Keylogger Myths V3

Total Page:16

File Type:pdf, Size:1020Kb

Keylogger Myths V3 Anti-Keylogger Myths Over the last few years, several technologies have been suggested in order to strengthen or replace the traditional password input field, as a result of its vulnerability to keyloggers. This whitepaper surveys the myths of anti-leylogger technologies, and pinpoints material flaws in each such technology. 2007© All Rights Reserved. Trusteer makes no representation or warranties, either express or implied by or with respect to anything in this document, and shall not be liable for any implied warranties of merchantability or fitness for a particular purpose or for any indirect special or consequential damages. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent of Trusteer. While every precaution has been taken in the preparation of this publication, Trusteer assumes no responsibility for errors or omissions. This publication and features described herein are subject to change without notice. Anti-keylogger myths Table of Contents Introduction....................................................................................................3 1. Virtual Keyboard/keypad/PIN-pad ...........................................................3 2. Graphical Passwords ...............................................................................4 3. Password Managers.................................................................................5 4. Keystroke Dynamics ................................................................................6 5. One Time Passwords ...............................................................................7 6. Keystroke Encryption ..............................................................................8 Summary ........................................................................................................8 2 Anti-keylogger myths Introduction The Anti Phishing Working Group, a global pan-industrial and law enforcement association, defines keyloggers as “crimeware code which is designed with the intent of collecting information on the end-user in order to steal those users' credentials.” According to the Anti Phishing Working Group there are between 200 and 300 new unique variants of keyloggers each month. The SANS Institute, a group that trains and certifies computer security professionals, estimated that at a single moment last year, as many as 9.9 million machines in the United States were infected with keyloggers of one kind or another, putting as much as $24 billion in bank account assets — and probably much more — literally at the fingertips of fraudsters. According to the Anti Phishing Working Group, there were 3,353 unique websites hosting keyloggers in May 2007. It is of no wonder then that many technologies were suggested as an effort to overcome keyloggers. Most of them involve changing the way consumers sign into web applications and usually avoiding keystrokes altogether. However, the technology used by keyloggers is not limited to tapping the keyboard and can be easily adapted to evade various anti-keylogger techniques. Thus, most anti- keylogger technologies can be easily defeated using slightly more advanced keyloggers. This paper reviews the common anti-keylogger technologies and determines whether their claims are myth or reality; Or in other words, how easy it is for fraudsters to bypass each technology. 1. Virtual Keyboard/keypad/PIN-pad Stop Keyloggers Myth or Reality: Myth The most wide-spread measure against keyloggers is replacing the physical keyboard with a virtual keyboard (a.k.a. keypad or pinpad). The virtual keyboard is drawn on the screen and instead of keystrokes, the user points at the visual key with the mouse and clicks the mouse. There are several variations to this scheme, including replacing the mouse-click with “hovering” (meaning, the user is supposed to leave the cursor over the key for several seconds instead of clicking the mouse), randomly changing the key positions and keyboard layout, etc. Virtual Keyboard Example 1 1 Screenshot of the Microsoft Windows On-Screen Keyboard 3 Anti-keylogger myths Virtual keyboards are very easily bypassed using screen capturing. Instead of capturing keystrokes, the attacker captures the vicinity of the mouse pointer, each time the mouse is clicked. This provides the attacker with the image of the key the user clicked. If the designation method is hovering (for few seconds), the malware can detect lack of mouse motion, and record the mouse pointer’s surrounding. This counter attack against virtual keypads is in fact already found in the wild: • http://www.hispasec.com/laboratorio/cajamurcia_en.swf (video demonstrating a trojan attack against Caja Murica bank of Spain) • http://www.tracingbug.com/index.php/articles/view/23.html (demo of an attack against Citi Bank India) 2. Graphical Passwords Stop Keyloggers Myth or Reality: Myth Another method that obviates password typing is “graphical passwords” (or Graphical User Authentication – GUA). This is a name for a family of solutions, whose common theme is a password whose representation is graphical. The user is then required to identify the password (or parts thereof) in graphics provided by the server as a “challenge”. This challenge changes with each login attempt. In most practical solutions the user is required to identify a part of the password (an object) inside a set of graphical objects (one correct and many decoys). Choosing the correct object is typically done by clicking over it with the mouse. Example screenshot 2 requiring the user to choose the password picture 2 From “Picture Password: A Visual Login Technique for Mobile Devices” (NIST publication NISTIR 7030) by Wayne Jansen, Serban Gavrila, Vlad Korolev, Rick Ayers and Ryan Swanstrom, July 2003 http://csrc.nist.gov/publications/nistir/nistir-7030.pdf 4 Anti-keylogger myths Security-wise, this is conceptually identical to the virtual keyboard. Here too, a combination of mouse-click detection with mouse pointer proximity screen recorder can easily uncover the graphical password. 