACT There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics.
    [Show full text]
  • Biometric Authentication Techniques: a Study on Keystroke Dynamics
    International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Biometric Authentication Techniques: A Study on Keystroke Dynamics Sandhya Avasthi Assistant Professor, Krishna Engineering College Tanushree Sanwal Assistant Professor, Krishna Engineering College Abstract— Biometrics technologies are gaining popularity today since they provide reliable and efficient means of authentication and verification. Our dependency on electronic devices is growing, and so is our need to secure information on them. Keystroke Dynamics is one of the famous biometric technologies, which identifies the authenticity of a user when the user is working via a keyboard. The authentication process is done by observing the variation in the typing pattern of the user. A comprehensive study of the existing keystroke dynamics methods, metrics, and different approaches are presented. This paper also discusses about the various security issues and challenges faced by keystroke dynamics. Keywords- Biometrics, Keystroke Dynamics, computer Security, Information Security, Biometric Authentication. 1. INTRODUCTION Preventing unauthorized access or restricting access to information system is first step towards security, which is possible through user Authentication. User authentication is the process of verifying identity of the user. The authentication is accomplished by matching some short-form indicator of identity, such as a shared secret that has been pre-arranged during enrollment or registration for authorized users. This is done for the purpose of performing trusted communications between parties for computing applications. User authentication is categorized into three categories [17]: 1. Knowledge - based, 2. Object or Token - based, 3. Biometric - based. User Authentication Knowledge Object Based Biometric Based Based Physiological Behavioral Figure 1 215 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Figure1.
    [Show full text]
  • Senorita: a Chorded Keyboard for Sighted, Low Vision, and Blind
    Senorita: A Chorded Keyboard for Sighted, Low Vision, and Blind Mobile Users Gulnar Rakhmetulla Ahmed Sabbir Arif Human-Computer Interaction Group Human-Computer Interaction Group University of California, Merced University of California, Merced Merced, CA, United States Merced, CA, United States [email protected] [email protected] Figure 1. With Senorita, the left four keys are tapped with the left thumb and the right four keys are tapped with the right thumb. Tapping a key enters the letter in the top label. Tapping two keys simultaneously (chording) enters the common letter between the keys in the bottom label. The chord keys are arranged on opposite sides. Novices can tap a key to see the chords available for that key. This figure illustrates a novice user typing the word “we”. She scans the keyboard from the left and finds ‘w’ on the ‘I’ key. She taps on it with her left thumb to see all chords for that key on the other side, from the edge: ‘C’, ‘F’, ‘W’, and ‘X’ (the same letters in the bottom label of the ‘I’ key). She taps on ‘W’ with her right thumb to form a chord to enter the letter. The next letter ‘e’ is one of the most frequent letters in English, thus has a dedicated key. She taps on it with her left thumb to complete the word. ABSTRACT INTRODUCTION Senorita is a novel two-thumb virtual chorded keyboard for Virtual Qwerty augmented with linguistic and behavioral mod- mobile devices. It arranges the letters on eight keys in a single els has become the dominant input method for mobile devices.
    [Show full text]
  • Gesture Typing on Smartwatches Using a Segmented QWERTY Around the Bezel
    SwipeRing: Gesture Typing on Smartwatches Using a Segmented QWERTY Around the Bezel Gulnar Rakhmetulla* Ahmed Sabbir Arif† Human-Computer Interaction Group Human-Computer Interaction Group University of California, Merced University of California, Merced Figure 1: SwipeRing arranges the standard QWERTY layout around the edge of a smartwatch in seven zones. To enter a word, the user connects the zones containing the target letters by drawing gestures on the screen, like gesture typing on a virtual QWERTY. A statistical decoder interprets the input and enters the most probable word. A suggestion bar appears to display other possible words. The user could stroke right or left on the suggestion bar to see additional suggestions. Tapping on a suggestion replaces the last entered word. One-letter and out-of-vocabulary words are entered by repeated strokes from/to the zones containing the target letters, in which case the keyboard first enters the two one-letter words in the English language (see the second last image from the left), then the other letters in the sequence in which they appear in the zones (like multi-tap). Users could also repeatedly tap (instead of stroke) on the zones to enter the letters. The keyboard highlights the zones when the finger enters them and traces all finger movements. This figure illustrates the process of entering the phrase “the world is a stage” on the SwipeRing keyboard (upper sequence) and on a smartphone keyboard (bottom sequence). We can clearly see the resemblance of the gestures. ABSTRACT player or rejecting a phone call), checking notifications on incoming Most text entry techniques for smartwatches require repeated taps to text messages and social media posts, and using them as fitness enter one word, occupy most of the screen, or use layouts that are trackers to record daily physical activity.
    [Show full text]