Quick viewing(Text Mode)

Stability of Geosynthetic Lined Slopes‐II Timothy D

Stability of Geosynthetic Lined Slopes‐II Timothy D

Stability of Geosynthetic Lined Slopes‐II Timothy D. Stark – University of Illinois – [email protected] in conjunction with Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 2/58‐ Stability Factors

• “Load the top and the toe” • FS = Resistance/Driving • Driving Stresses - Steep Slopes - High Slopes - High unit weight - Dynamic Loads • Small Shear Resistance - Toe support - Weak materials or interfaces - Fluid pressures

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 3/58‐ Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW Shear Strength • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 4/58‐ Critical Cross-Section

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 5/58‐ Critical Cross-Section

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 6/58‐ Critical Cross-Section

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 7/58 ‐ Critical Cross-Section • “Three of the five critical cross-sections selected for slope stability analyses...... ” • “Selection of the most critical cross-sections for slope stability analyses based on a review of: plan, .....” • “A total of three critical slope sections were analyzed and are designated as sections A-A, B-B, and C-C.” • “The most critical factors of safety calculated ranged from between 1.52 and 1.87, which are considered acceptable.”

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 8/58‐ Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW Shear Strength • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 9/58‐ FAILURE MODES

• Translational • Rotational • Infinite

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 10/58‐ Translational

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 11/58 ‐ Translational

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 12/58 ‐ Rotational • Homogeneous • Isotropic

Waste Weak Fine- Grained

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 13/58 ‐ Rotational

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 14/58 ‐ Infinite Slope • Liner system • Cover system • Homogenous H 

 Failure Surface

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 15/58 ‐ Infinite

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 16/58‐ Critical Slip Surface

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 17/58 ‐ Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW Shear Strength • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 18/58‐ Slope Stability Methods

• Ordinary Method of Slices (1927) • Method of Wedges (1930) • Bishop’s Modified Method (1955) • Janbu’s Generalized Procedure of Slices (1957) • Lowe and Karafiath (1960) • Morgenstern and Price’s Method (1965) • Spencer’s Method (1967)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 19/58 ‐ Vertical Slices

J.M. Duncan (1982)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 20/58 ‐ MorgensternMorgenstern && PricePrice (1965)(1965)

J.M. Duncan (1982)

• Horizontal side force resultant determined using f(x) and solve for  to determine resultant - removes N-1 unknowns • Location of normal force on base, removes N unknowns • (5N-2) – (N) - (N-1) = 3N-1 => statically determinant

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 21/58‐ Morgenstern & Price (1965)

• Interslice Force Functions - Trapezoid -Half sine - Clipped sine = half sine but > zero - User-defined • 3D Software - Half sine - Constant

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 22/58‐ Spencer’sSpencer Method (1967) (1967)

J.M. Duncan (1982)

• Simplifies M&P (1965) • Horizontal side force resultant is determined with constant to determine resultant – side forces are parallel - removes N-1 unknowns • Location of normal force on base, removes N unknowns • (5N-2) – (N) - (N-1) = 3N-1 => statically determinant & less than slope angle

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 23/58‐ Accuracy of Stability Methods

• Circular Failure Surfaces - M&P, Spencer, or Bishop methods • Non-Circular Failure Surfaces - M&P or Spencer methods • Mechanics are understood - FS + 5% • Uncertainty is Geosynthetic Shear Strength

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 24/58 ‐ T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 25/58 ‐ Infinite Slope with No Water W *cos( )*tan( ) FS   W *sin( ) tan( ) h FS   tan( )  Wsin  = interface angle  Wcos Failure  = slope angle W Surface/GM W = *h = cover weight No buttress No tension

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 26/58 ‐ Infinite Slope with Adhesion aW *cos( )*tan( ) FS   W *sin( ) ah *cos( )*tan( ) h FS   h*sin( )  a = adhesion Wsin h = cover thickness Wcos Failure  = cover unit weight  W Surface/GM No buttress No tension

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 27/58 ‐ Infinite Slope with Adhesion & Water  h ah ww  h*cos( )*tan( ) cos2 ( ) FS   h*sin( ) hw = water depth on GM h  = water unit weight w 

Wsin Wcos h  Failure w W Surface/GM

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 28/58 ‐ Effect of Water and 

1.6  = 18.4°

 = 28° 1.5

1.4

 = 25° 1.3

1.2 Factor of Safety of Factor  = 22° 1.1

 = 20° 1

0.9 024681012 Water Depth in Drainage Layer (in) Drainage Above

Terram

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 30/58 ‐  Seismic Infinite Slope Analysis    c (z dw)  tan [1( w* )] Ks * tan *tan ( *z*cos2 )  ( z) F    (Ks  tan )     c  (z dw)  tan [1( w* )]tan ( *z*cos2 ) ( z) Ky    (1 tan *tan')  • Matasovic (1991) -Ks = seismic coefficient -Ky = yield coefficient - z = depth to failure surface -dw = depth to water surface parallel to slope

