Transcriptome Reconstruction and Functional Analysis of Eukaryotic Marine Plankton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amyloodinium Ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts
Gulf and Caribbean Research Volume 6 Issue 4 January 1980 Studies on Amyloodinium ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts Adrian R. Lawler Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Lawler, A. R. 1980. Studies on Amyloodinium ocellatum (Dinoflagellata) in Mississippi Sound: Natural and Experimental Hosts. Gulf Research Reports 6 (4): 403-413. Retrieved from https://aquila.usm.edu/gcr/vol6/iss4/8 DOI: https://doi.org/10.18785/grr.0604.08 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports, Vol. 6,No. 4,403-413, 1980. STUDIES ON AMYLOODINIUM OCELLA TUM (DINOFLAGELLATA) IN MISSISSIPPI SOUND: NATURAL AND EXPERIMENTAL HOSTS' ADRIAN R. LAWLER Parasitology Section, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 ABSTRACT Four species of parasitic dinoflagellates have been found to occur naturally on the gills and fins of Missis- sippi Sound fishes: Amyloodinium ocellatum (Brown 1931) Brown and Hovasse 1946, Oodinium cyprinodontum Lawler 1967, and two undescribed species. Sixteen of 43 species of fishes examined had natural gill infections of A. ocellatum. Seventy-one of 79 species of fishes exposed to A. ocellatum dinospores were susceptible, and succumbed, to the dinoflagel- late. Eight did not die even though exposed to numerous dinospores. The most common signs in an infested fish were spasmodic gasping and uncoordinated movements. -
Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling
Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling. Daniel Vaulot, Cécile Lepère, Eve Toulza, Rodrigo de la Iglesia, Julie Poulain, Frédéric Gaboyer, Hervé Moreau, Klaas Vandepoele, Osvaldo Ulloa, Frédérick Gavory, et al. To cite this version: Daniel Vaulot, Cécile Lepère, Eve Toulza, Rodrigo de la Iglesia, Julie Poulain, et al.. Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling.. PLoS ONE, Public Library of Science, 2012, 7 (6), pp.e39648. 10.1371/journal.pone.0039648. hal-00848707 HAL Id: hal-00848707 https://hal.archives-ouvertes.fr/hal-00848707 Submitted on 28 Jul 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling Daniel Vaulot1*, Ce´cile Lepe`re1, Eve Toulza2, Rodrigo De la Iglesia3¤a, Julie Poulain4, Fre´de´ ric Gaboyer1¤b, Herve´ Moreau2, Klaas Vandepoele5,6, Osvaldo Ulloa3, Frederick Gavory4, Gwenael Piganeau2 1 UPMC (Paris-06) and CNRS, UMR 7144, Station Biologique, Place G. Tessier, Roscoff, France, 2 CNRS and UPMC (Paris-06) -
Genes in Some Samples, Suggesting That the Gene Repertoire Is Modulated by Environmental Conditions
Analyses de variations génomiques liées à la biogéographie des picoalgues Mamiellales. Thèse de doctorat de l'université Paris-Saclay École doctorale n°577, Structure et dynamique des systèmes vivants (SDSV) Spécialité de doctorat : Sciences de la Vie et de la Santé Unité de recherche : Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057, Evry-Courcouronnes, France. Référent : Université d'Évry Val d’Essonne Thèse présentée et soutenue à Évry, le 28/08/2020, par Jade LECONTE Composition du Jury Christophe AMBROISE Professeur des universités, Université Examinateur & Président d’Evry Val d’Essonne (UMR 8071) François-Yves BOUGET Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7232) Frédéric PARTENSKY Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7144) Ian PROBERT Ingénieur de recherche, Sorbonne Examinateur Université Olivier JAILLON Directeur de thèse Directeur de recherche, CEA (UMR 8030) Remerciements Je souhaite remercier en premier lieu mon directeur de thèse, Olivier Jaillon, pour son encadrement, ses conseils et sa compréhension depuis mon arrivée au Genoscope. J’ai appris beaucoup à ses côtés, progressé dans de nombreux domaines, et apprécié partager l’unique bureau sans moquette du troisième étage avec lui. Merci également à Patrick Wincker pour m’avoir donné l’opportunité de travailler au sein du LAGE toutes ces années. J’ai grâce à vous deux eu l’occasion de plonger un peu plus loin dans le monde de l’écologie marine à travers le projet Tara Oceans, et j’en suis plus que reconnaissante. Je tiens également à remercier les membres de mon jury de thèse, à la fois mes rapporteurs François-Yves Bouget et Frédéric Partensky qui ont bien voulu évaluer ce manuscrit, ainsi que Christophe Ambroise et Ian Probert qui ont également volontiers accepté de participer à ma soutenance. -
Chromerid Genomes Reveal the Evolutionary Path From
RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany, -