3. Password Managers Stop Keyloggers Myth or Reality: Myth Another way to avoid actual password typing is the use of a “password manager” or “password vault” software. Instead of typing the password into a form, the password manager automatically fills in the form with the correct password. The password manager stores the user’s password in a vault to keep fraudsters from accessing stored passwords. Password managers can be easily bypassed using keyloggers that reside inside the browser. While inside the browser the keylogger can see the password immediately after the password manager enters it into the login form. Keyloggers that reside inside the browser are also known as man-in-the-browser malware or malicious browser plug-ins. Browser plug-ins are very popular, both for legitimate uses (e.g. Google’s toolbar) and consequently, for non-legitimate uses (spyware and malware), piggybacking on the extensibility of the browser and the popularity of plug-ins. The browser plug-in technology grants the plug-in a lot of privileges, such as full access to the DOM (which is the internal representation of the page currently displayed), and subscription to browser events (such as “navigation”, “page load” and “form submission”). This makes it very easy for a malicious plug-in to get hold of the credentials. A malicious plug-in can access the credentials in the DOM, where they are injected by the password manager. Or, a malicious plug-in can wait for the submit event and capture the credentials during submission. Examples: • “Spy-Agent.ba” (McAfee malware description page) http://vil.nai.com/vil/content/v_139621.htm • (unnamed document) by Tom Liston, see bottom of page 4 to top of page 6. http://isc.sans.org/presentations/banking_malware.pdf Additionally, unless implemented very carefully and with security as its #1 goal, a password manager can turn out to be a security vulnerability in itself. This is due to the complexity of correctly identifying which form qualifies to be automatically populated. A phisher can exploit a flaw in the decision algorithm and present a form that will be automatically populated. The phisher can also include a Javascript code in that page that, once the form is (automatically) populated, reads the credentials and sends them to the phisher. The user in such case is kept out of the loop and the attack occurs automatically. Another concern with password vaults is the vault’s strength. If it can be easily broken, attackers would gain immediate access to all the passwords inside the vault. Examples for such flaws: • “Firefox vulnerable to Password Manager flaw”, Tom Espiner (ZDNet UK), November 22 nd , 2006 http://news.zdnet.co.uk/security/0,1000000189,39284818,00.htm 5 Anti-keylogger myths • A two part article titled “Password Management Concerns with IE and Firefox” in SecurityFocus (by Mikhael Felker, December 11 th , 2006) discusses several classes of flaws in password managers: http://www.securityfocus.com/infocus/1882 http://www.securityfocus.com/infocus/1883 4. Keystroke Dynamics Stop Keyloggers Myth or Reality: Myth Keystroke dynamics looks at the way a person types on a keyboard. Specifically, keyboard dynamics measures two distinct variables: "dwell time" which is the amount of time you hold down a particular key and "flight time" which is the amount of time it takes a person to move between keys. Research (http://avirubin.com/fgcs.pdf
Recommended publications
  • Using Xgboost to Classify the Beihang Keystroke Dynamics Database
    UPTEC F 18049 Examensarbete 30 hp 15 Augusti 2018 Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Abstract Using XGBoost to classify the Beihang Keystroke Dynamics Database Johanna Blomqvist Teknisk- naturvetenskaplig fakultet UTH-enheten Keystroke Dynamics enable biometric security systems by collecting and analyzing computer keyboard usage data. There are different Besöksadress: approaches to classifying keystroke data and a method that has been Ångströmlaboratoriet Lägerhyddsvägen 1 gaining a lot of attention in the machine learning industry lately is Hus 4, Plan 0 the decision tree framework of XGBoost. XGBoost has won several Kaggle competitions in the last couple of years, but its capacity in Postadress: the keystroke dynamics field has not yet been widely explored. Box 536 751 21 Uppsala Therefore, this thesis has attempted to classify the existing Beihang Keystroke Dynamics Database using XGBoost. To do this, keystroke Telefon: features such as dwell time and flight time were extracted from the 018 – 471 30 03 dataset, which contains 47 usernames and passwords. XGBoost was then Telefax: applied to a binary classification problem, where the model attempts 018 – 471 30 00 to distinguish keystroke feature sequences from genuine users from those of `impostors'. In this way, the ratio of inaccurately and Hemsida: accurately labeled password inputs can be analyzed. http://www.teknat.uu.se/student The result showed that, after tuning of the hyperparameters, the XGBoost yielded Equal Error Rates (EER) at best 0.31 percentage points better than the SVM used in the original study of the database at 11.52%, and a highest AUC of 0.9792.
