Using Xgboost to Classify the Beihang Keystroke Dynamics Database

Total Page:16

File Type:pdf, Size:1020Kb

Using Xgboost to Classify the Beihang Keystroke Dynamics Database UPTEC F 18049 Examensarbete 30 hp 15 Augusti 2018 Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Abstract Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Teknisk- naturvetenskaplig fakultet UTH-enheten Keystroke Dynamics enable biometric security systems by collecting and analyzing computer keyboard usage data. There are different Besöksadress: approaches to classifying keystroke data and a method that has been Ångströmlaboratoriet Lägerhyddsvägen 1 gaining a lot of attention in the machine learning industry lately is Hus 4, Plan 0 the decision tree framework of XGBoost. XGBoost has won several Kaggle competitions in the last couple of years, but its capacity in Postadress: the keystroke dynamics field has not yet been widely explored. Box 536 751 21 Uppsala Therefore, this thesis has attempted to classify the existing Beihang Keystroke Dynamics Database using XGBoost. To do this, keystroke Telefon: features such as dwell time and flight time were extracted from the 018 – 471 30 03 dataset, which contains 47 usernames and passwords. XGBoost was then Telefax: applied to a binary classification problem, where the model attempts 018 – 471 30 00 to distinguish keystroke feature sequences from genuine users from those of `impostors'. In this way, the ratio of inaccurately and Hemsida: accurately labeled password inputs can be analyzed. http://www.teknat.uu.se/student The result showed that, after tuning of the hyperparameters, the XGBoost yielded Equal Error Rates (EER) at best 0.31 percentage points better than the SVM used in the original study of the database at 11.52%, and a highest AUC of 0.9792. The scores achieved by this thesis are however significantly worse than a lot of others in the same field, but so were the results in the original study. The results varied greatly depending on user tested. These results suggests that XGBoost may be a useful tool, that should be tuned, but that a better dataset should be used to sufficiently benchmark the tool. Also, the quality of the model is greatly affected by variance among the users. For future research purposes, one should make sure that the database used is of good quality. To create a security system utilizing XGBoost, one should be careful of the setting and quality requirements when collecting training data. Handledare: David Strömberg & Daniel Lindberg Ämnesgranskare: Michael Ashcroft Examinator: Tomas Nyberg ISSN: 1401-5757, UPTEC F 18049 Populärvetenskaplig Sammanfattning Idag så använder majoriteten av alla företag och privatpersoner datorer och databaser för att skydda tillgångar och information. Det är därför viktigare än någonsin att ha säkra system som korrekt verifierar att rätt människor kommer in i dessa system. Vi är vana vid att använda till exempel fysiska nycklar och lösenord. Men så kallade biometriska lösningar blir allt mer intressanta. De bygger på att biologiska markörer, som till exempel fingeravtryck, är unika för varje individ. Ett steg längre är beteendebiometri, alltså att vi har unika beteenden, så som skrivstil och rörelsemönster. Denna studie har tittat på ett sådant område, så kallat Keystroke Dynamics, som bygger på att vi alla skriver med olika rytm på ett tangentbord när vi använder en dator. Tanken är att för att ta sig in i ett system, ska man inte bara behöva ha tillgång till det rätta lösenordet, utan även behöva skriva på det sätt som tillhör inloggningen. För att skapa ett sådant här system, kan man använda sig av maskininlärning. Då matar man en modell med exempel av hur människor skriver, och sen är tanken att modellen ska lära att känna igen vad som särskiljer dem. Det finns många olika teorier att använda för att göra detta, och denna studie har använt sig av det relativt nya kritikerrosade XGBoost. XGBoost är ett verktyg som bygger på beslut- sträd, där data kategoriseras genom att gå igenom ett ‘träd’ av relevanta frågor. Datasetet som har använts i detta projekt är det öppna ‘Beihang Keystroke Dynamics Database’. Studien visade, till något av en besvikelse, att XGBoost var ungefär lika bra som andra maskininlärningsmodeller på samma dataset. Slutsatserna som drogs var att detta förmod- ligen beror på att datatestet var för litet. I framtiden bör forskning titta mer på XGBoost och dess potential kring Keystroke Dynamics, och bör fokusera på att skapa ett stort dataset som kan användas i all forskning. Principen om Keystroke Dynamics användes redan under andra världskriget, då telegrafister började känna igen varandra genom rytmen som slogs på telegraferna när morsekod skick- ades. När