MBI Volume 70 Issue 2 Cover and Back Matter
MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM RESEARCH AWARDS Applications are invited for research awards to enable scientists from the United Kingdom, or from abroad, to work at the Association's Citadel Hill Laboratory, either as independent visitors or to collaborate in work currently being undertaken as part of the Association's Research Programme. Two levels of award are available: RESEARCH BURSARIES available for visitors at all levels of experience from graduate students to senior scientists. Several awards are made each year with a maximum value of £2,500. RAY LANKESTERINVESTIGATORSHIP available to postdoctoral research workers with several years of research experience in some aspect of marine biology or marine physiology. One award is made each year to a value of £5,000 to enable visitors to work at the Laboratory for a minimum of 5 months over an 18-month period. Applications or enquiries are invited for 1990 and 1991. Successful applicants will be expected to become members of the Association. Further details may be obtained from: Dr Gerald Boalch, The Bursar Marine Biological Association of the United Kingdom The Laboratory Citadel Hill Plymouth PL1 2PB UK or by telephoning: 0752-222772 ext. 211 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 26 Sep 2021 at 17:38:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315400035359 Cover: The photograph on the outside of the cover was taken by David Nicholson at Pedney Beach, Cornwall. Inside front cover: Second zoea of velvet fiddler crab Portunus puber (L.) (height 3 mm). -
Working Group Reports
2.0 WORKING GROUPS REPORTS Expenditures by SCOR Working Groups (1996-2005), p. 2-1 2.1 Disbanded Working Groups, p. 2-2 2.1.1 WG 78 on Determination of Photosynthetic Pigments in Seawater, p. 2-2 Urban 2.2 Current Working Groups— The Executive Committee Reporter for each working group will present an update on working group activities and progress, and will make recommendations on actions to be taken. Working groups expire at each General Meeting, but can be renewed at the meeting and can be disbanded whenever appropriate. 2.2.1 WG 111—Coupling Winds, Waves and Currents in Coastal Models, p. 2-16 Wainer 2.2.2 WG 115—Standards for the Survey and Analysis of Plankton, p. 2-18 Pierrot-Bults 2.2.3 WG 116—Sediment Traps and 234Th Methods for Carbon Export Flux Determination, p. 2-29 Labeyrie 2.2.4 WG 119—Quantitative Ecosystems Indicators for Fisheries Management, p. 2-31 Taniguchi 2.2.5 WG 120—Marine Phytoplankton and Global Climate Regulation: The Phaeocystis spp. Cluster As Model, p. 2-33 Hall 2.2.6 WG 121—Ocean Mixing, p. 2-35 Akulichev 2.2.7 WG 122—Mechanisms of Sediment Retention in Estuaries, p. 2-39 Labeyrie 2.2.8 WG 123—Reconstruction of Past Ocean Circulation (PACE), p. 2-40 Labeyrie 2.2.9 WG 124—Analyzing the Links Between Present Oceanic Processes and Paleo-Records (LINKS), p. 2-43 Wainer 2.2.10 WG 125—Global Comparisons of Zooplankton Time Series, p. 2-52 Pierrot-Bults 2.2.11 WG 126—Role of Viruses in Marine Ecosystems, p. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous -
Marine Algae and Land Plants Share Conserved Phytochrome Signaling Systems
Marine algae and land plants share conserved phytochrome signaling systems Deqiang Duanmua,1, Charles Bachyb,1, Sebastian Sudekb, Chee-Hong Wongc, Valeria Jiménezb, Nathan C. Rockwella, Shelley S. Martina, Chew Yee Nganc, Emily N. Reistetterb, Marijke J. van Barenb, Dana C. Priced, Chia-Lin Weic, Adrian Reyes-Prietoe,f, J. Clark Lagariasa,2, and Alexandra Z. Wordenb,f,2 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; cSequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598; dDepartment of Ecology, Evolution, and Natural Resources, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08903; eBiology Department, University of New Brunswick, Fredericton, NB, Canada E3B5A3; and fIntegrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 Contributed by J. Clark Lagarias, September 3, 2014 (sent for review June 18, 2014) Phytochrome photosensors control a vast gene network in duce light signals into biochemical outputs that shape overall streptophyte plants, acting as master regulators of diverse growth organismal responses (1, 13). and developmental processes throughout the life cycle. In contrast Although plant phytochromes control vast, complicated gene with their absence in known chlorophyte algal genomes and most networks, their origin, evolution, and ancestral signaling mech- sequenced prasinophyte -
Relationships Between Oceanographic Factors and the Distribution of Juvenile Coho Salmon