    [Show full text]
  • Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence
    International Conference and Workshop on Emerging Trends in Technology (ICWET 2011) – TCET, Mumbai, India Keystroke Dynamic Analysis Using Relative Entropy & Timing Sequence Euclidian Distance H B Kekre, V A Bharadi P Shaktia, V Shah A A Ambardekar Computer Science Department IT Department, TCET Computer Science and Engineering, MPSTME, NMIMS University Mumbai University University of Nevada Mumbai, India Mumbai, India RENO, USA +91-9323557897, +91-9819125676 +91-7738343494 +1-7753131894 [email protected], [email protected], [email protected] [email protected] [email protected] ABSTRACT traits or even more than one biometric traits can be combined to Biometric authentication systems are becoming more and more implement multimodal biometric systems [1], [2], [3]. In this popular because of increased security concerns. Keystroke paper keystroke dynamics based biometric authentication method Dynamics is one of the important behavior based biometric trait. is discussed. The way one user presses different keys on a It has moderate uniqueness level and low user cooperation is keyboard is peculiar and unique. Along with the characters in a required. In this paper keystroke dynamics analysis using relative password this dynamic information can be used for identifying entropy and Euclidian distance between keystroke timing correct person. sequence is discussed. In this approach keystroke timing sequence are calculated and normalized then this information is used for 1.1 Keystroke Dynamics Keystroke dynamics, or typing dynamics, is the detailed timing generating normalized probability distribution of dynamic information that describes exactly when each key was pressed and passwords, two distance measures namely relative entropy & when it was released as a person is typing at a computer keyboard Euclidian distance are used for classification.
    [Show full text]
  • Identification of User Behavioural Biometrics for Authentication Using Keystroke Dynamics and Machine Learning
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 4-20-2018 Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning Sowndarya Krishnamoorthy University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Krishnamoorthy, Sowndarya, "Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning" (2018). Electronic Theses and Dissertations. 7440. https://scholar.uwindsor.ca/etd/7440 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning By Sowndarya Krishnamoorthy A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2018 ©2018 Sowndarya Krishnamoorthy Identification of User Behavioral Biometrics for Authentication using Keystroke Dynamics and Machine Learning by Sowndarya Krishnamoorthy APPROVED BY: G.
    [Show full text]
  • Shared Data Set for Free-Text Keystroke Dynamics Authentica- Tion Algorithms
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0255.v1 Article Shared Data Set for Free-Text Keystroke Dynamics Authentica- tion Algorithms Augustin-Catalin Iapa 1,* and Vladimir-Ioan Cretu 1 1 Timișoara Politehnica University; Department of Computer and Information Technology; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: +40769054995 Abstract: Identifying or authenticating a computer user are necessary steps to keep systems secure on the network and to prevent fraudulent users from accessing accounts. Keystroke dynamics au- thentication can be used as an additional authentication method. Keystroke dynamics involves in-depth analysis of how you type on the keyboard, analysis of how long a key is pressed or the time between two consecutive keys. This field has seen a continuous growth in scientific research. In the last five years alone, about 10,000 scientific researches in this field have been published. One of the main problems facing researchers is the small number of public data sets that include how users type on the keyboard. This paper aims to provide researchers with a data set that includes how to type free text on the keyboard by 80 users. The data were collected in a single session via a web platform. The dataset contains 410,633 key-events collected in a total time interval of almost 24 hours. In similar research, most datasets are with texts written by users in English. The language in which the users wrote for this research is Romanian. This paper also provides an extensive analysis of the data set collected and presents relevant information for the analysis of the data set in future research.