sedan datorerna gjorde sitt intåg så har man försökt använda denna princip för tangentbord, och 1985 visade David Umphress och Glen Williams att ‘tangentbordsprofiler’ är unika. Det har kommit flertalet studier på ämnet sedan dess, men ett generellt problem i branschen är att det inte finns ett erkänt dataset som kan användas för att forska på (och således göra jämförelser enkla). En anledning till detta är att det finns många varianter på system. Datainsamlingen kan göras i labb, eller via internet hemma hos deltagarna. Texten de matar in som prover kan var lång, eller kort. De kan få välja texten själva, eller så skriver alla samma text. Språk kan ju självklart också göra skillnad. Att samla in data tar också tid, och på grund av just tidsbrist så valdes det i denna studie att använda ett befintligt dataset. Beihang Keystroke Dynamics Database, Dataset A, består av 47 deltagare som 4-5 gånger har skrivit in ett egenvalt lösenord som binds till ett unikt användarnamn via tangentbord på ett internetcafé. Deltagarna har också fått tillgång till andra deltagares lösenord och lämnat prover på hur de skriver dessa, för att härma en ‘attack’. Detta dataset valdes för att det var lättåtkomligt, och för att det bedömdes intressant att studera just fritext-databaser i en kommersiell miljö, just för att det speglar verkligheten bäst. XGBoost bedömdes intressant att undersöka för att det inte ännu har använts i Keystroke Dynamics-fältet, och för att det har åstadkommit otroligt bra resultat i andra sammanhang, och vunnit branschpriser. När man väl har datan så reduceras den till ett antal så kallade features. De features som har valts i denna studie är dwell time (hur länge en tangent är nedtryckt) och fyra varianter av flight time (hur lång tid det är mellan två tangenttryckningar). Genom att ta medelvärdet av dessa tider för en lösenordsinmatning, skapas feature-sekvenser om fem värden för varje inmatning, oavsett lösenordslängd. Sedan delas användarna upp i två grupper, en vars data används för att träna modellen, och en för att testa den. Det är för att modellen inte ska testas på data den redan har sett. XGBoost-modellen tränar genom att titta på feature-sekvenserna för att försöka sätta upp rätt regler för att avgöra om inmatning tillhör den genuina användaren eller om det är en attack (någon som har fått rätt användarnamn och lösenord). Den gör detta genom att titta på skillnaden mellan ett par av feature sekvenser, och försöker avgöra vad det är som ii särskiljer en användares rytm från en annans, vad det är för skillnader som krävs för att två inmatningar ska kategoriseras som olika. Vid testning så används de här inlärda reglerna vid en jämförelse av en inmatning (som antingen är en ‘attack’ eller en ‘genuin’) med en inmatning som vi vet tillhör den genuina användaren, och avgör om skillnaden betyder att inmatningen är genuin eller en attack. Problemet blir då en så kallad binär klassificering. Modellen behöver bara lära att säga ‘genuin’ eller ‘inkräktare’ när den får ett par av feature- sekvenser. Vid testning så togs en del statistik fram. Ett mått som kallas ‘false acceptance rate’ (‘falsk acceptans-andel’) fick ett medelvärde på 19.75%, och ‘false rejection rate’ (‘falsk bortvisnings-andel’) fick ett medelvärde på 19.30%. ‘Equal error rate’ (EER), där andelen falska och sanna acceptansen sätts still lika, landade på 19.75%. Dessa siffror är höga för ett säkerhetssystem, om man till exempel jämför med fingeravtrycksläsning som har 0.02% och andra studier inom Keystroke Dynamics. Dock så är det viktigt att komma ihåg att steg 1 i ett sådant här system är att ha tillgång till lösenordet (inte bara tillgång till ett finger). Även om resultaten var sämre än andra studier, så var det bara något sämre än originalstudien på samma dataset, som hade ett EER om 11.83%. Detta ledde till slutsatsen till att det stora problemet inte var XGBoost, utan datasetet själv. Dessa resultat pekar alltså på att det som spelar mest roll för säkerheten i ett biometriskt system är datasetet. Datasetet måste vara tillräckligt stort för att en maskininlärningsmod- ell ska träna på tillräckligt många varierade sekvenser för att lära sig en tillräckligt generell uppsättning av regler. 47 användare visade sig vara för litet. Jag anser att Keystroke Dy- namics kan komma att bli ett bra alternativ att använda i säkerhetssammanhang, förslagsvis tillsammans med andra system, så som lösenord eller taggar. Jag tror även att principen har stor potential att användas inom smartphones, som har flertalet sensorer inbyggda redan. XGBoost bör definitivt fortsättas undersökas i framtiden, och forskning borde fokusera på att skapa ett stort dataset som kan användas för benchmarking. iii Contents Contents 1 Introduction1 1.1 Problem Statement.................................2 1.2 Background.....................................2 1.2.1 Biometrics and Keystroke Dynamics...................2 1.2.2 Classification methods and XGBoost...................3