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 31/58‐ Slope with Reinforcement • Giroud et al. (1995) a = interface adhesion  = interface friction  = cover soil friction angle c = cover soil  = slope angle  = cover soil unit weight h = soil cover thickness H = vertical slope height T = geosynthetic tension

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 32/58 ‐ Slope with Reinforcement tan( ) a FS   tan( )h *sin( ) T h sin( ) h *  H sin(2 )cos( )  c cos( ) Wsin  *  Wcos H sin( )cos( )  W H T   Hh*

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 33/58 ‐ Reinforcement Design Example

Geosynthetic Data  = 14o a = 0 NO Reinforcement (T=0) H=100 ft h=3 ft 

tan  a h sin  c cos T FS =    tan     hHH  Sin    H sin(2 ) cos( + ) sin cos( + ) *h tan  h sin FS =   tan H sin(2 ) cos( + )  tan (14oo ) 3' sin (30 ) = oo  oo tan (18.4 ) 100' sin(2*18.4 ) cos(18.4 +30 ) FS = 0.75 + 0.04 = 0.79 FS = 0.79 T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 34/58 ‐ Reinforcement Required for FS>1.5

Geosynthetic Data  = 14o a = 0 TReqd=? H=100 ft h=3 ft 

tan  h sin TReqd FS =  1.5 tan  H sin(2 ) cos( + )H *h oo tan (14 ) 3' sin (30 ) TReqd FS = oooo 1.5 tan (18.4 ) 100' sin(2*18.4 ) cos(18.4 +30 )H *h T FS = 0.75 + 0.04 Reqd 1.5 115pcf (100 ft )(3 ft ) T 24,495 lbs/ft Reqd T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 35/58 ‐  Max Slope Height for FS>1.5 & T=7,590 lbs/ft

tan  t sin T FS =  1.5  tan  hReqd sin(2 ) cos( + ) (h Reqd )t H=100 ft h=3 ft  tan (1400 ) 3 ft sin (30 )  7,590 lbs/ft  FS =    0000   tan (18.4 ) hReqd sin(2*18.4 ) cos(14 30 )  115pcf*h Reqd (3ft )  3.8 22 = 0.75 + +1.5 h h Reqd Reqd Geosynthetic Data 25.8  = 14o + 0.75 h a = 0 Reqd T=7,590 lbs/ft h34.4Reqd  ft

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 36/58 ‐ Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW Shear Strength • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 37/58‐ 2D v. 3D Slope Stability

• 2D analyses assume plane strain condition • Slopes are not infinitely wide - 3D effects influence stability

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 38/58 ‐ Comparison of 2D & 3D Stability

• F3D >F2D For Appropriate Conditions • Difference is Caused by Shear Forces Along the Edges of the Slide Mass • Complex Slope Conditions Geometry Pore-Water Pressures Shear Strength

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 39/58 ‐ 3D Slope Geometry

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 40/58 ‐ Effects of 3D Side Resistance

Stark and Akhtar (2011)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 41/58 ‐ Effects of 3D Side Resistance

Stark and Akhtar (2011)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 42/58 ‐ 3D Slope Stability Software

• CLARA 2.31 - Stark and Eid (1998) • 3DDEM-Slope • Slide3

• FLAC 3D • 3D • RS3

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 43/58 ‐ Inverse3D Effects Analysis in Inverse-Analyses – Stark and Eid (1998) • Translational failure • Large MSW slope failure • Stark et al. (2000) • Slide mass » 1,000,000 m3 • Average slope = 21°

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 44/58‐ Inverse3D Effects Analysis in– Stark Inverse-Analyses and Eid (1998)

• Results ‐ 3D matches laboratory shear tests

2D ANALYSIS OVERESTIMATES MOBILIZED FRICTION ANGLE BY 20-30%

50% Akhtar and Stark (2011) 20%

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 45/58‐ 3D Geometry

Stark and Eid (1998)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 46/58 ‐ 3D Geometry

Stark and Eid (1998)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 47/58 ‐ Mis-Use of 3D Analyses

• 3D FS > 2D FS For Appropriate Conditions • NOT FOR MAXIMIZING SLOPES REQUIRED 3D FS > 1.5 UNCERTAINTIES IN SHEAR STRENGTHS TOO MANY FAILURES • NOT FOR SATISFYING REGULATIONS

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 48/58 ‐ Mis-Use of 3D Analyses