    [Show full text]
  • Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works
    IEEE 6th International Conference on Biometrics, BTAS 2013. Behavioral Biometric Verification of Student Identity in Online Course Assessment and Authentication of Authors in Literary Works John V. Monaco, John C. Stewart, Sung-Hyuk Cha, and Charles C. Tappert Seidenberg School of CSIS, Pace University, White Plains, NY 10606 difficult to duplicate [4, 10]. The keystroke biometric is a Abstract behavioral biometric, and most of the systems developed Keystroke and stylometry behavioral biometrics were previously have been experimental in nature. Nevertheless, investigated with the objective of developing a robust system there has been a long history of commercially unsuccessful to authenticate students taking online examinations. This implementations aimed at continuous recognition of a typist. work responds to the 2008 U.S. Higher Education While most previous work dealt with short input (passwords Opportunity Act that requires institutions of higher learning or short name strings) [1, 7, 14, 15, 16], some used long free undertake greater access control efforts, by adopting (arbitrary) text input [2, 8, 11, 13, 19, 20]. Free-text input identification technologies as they become available, to as the user continues typing allows for continuous assure that students of record are those actually accessing authentication [5, 12, 13, 17] which can be important in the systems and taking the exams in online courses. online exam applications [6, 19]. Performance statistics on keystroke, stylometry, and Stylometry is the study of determining authorship from combined keystroke-stylometry systems were obtained on the authors’ linguistic styles. Traditionally, it has been data from 30 students taking examinations in a university used to attribute authorship to anonymous or disputed course.
    [Show full text]
  • Enhancing Online Banking Authentication Using Keystroke Dynamics
    UNIVERSIDAD POLITECNICA´ DE MADRID FACULTAD DE INFORMATICA´ MASTER´ UNIVERSITARIO EN SOFTWARE Y SISTEMAS Enhancing Online Banking Authentication Using Keystroke Dynamics Master Thesis Author: Mar´ıa del Carmen S´anchez Medrano Directors: Manuel Carro Juan Caballero July 2017 Master Thesis MUSS Master thesis from UPM done by: Author’s Surname and name: S´anchez Medrano, Mar´ıa del Carmen Title: Enhancing Online Banking Authentication Using Keystroke Dynamics Date: July 2017 Directors: Manuel Carro Juan Caballero 2 Abstract The most common method for banks to authenticate users is through a user identifier and password. Unfortunately, this is a method of easy impersonation, because although many banks control brute force attacks by blocking the account after a maximum number of failed login attempts, credentials may be stolen. A big challenge for banks is to identify whether the user is or not the one he is supposed to be. The security measures based on biometrics are the ones that have given better results against this type of attacks. But as a drawback, most of these methods are very expensive to implement and their usability is low since they require special hardware. There are other types of biometric methods based on patterns, like keystroke dynamics. Each user has their own typing pattern which is very difficult to replicate. The different speeds between typing keys or the number of uses of a control key can be the difference between one person to the other. In this thesis, we study how to improve bank authentication using keystroke dy- namics. In order to achieve this objective, we had to perform data acquisition, data preprocessing and feature extraction processes.