Recommended publications
  • Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence
    International Conference and Workshop on Emerging Trends in Technology (ICWET 2011) – TCET, Mumbai, India Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence Euclidian Distance H B Kekre, V A Bharadi P Shaktia, V Shah A A Ambardekar Computer Science Department IT Department, TCET Computer Science and Engineering, MPSTME, NMIMS University Mumbai University University of Nevada Mumbai, India Mumbai, India RENO, USA +91-9323557897, +91-9819125676 +91-7738343494 +1-7753131894 [email protected], [email protected], [email protected] [email protected] [email protected] ABSTRACT traits or even more than one biometric traits can be combined to Biometric authentication systems are becoming more and more implement multimodal biometric systems [1], [2], [3]. In this popular because of increased security concerns. Keystroke paper keystroke dynamics based biometric authentication method Dynamics is one of the important behavior based biometric trait. is discussed. The way one user presses different keys on a It has moderate uniqueness level and low user cooperation is keyboard is peculiar and unique. Along with the characters in a required. In this paper keystroke dynamics analysis using relative password this dynamic information can be used for identifying entropy and Euclidian distance between keystroke timing correct person. sequence is discussed. In this approach keystroke timing sequence are calculated and normalized then this information is used for 1.1 Keystroke Dynamics Keystroke dynamics, or typing dynamics, is the detailed timing generating normalized probability distribution of dynamic information that describes exactly when each key was pressed and passwords, two distance measures namely relative entropy & when it was released as a person is typing at a computer keyboard Euclidian distance are used for classification.
    [Show full text]
  • Identification of User Behavioural Biometrics for Authentication Using Keystroke Dynamics and Machine Learning
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 4-20-2018 Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning Sowndarya Krishnamoorthy University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Krishnamoorthy, Sowndarya, "Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning" (2018). Electronic Theses and Dissertations. 7440. https://scholar.uwindsor.ca/etd/7440 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning By Sowndarya Krishnamoorthy A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2018 ©2018 Sowndarya Krishnamoorthy Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning by Sowndarya Krishnamoorthy APPROVED BY: G.
    [Show full text]
  • Shared Data Set for Free-Text Keystroke Dynamics Authentica- Tion Algorithms
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0255.v1 Article Shared Data Set for Free-Text Keystroke Dynamics Authentica- tion Algorithms Augustin-Catalin Iapa 1,* and Vladimir-Ioan Cretu 1 1 Timișoara Politehnica University; Department of Computer and Information Technology; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: +40769054995 Abstract: Identifying or authenticating a computer user are necessary steps to keep systems secure on the network and to prevent fraudulent users from accessing accounts. Keystroke dynamics au- thentication can be used as an additional authentication method. Keystroke dynamics involves in-depth analysis of how you type on the keyboard, analysis of how long a key is pressed or the time between two consecutive keys. This field has seen a continuous growth in scientific research. In the last five years alone, about 10,000 scientific researches in this field have been published. One of the main problems facing researchers is the small number of public data sets that include how users type on the keyboard. This paper aims to provide researchers with a data set that includes how to type free text on the keyboard by 80 users. The data were collected in a single session via a web platform. The dataset contains 410,633 key-events collected in a total time interval of almost 24 hours. In similar research, most datasets are with texts written by users in English. The language in which the users wrote for this research is Romanian. This paper also provides an extensive analysis of the data set collected and presents relevant information for the analysis of the data set in future research.