2D FS > 1.5

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 49/58 ‐ REQUIRED 3D FACTOR OF SAFETY

Stark & Akhtar (2011) Required 3D FS = f(W/H)

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 50/58 ‐ Required 3-D Factor of Safety • Most Conservative = 3‐D FS Figure

FS32DMin FS D Min* Ratio 3/2 D D

• Little 2‐D Uncertainty so only incorporate 3D effects (Stark and Ruffing, 2017)

FS32D  FS DMin FS32DMin FS DMin FS2DMin

• Least conservative 3D FS (Stark and Ruffing, 2017) FS32D  FS DMin FS32DMin FS DMin FS3D

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 51/58‐ Summary of 3-D Analysis in Practice • 3‐D FS > 2‐D FS for all conditions considered herein • Inverse Analyses • Use 3‐D for mobilized strength • 3D inverse strength more representative of field/laboratory testing • Design • Use 2‐D analysis to maintain current conservatism • State and federal codes should specify minimum 2‐D FS of 1.5” • Initial Estimate of 3‐D FS • Rotational slides: 2‐D weighted average • Translational slides: ‐Charts ‐Software T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 52/58‐ Topics

• Stability factors • Critical cross-section • Critical failure surface • Slope stability methods • 2D v. 3D stability analyses • MSW Shear Strength • Summary

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 53/58‐ MSW Shear Strength

c’=0, ɸ’=20°

(Stark et al. 2009) Normal

- c’= 6 kPa, ϕ’=35° σ’v< 200 kPa - c’= 30 kPa, ϕ’=30° σ’v ≥ 200 kPa

Thermally Degraded ‐ c’= 0 kPa, ϕ’=20° T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 54 /58‐ Summary

• Morgenstern & Price (1965) - use different functions • Uncertainty = shear strength • 3D not to increase FS

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 55/58 ‐ References • Giroud, J.P., Williams, N.D., Pelte, T., and Beech, J.F., (1995), “Stability of Geosynthetic–Soil Layered Systems on Slopes,” Geosynthetics International, 2(6), p. 1115‐1148 . • Stark, T.D. and Poeppel, A.R. (1994). " Liner Interface Strengths from Torsional Ring Shear Tests," Journal of , ASCE, 120(3), March, 597‐615. • Stark, T.D., Williamson, T.A., and Eid, H.T. (1996). "HDPE Geomembrane/ Interface Shear Strength," Journal of Geotechnical Engineering, ASCE, 122(3), March, 197‐203. • Stark, T.D., Arellano, D., Evans, W.D., Wilson, V., and Gonda, J. (1998). "Unreinforced Geosynthetic Liner Case History," Geosynthetics International Journal, 5(5), December, 521‐544. • Stark, T.D., Evans, W.D., and Wilson, V. (2000). "An Interim Slope Failure Involving Recirculation," Proceedings of Waste Tech ‘00, National Solid Wastes Mgmt. Association, Orlando, FL, March, 2000, 20 p. • Stark, T.D. and Choi, H. (2005) "Peak v. Residual Interface Strengths for and Cover Design," Geosynthetics International Journal, 11(6), December, 491‐498. • Stark, T.D., N. Huvaj‐Sarihan, N., and Li, G. (2009). "Shear Strength of Municipal Solid Waste for Stability Analyses," Environmental J., Springer, http://dx.doi.org/10.1007/s00254‐008‐1480‐0, 57(8), 1911‐1923. • Stark, T.D. and Newman, E.J., (2010). "Design of a Landfill Final Cover System," Geosynthetics International Journal, 17(3), 1‐8. • Calder, G.V. and T.D. Stark, (2010). "Aluminum Reactions and Problems in Municipal Solid Waste ," Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, ASCE, 14(4), October, 258‐265. • Stark, T.D., Choi, H., Lee, F., and Queen, B. (2012). "Importance of Compacted Soil Liner Interface Strength," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138(4), April, 544‐550.

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 56/58‐ Contact Information

Timothy D. Stark Jonathan Curry Professor of GMA, Managing Director Technical Director, Fabricated Geomembrane [email protected] Institute University of Illinois [email protected] or Janelle [email protected] GMA Division Specialist [email protected] Andy Durham GMA Executive Council Jessica Kivijarvi FGI Member GMA Assistant Owens Corning [email protected] [email protected]

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 57/58‐ Questions, Comments, Experiences... Discussion Session II: Slope Stability Analyses

Timothy D. Stark, Ph.D., P.E., D.GE University of Illinois at Urbana-Champaign [email protected]

T.D. Stark ‐ Session II: Slope Stability Analyses © 2018 ‐ 58/58 ‐