    [Show full text]
  • Downloaded From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-space: Manchester Metropolitan University's Research Repository Teh, PS and Zhang, N and Teoh, ABJ and Chen, K (2016)A survey on touch dynamics authentication in mobile devices. Computers and Security, 59. pp. 210-235. ISSN 0167-4048 Downloaded from: http://e-space.mmu.ac.uk/625411/ Version: Accepted Version Publisher: Elsevier DOI: https://doi.org/10.1016/j.cose.2016.03.003 Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva- tive Works 4.0 Please cite the published version https://e-space.mmu.ac.uk A Survey on Touch Dynamics Authentication in Mobile Devices Pin Shen Teh1, Ning Zhang1, Andrew Beng Jin Teoh2, Ke Chen1 1 School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 2 School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea. E-mail: {pinshen.teh; ning.zhang-2; ke.chen}@manchester.ac.uk; [email protected] ABSTRACT There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics.
    [Show full text]
  • Biometric Authentication Techniques: a Study on Keystroke Dynamics
    International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Biometric Authentication Techniques: A Study on Keystroke Dynamics Sandhya Avasthi Assistant Professor, Krishna Engineering College Tanushree Sanwal Assistant Professor, Krishna Engineering College Abstract— Biometrics technologies are gaining popularity today since they provide reliable and efficient means of authentication and verification. Our dependency on electronic devices is growing, and so is our need to secure information on them. Keystroke Dynamics is one of the famous biometric technologies, which identifies the authenticity of a user when the user is working via a keyboard. The authentication process is done by observing the variation in the typing pattern of the user. A comprehensive study of the existing keystroke dynamics methods, metrics, and different approaches are presented. This paper also discusses about the various security issues and challenges faced by keystroke dynamics. Keywords- Biometrics, Keystroke Dynamics, computer Security, Information Security, Biometric Authentication. 1. INTRODUCTION Preventing unauthorized access or restricting access to information system is first step towards security, which is possible through user Authentication. User authentication is the process of verifying identity of the user. The authentication is accomplished by matching some short-form indicator of identity, such as a shared secret that has been pre-arranged during enrollment or registration for authorized users. This is done for the purpose of performing trusted communications between parties for computing applications. User authentication is categorized into three categories [17]: 1. Knowledge - based, 2. Object or Token - based, 3. Biometric - based. User Authentication Knowledge Object Based Biometric Based Based Physiological Behavioral Figure 1 215 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016 ISSN: 2395-3470 www.ijseas.com Figure1.
    [Show full text]
  • Keystroke Dynamics for User Authentication and Identification by Using Typing Rhythm
    International Journal of Computer Applications (0975 – 8887) Volume 144 – No.9, June 2016 Keystroke Dynamics for User Authentication and Identification by using Typing Rhythm Rohit A. Patil Amar L. Renke Department of Electronics & Tele-Communication Department of Electronics & Tele-Communication Engineering Engineering K.I.T’s College of Engineering, Kolhapur, K.I.T’s College of Engineering, Kolhapur, Maharashtra, 416234, India Maharashtra, 416234, India ABSTRACT practical now a days. Keystroke dynamics is a behavioral In this era computer security is an important issue now a days biometric characteristic based on the assumption that different because these are used everywhere to store & process the people type in a unique manner. Neurophysiologic factors sensitive data. Specially those used in e-banking, e-commerce, make written signatures distinctive as per person. These virtual offices, e-learning, distributed, computing & various factors are also expected to make typing characteristics unique services over the internet. Using Keystroke dynamics as per person. The idea behind keystroke dynamics authentication technology can be secured by password from authentication appeared in the twentieth century when various attacks. This technique is based on human behavior to telegraph operators could authenticate each other based on type their password. Here analysis is done using human their distinctive patterns when keying messages on telegraph behavior with their typing pattern. As keystroke dynamics lines. Keystroke dynamics is also known with as keyboard does not require any hardware, no extra hardware is used. dynamics, keystroke analysis, typing biometrics and typing Only software based technology is required for password rhythms. protection. The result provides emphasis with pleasure Although Physiological biometrics is considered to be more security that growing in demand in web-based application.