    [Show full text]
  • Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works
    IEEE 6th International Conference on Biometrics, BTAS 2013. Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works John V. Monaco, John C. Stewart, Sung-Hyuk Cha, and Charles C. Tappert Seidenberg School of CSIS, Pace University, White Plains, NY 10606 difficult to duplicate [4, 10]. The keystroke biometric is a Abstract behavioral biometric, and most of the systems developed Keystroke and stylometry behavioral biometrics were previously have been experimental in nature. Nevertheless, investigated with the objective of developing a robust system there has been a long history of commercially unsuccessful to authenticate students taking online examinations. This implementations aimed at continuous recognition of a typist. work responds to the 2008 U.S. Higher Education While most previous work dealt with short input (passwords Opportunity Act that requires institutions of higher learning or short name strings) [1, 7, 14, 15, 16], some used long free undertake greater access control efforts, by adopting (arbitrary) text input [2, 8, 11, 13, 19, 20]. Free-text input identification technologies as they become available, to as the user continues typing allows for continuous assure that students of record are those actually accessing authentication [5, 12, 13, 17] which can be important in the systems and taking the exams in online courses. online exam applications [6, 19]. Performance statistics on keystroke, stylometry, and Stylometry is the study of determining authorship from combined keystroke-stylometry systems were obtained on the authors’ linguistic styles. Traditionally, it has been data from 30 students taking examinations in a university used to attribute authorship to anonymous or disputed course.
    [Show full text]
  • Enhancing Online Banking Authentication Using Keystroke Dynamics
    UNIVERSIDAD POLITECNICA´ DE MADRID FACULTAD DE INFORMATICA´ MASTER´ UNIVERSITARIO EN SOFTWARE Y SISTEMAS Enhancing Online Banking Authentication Using Keystroke Dynamics Master Thesis Author: Mar´ıa del Carmen S´anchez Medrano Directors: Manuel Carro Juan Caballero July 2017 Master Thesis MUSS Master thesis from UPM done by: Author’s Surname and name: S´anchez Medrano, Mar´ıa del Carmen Title: Enhancing Online Banking Authentication Using Keystroke Dynamics Date: July 2017 Directors: Manuel Carro Juan Caballero 2 Abstract The most common method for banks to authenticate users is through a user identifier and password. Unfortunately, this is a method of easy impersonation, because although many banks control brute force attacks by blocking the account after a maximum number of failed login attempts, credentials may be stolen. A big challenge for banks is to identify whether the user is or not the one he is supposed to be. The security measures based on biometrics are the ones that have given better results against this type of attacks. But as a drawback, most of these methods are very expensive to implement and their usability is low since they require special hardware. There are other types of biometric methods based on patterns, like keystroke dynamics. Each user has their own typing pattern which is very difficult to replicate. The different speeds between typing keys or the number of uses of a control key can be the difference between one person to the other. In this thesis, we study how to improve bank authentication using keystroke dy- namics. In order to achieve this objective, we had to perform data acquisition, data preprocessing and feature extraction processes.
    [Show full text]
  • Downloaded From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-space: Manchester Metropolitan University's Research Repository Teh, PS and Zhang, N and Teoh, ABJ and Chen, K (2016)A survey on touch dynamics authentication in mobile devices. Computers and Security, 59. pp. 210-235. ISSN 0167-4048 Downloaded from: http://e-space.mmu.ac.uk/625411/ Version: Accepted Version Publisher: Elsevier DOI: https://doi.org/10.1016/j.cose.2016.03.003 Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva- tive Works 4.0 Please cite the published version https://e-space.mmu.ac.uk A Survey on Touch Dynamics Authentication in Mobile Devices Pin Shen Teh1, Ning Zhang1, Andrew Beng Jin Teoh2, Ke Chen1 1 School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 2 School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea. E-mail: {pinshen.teh; ning.zhang-2; ke.chen}@manchester.ac.uk; [email protected] ABSTRACT There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics.