AN ABSTRACT OF THE THESIS OF Alton W. Chung for the degree of Master of Science in Oceanography presented on March 1, 1985 Title: Relationships Between Oceanographic Factors and the Distribution of Juvenile Coho Salmon (Oncorhynchus kisutch) Of f Oregon and Washington, 1982-1983 Redacted for Privacy Abstract approved: Dr. William G. Pearc Juvenile coho salmon (101-400 mm) were sampled by purse seine off the Pacific Coast from Waatch Point, Washington to Four Mile Creek, Oregon, out to 30 mi offshore, during the months of May, June, and September in 1982 and 1983. Sea surface temperature, surface salinity, surface chlorophyll-a concentration, and Secchi depth were measured at each station. Sea surface temperatures were higher in 1983 than in 1982, while surface chlorophyll-a concentrations and surface salinities were lower. Catch data were not highly correlated with any of the four physical parameters measured. Strong northerly winds and strong upwelling tended to disperse juvenile coho offshore and south. Fish were found closer inshore during periods of weak winds and weak upwelling. In both years the center of distribution of the fish appeared to shift northward as the summer progressed. Larger fish, in general, were found farther north and offshore throughout the year. Relationships Between Oceanographic Factors and the Distribution of Juvenile Coho Salmon Oncorhynchus kisutch Off Oregon and Washington, 1982-1983 by Alton W. Chung A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree -
Algae Becomes UNCW Project
Established in 1867 / Volume 71, Number 20 January 21, 2001 Wilmington, N.C. $1.50¢ Home delivery 36¢ water, indicate whether a certain The blooms can kill people as well, toxin is present. as UNCW chemist Jeff Wright knows. They envision a dipstick-type Algae becomes Dr. Wright led an emergency effort device that changes colors much like by the Canadian government in 1987 a pregnancy test. to figure out what poisoned more Dr. Baden has developed a method than 100 people in Montreal, of testing for brevetoxin, the killer in UNCW project including four who eventually died. red tides, and submitted it to the The victims had eaten mussels at Food and Drug Administration. exactly what it was like two days ago local restaurants. As it is now, officials screening BY BRIAN FEAGANS when the fish died,” Dr. Tomas said. A group of 30 scientists worked shellfish for the toxin have only one Staff Writer “Marine systems are very dynamic. around the clock for 104 hours before federally approved method: inject More than 5 million fish had died They’re constantly changing. You fingering little-known microscopic samples into a mouse and see if it in creeks feeding Rehoboth Bay have to be thinking like the ocean, algae as the killer. dies. when puzzled Delaware officials got a the way the tides are going in and The Pseudo-nitzschia were pro- Florida is funding the research as a phone call from UNCW researcher out.” ducing a potent acid that causes way to save mice and time. Carmelo Tomas in September. -
Living Resources Report Texas A&M University-Corpus Christi Results - Open Bay Habitat
Center for Coastal Studies CCBNEP Living Resources Report Texas A&M University-Corpus Christi Results - Open Bay Habitat B. Living Resources - Habitats Detailed community profiles of estuarine habitats within the CCBNEP study area are not available. Therefore, in the following sections, the organisms, community structure, and ecosystem processes and functions of the major estuarine habitats (Open Bay, Oyster Reef, Hard Substrate, Seagrass Meadow, Coastal Marsh, Tidal Flat, Barrier Island, and Gulf Beach) within the CCBNEP study area are presented. The following major subjects will be addressed for each habitat: (1) Physical setting and processes; (2) Producers and Decomposers; (3) Consumers; (4) Community structure and zonation; and (5) Ecosystem processes. HABITAT 1: OPEN BAY Table Of Contents Page 1.1. Physical Setting & Processes ............................................................................ 45 1.1.1 Distribution within Project Area ......................................................... 45 1.1.2 Historical Development ....................................................................... 45 1.1.3 Physiography ...................................................................................... 45 1.1.4 Geology and Soils ................................................................................ 46 1.1.5 Hydrology and Chemistry ................................................................... 47 1.1.5.1 Tides .................................................................................... 47 1.1.5.2 Freshwater