    [Show full text]
  • Authentication System Based on Keystroke Dynamics
    * i Authentication System Based on Keystroke Dynamics Project written by: Name: Signature: Sorin ZAHARIA June 7, 2018 Title: Authentication System Based on Keystroke Dynamics Aalborg University Copenhagen Theme: A. C Meyers Vænge 15 Services and Platforms 2450 København SV Secretary: Maiken Keller Project period: Telephone (+45) 9940 2471 February - June 2018 mks@staff.aau.dk Abstract: Author: Sorin Zaharia Information is a very important asset for com- panies and users. With new types of attacks being developed at a quick pace, innovative Supervisors: technologies are required to keep information Per Lynggaard safe. In this project, a keystroke dynamics au- Samant Khajuria thentication system is proposed, which aims to solve the issues of classic one time log in No. of Pages: 81 systems. The problem with these systems is that, no matter how secure they are, once the No. of Appendix Pages: 12 authentication step is performed, there is no way for the system to authenticate the users Total no. of pages: 103 continuously. In this project, the concept of Finished: June 7, 2018 keystroke dynamics is introduced, and a sys- tem that can continuously authenticate users based on freely-typed text is proposed. Differ- ent feature extraction methods are described that should capture the users’ typing behav- ior. When uploading this document to Digital Exam each group member confirms that all have participated equally in the project work and that they collectively are responsible for the content of the project report. Furthermore each group member is liable for that there is no plagiarism in the report. iii Contents 1 Introduction 1 1.1 Background.......................................2 1.2 Authentication.....................................3 1.3 Problem Definition...................................6 1.4 Structure of the Project................................7 1.5 Limitations.......................................7 2 Methodology 9 2.1 Project Phases.....................................9 2.2 Research framework.................................
    [Show full text]
  • Soft Biometrics for Keystroke Dynamics Syed Zulkarnain Syed Idrus
    Soft Biometrics for Keystroke Dynamics Syed Zulkarnain Syed Idrus To cite this version: Syed Zulkarnain Syed Idrus. Soft Biometrics for Keystroke Dynamics. Computer Vision and Pattern Recognition [cs.CV]. Université de Caen Basse-Normandie, 2014. English. tel-01108638 HAL Id: tel-01108638 https://hal.archives-ouvertes.fr/tel-01108638 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ede Caen Basse-Normandie Ecole´ doctorale SIMEM PhD Thesis presented and defended on : 04/12/2014 by Syed Zulkarnain SYED IDRUS to obtain the PhD from Universit´ede Caen Basse-Normandie Specialised : Computer Science and Applications Soft Biometrics for Keystroke Dynamics Director of thesis : Pr. Dr. Christophe Rosenberger Co-director of thesis : Pr. Dr. Patrick Bours Members of the Jury Amine Na¨ıt-Ali University Professor LISSI, Universit´eParis-Est Creteil, France (Reviewer) Najoua Essoukri Ben Amara University Professor ENI de Sousse, Tunisia (Reviewer) Mohamed Daoudi University Professor LIFL, T´el´ecom Lille1, France (Examiner) Christophe
    [Show full text]
  • Keystroke Dynamics
    Keystroke Dynamics P018 - term project, 2001 Petr Švenda <[email protected]> Masaryk University Technology overview History: The original technology was derived from the idea of identifying a sender of Morse code using a telegraphy key known as the "fist of the sender", whereby operators could identify senders transmitting a message by the rhythm, pace and syncopation of the signal taps. During World War II, the Army Signal Core identified that an individual keying rhythm on a telegraph key was quite unique. In the early-‘80s the National Science Foundation and the National Bureau of Standards in the United States conducted studies establishing that typing patterns contain unique characteristics that can be identified. Technology details: Keystroke dynamics are one of behavioral biometrics and look at the way a person types at a keyboard. Specifically, keyboard dynamics measures two distinct variables: dwell time, which is the amount of time you hold down a particular key and flight time, which is the amount of time it takes a person to move between keys. Keyboard dynamics systems can measure one's keyboard input up to 1000 times per second. Keystroke dynamics requires, as most biometrics technologies, a reference template. This involves several sessions of a person using a keystroke dynamic system so that the system can construct or build the reference template by detecting one's typing rhythms. There are some other characteristics, which can be also used, such as typing error frequency, frequency of using characters etc. Typing characteristics can be extracted from a structured text (login, first and last name, password ...) same as from an unstructured (free) text, but results of verification/recognition are now much better for structured text.
    [Show full text]