    [Show full text]
  • Biometric Authentication Techniques: a Study on Keystroke Dynamics
    International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Biometric Authentication Techniques: A Study on Keystroke Dynamics Sandhya Avasthi Assistant Professor, Krishna Engineering College Tanushree Sanwal Assistant Professor, Krishna Engineering College Abstract— Biometrics technologies are gaining popularity today since they provide reliable and efficient means of authentication and verification. Our dependency on electronic devices is growing, and so is our need to secure information on them. Keystroke Dynamics is one of the famous biometric technologies, which identifies the authenticity of a user when the user is working via a keyboard. The authentication process is done by observing the variation in the typing pattern of the user. A comprehensive study of the existing keystroke dynamics methods, metrics, and different approaches are presented. This paper also discusses about the various security issues and challenges faced by keystroke dynamics. Keywords- Biometrics, Keystroke Dynamics, computer Security, Information Security, Biometric Authentication. 1. INTRODUCTION Preventing unauthorized access or restricting access to information system is first step towards security, which is possible through user Authentication. User authentication is the process of verifying identity of the user. The authentication is accomplished by matching some short-form indicator of identity, such as a shared secret that has been pre-arranged during enrollment or registration for authorized users. This is done for the purpose of performing trusted communications between parties for computing applications. User authentication is categorized into three categories [17]: 1. Knowledge - based, 2. Object or Token - based, 3. Biometric - based. User Authentication Knowledge Object Based Biometric Based Based Physiological Behavioral Figure 1 215 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Figure1.
    [Show full text]
  • Keystroke Dynamics for User Authentication and Identification by Using Typing Rhythm
    International Journal of Computer Applications (0975 – 8887) Volume 144 – No.9, June 2016 Keystroke Dynamics for User Authentication and Identification by using Typing Rhythm Rohit A. Patil Amar L. Renke Department of Electronics & Tele-Communication Department of Electronics & Tele-Communication Engineering Engineering K.I.T’s College of Engineering, Kolhapur, K.I.T’s College of Engineering, Kolhapur, Maharashtra, 416234, India Maharashtra, 416234, India ABSTRACT practical now a days. Keystroke dynamics is a behavioral In this era computer security is an important issue now a days biometric characteristic based on the assumption that different because these are used everywhere to store & process the people type in a unique manner. Neurophysiologic factors sensitive data. Specially those used in e-banking, e-commerce, make written signatures distinctive as per person. These virtual offices, e-learning, distributed, computing & various factors are also expected to make typing characteristics unique services over the internet. Using Keystroke dynamics as per person. The idea behind keystroke dynamics authentication technology can be secured by password from authentication appeared in the twentieth century when various attacks. This technique is based on human behavior to telegraph operators could authenticate each other based on type their password. Here analysis is done using human their distinctive patterns when keying messages on telegraph behavior with their typing pattern. As keystroke dynamics lines. Keystroke dynamics is also known with as keyboard does not require any hardware, no extra hardware is used. dynamics, keystroke analysis, typing biometrics and typing Only software based technology is required for password rhythms. protection. The result provides emphasis with pleasure Although Physiological biometrics is considered to be more security that growing in demand in web-based application.
    [Show full text]
  • Authentication System Based on Keystroke Dynamics
    * i Authentication System Based on Keystroke Dynamics Project written by: Name: Signature: Sorin ZAHARIA June 7, 2018 Title: Authentication System Based on Keystroke Dynamics Aalborg University Copenhagen Theme: A. C Meyers Vænge 15 Services and Platforms 2450 København SV Secretary: Maiken Keller Project period: Telephone (+45) 9940 2471 February - June 2018 mks@staff.aau.dk Abstract: Author: Sorin Zaharia Information is a very important asset for com- panies and users. With new types of attacks being developed at a quick pace, innovative Supervisors: technologies are required to keep information Per Lynggaard safe. In this project, a keystroke dynamics au- Samant Khajuria thentication system is proposed, which aims to solve the issues of classic one time log in No. of Pages: 81 systems. The problem with these systems is that, no matter how secure they are, once the No. of Appendix Pages: 12 authentication step is performed, there is no way for the system to authenticate the users Total no. of pages: 103 continuously. In this project, the concept of Finished: June 7, 2018 keystroke dynamics is introduced, and a sys- tem that can continuously authenticate users based on freely-typed text is proposed. Differ- ent feature extraction methods are described that should capture the users’ typing behav- ior. When uploading this document to Digital Exam each group member confirms that all have participated equally in the project work and that they collectively are responsible for the content of the project report. Furthermore each group member is liable for that there is no plagiarism in the report. iii Contents 1 Introduction 1 1.1 Background.......................................2 1.2 Authentication.....................................3 1.3 Problem Definition...................................6 1.4 Structure of the Project................................7 1.5 Limitations.......................................7 2 Methodology 9 2.1 Project Phases.....................................9 2.2 Research framework.................................
    [Show full text]
  • Soft Biometrics for Keystroke Dynamics Syed Zulkarnain Syed Idrus
    Soft Biometrics for Keystroke Dynamics Syed Zulkarnain Syed Idrus To cite this version: Syed Zulkarnain Syed Idrus. Soft Biometrics for Keystroke Dynamics. Computer Vision and Pattern Recognition [cs.CV]. Université de Caen Basse-Normandie, 2014. English. tel-01108638 HAL Id: tel-01108638 https://hal.archives-ouvertes.fr/tel-01108638 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ede Caen Basse-Normandie Ecole´ doctorale SIMEM PhD Thesis presented and defended on : 04/12/2014 by Syed Zulkarnain SYED IDRUS to obtain the PhD from Universit´ede Caen Basse-Normandie Specialised : Computer Science and Applications Soft Biometrics for Keystroke Dynamics Director of thesis : Pr. Dr. Christophe Rosenberger Co-director of thesis : Pr. Dr. Patrick Bours Members of the Jury Amine Na¨ıt-Ali University Professor LISSI, Universit´eParis-Est Creteil, France (Reviewer) Najoua Essoukri Ben Amara University Professor ENI de Sousse, Tunisia (Reviewer) Mohamed Daoudi University Professor LIFL, T´el´ecom Lille1, France (Examiner) Christophe
    [Show full text]
  • Keystroke Dynamics
    Keystroke Dynamics P018 - term project, 2001 Petr Švenda <[email protected]> Masaryk University Technology overview History: The original technology was derived from the idea of identifying a sender of Morse code using a telegraphy key known as the "fist of the sender", whereby operators could identify senders transmitting a message by the rhythm, pace and syncopation of the signal taps. During World War II, the Army Signal Core identified that an individual keying rhythm on a telegraph key was quite unique. In the early-‘80s the National Science Foundation and the National Bureau of Standards in the United States conducted studies establishing that typing patterns contain unique characteristics that can be identified. Technology details: Keystroke dynamics are one of behavioral biometrics and look at the way a person types at a keyboard. Specifically, keyboard dynamics measures two distinct variables: dwell time, which is the amount of time you hold down a particular key and flight time, which is the amount of time it takes a person to move between keys. Keyboard dynamics systems can measure one's keyboard input up to 1000 times per second. Keystroke dynamics requires, as most biometrics technologies, a reference template. This involves several sessions of a person using a keystroke dynamic system so that the system can construct or build the reference template by detecting one's typing rhythms. There are some other characteristics, which can be also used, such as typing error frequency, frequency of using characters etc. Typing characteristics can be extracted from a structured text (login, first and last name, password ...) same as from an unstructured (free) text, but results of verification/recognition are now much better for structured text.
    [Show full text]
  • Recent Emerging Security Threats and Countermeasure Concepts in Mobile User Authentication
    Recent Emerging Security Threats and Countermeasure Concepts in Mobile User Authentication Dongmin Choi1 and Ilyong Chung2∗ 1Division of Undeclared Majors, Chosun University, Gwangju, Korea [email protected] 2Department of Computer Engineering, Chosun University, Gwangju, Korea [email protected] Abstract Over the past decades, mobile security threats have continued to change according to the mobile environment, which includes technical support such as mobile device specifications and network in- frastructure. The current focus on security threats has not been on program defects in mobile devices but on errors made by human users (i.e., human or user errors). To prevent the damage from emerg- ing threats, researchers have continued to propose alternative solutions. In this paper, we introduce several existing solutions corresponding to recent emerging security threats and briefly discuss the revealed problems and countermeasures. Keywords: Mobile Security, Authentication, Graphical Password, Pattern Password, Keystroke Dy- namics 1 Introduction Our world is gradually transitioning into a society dependent upon mobile devices. Mobile devices are becoming common around the world. Users typically use mobile devices for their daily lives, such as for alarms, SMS, SNS, buying household goods, and banking services. Thus, users may be attracted to using mobile devices in their lives. In the future, mobile network will likely be easily accessible via WiFi or high-speed cellular networks and be available everywhere, even in remote, and hostile places. Thus, the number of users who access wireless networks to connect to Internet services will also sharply increase. With the advent of the mobile environment, privacy concerns will also increase significantly. As noted earlier, mobile devices are becoming closely related to human life.
    [Show full text]