PV Markets Spain & Portugal

Total Page:16

File Type:pdf, Size:1020Kb

PV Markets Spain & Portugal PHOTOVOLTAICS IBERIA PV markets Spain & Portugal: Better than feared The PV farm Lo Illan, connected to the grid in the second Spain’s PV sector faces enormous challenges. The modification of the feed- quarter of 2011, is a project in tariff scheme and the economic crisis are seen as the main reasons. In of Gehrlicher Solar. Located in the Murcia province, the Portugal, the government has newly discovered PV and is now eager to get ground-mounted system has a total rated power of 2,065 kW. its piece of the cake. PV modules are made by First Solar, inverters by SMA. he conference “Conferencia de la Industria Spanish solar industry is able to compete on the glo- Photos (2): Gehrlicher Solar Solar-España 2011”, which took place in mid- bal stage, said Antonio Navarro of the European TOctober, reflected the situation of the Spanish Photovoltaic Industry Association (EPIA). solar sector – and it was said that it seems to be sur- According to the conference participants, the new prisingly good. In the opinion of Javier Anta of the target markets for the Spanish manufacturers will be Spanish Photovoltaic Industry Association ( Asociación mainly the United States, India, Australia, Latin de la Industria Fotovoltaica, ASIF), “the Spanish PV America and Morocco. They all agreed that the PV sector has shown that it is strong and steadfast even sector is in need of stability and a regulatory frame- under difficult external conditions including the un- work that will provide industry participants and in- stable regulatory framework and the economic cri- vestors with the necessary planning security. Espe- sis”. Carlos Montoya of the Institute for Energy cially, abrupt changes in the regulation, which caused Diversification and Saving (Instituto para la Diversifi- the solar sector to crash in Spain, threaten the mar- cación y Ahorro de la Energía, IDAE) in Madrid pointed ket development and lead to major uncertainties, out that “the renewable energy sector is expected to said the representatives. Following an attractive tar- give jobs to about 300,000 people in Spain by 2020”. iff regime that had been put into place for solar pow- It has become clear from the recent past that the er in May 2007, the Spanish market had attracted multi-billion investments. “The strategy of Gehrlicher In September 2008, the Spanish government fi- Solar España is to continue to nally had to pull the emergency break and review the expand throughout the region feed-in tariffs, which brought the Spanish market to a of Murcia. This is why we are sudden standstill. The blow hit the market partici- working on the development pants hard and many solar projects planned at the of plants with lower capacities time failed as a consequence. Under the new regime, for the next two years as well the subsidies will now be limited to a certain amount as on the planning of major of operational hours per calendar year until the end of projects with a total capacity of December 2013. Solar plants with fixed supports are 200 to 400 MWp”, says Klaus limited to 1,250 hours per year. When using single Gehrlicher, founder and CEO of and dual axis trackers, the subsidies will be offered the company. for 1,644 and 1,707 hours, respectively. By 2014, the 120 Sun & Wind Energy 12/2011 limit for all solar power plants planned, constructed or operated at the time will decrease by about 1.5 to 2.5 %, varying with the location. To compensate for the new hourly limitation, the Spanish government has extended the tariff period from 25 to 28 years. Coming out of a deep recession Gadir Solar is an example of how steadfast the Spanish PV sector has recently been. After the mod- ule production was stopped by the company over a period of four months during the summer and wages had been outstanding, the factory in Puerto Real, Cádiz, will now be started up again in November, re- ported the Spanish news portal “La Voz Digital”. The debt has been restructured after a difficult economic situation and supply problems, says the company. There are more signs that Spain’s PV market is re- covering. The investment group OPDE recently award- ed an EPC contract for the construction of a solar park in the province of Navarra to the Spain-based compa- ny Sanjose Constructora. The project has an expect- ed capacity of 12 MW. It will be the largest executed in Spain in 2011 and begin to produce energy by the end of next year. Another project scheduled for completion by the end of 2011 is a 9.9 MW solar plant near Zamora. The investor behind the project is First Solar, which will also supply the 122,000 thin-film PV modules need- ed for the installation. First Solar recently sold the so- lar park to the investment company KGAL. The total capacity of solar power plants owned and operated by KGAL’s investment funds now exceeds 200 MW, says Dr. Klaus Wolf, Managing Director of KGAL. The system was developed and constructed by Gehrlicher Solar España. “Based on our long-term experience Sun & Wind Energy 12/2011 PHOTOVOLTAICS IBERIA Inauguration of Gemasolar So- and the high potential of the Spanish PV market, we lar Power Plant in Spain (from look forward to installing many more PV systems in left to right): His Highness Ge- this region”, says Guillermo Barea Herranz, CEO of neral Sheikh Mohammed bin Gehrlicher Solar España. Zayed Al Nahyan, Crown Prince of Abu Dhabi, Deputy Supreme Trend towards rooftop systems Commander of the United Arab Emirates Armed Forces, and His Spain’s solar market has not lost all of its strength. Majesty the King of Spain Juan The activities continue both on the mainland and on Carlos I. Photos (2): Torresol the islands. One example is Gran Canaria where Conergy recently installed the largest rooftop system on the Canary Islands. The solar power plant is locat- ed on the roof of the coffee roaster Emicela in Agüimes and has a capacity of 1.75 MW. The investor behind the 14,000 m2 rooftop system is Bankia. “Solar tech- nology plays a vital role in creating a sustainable and securing an autonomous energy supply on the Canary Islands”, says Rodrigo Rato, Executive Chairman of Bankia. Because of the positive experiences made during the planning stage and the installation of the system, the investor decided to commission Conergy for a follow-up project. The Germany-based company is now installing a second system on another rooftop of the coffee roaster in Tenerife with a total of capaci- ty of 270 kW. “There is a clear shift of trends in Spain from ground-mounted installations towards rooftops – Attractive future market whether on industrial buildings such as on the Canaries, or on private homes”, says Luis Jimenez Spain has remained an attractive market for the inter- Gutierrez, Head of Conergy Spain. “The potential national solar sector, although many projects contin- here is immense, despite the cap on the market. ue to be in the planning stage. One of the companies Gemasolar Park: the CPV Doing good business is still possible and with the that want to strengthen their activities in Spain is plant has an annual output of largest rooftop-system on the Canaries, we have yet Gehrlicher Solar. “The strategy of Gehrlicher Solar 19.9 MW and uses a total of again proved this to be true.” According to Jimenez España is to continue expanding throughout the re- 2,650 heliostats for the pro- Gutierrez, Conergy has already installed more than gion of Murcia. This is why we are working on the de- duction of electricity combined 12 MW of clean solar energy on the Canary velopment of plants with lower capacities for the next with heat storage technologies. Islands. two years as well as on the planning of major projects 122 Sun & Wind Energy 12/2011 Isofotón together with Hankook Silicon plan to build a 10,000 t polysilicon factory in Cádiz. Photo: Isofotón that will have a total capacity of 200 to 400 MWp”, Murcia. The grid connection of the other two projects, says Klaus Gehrlicher, founder and CEO of Gehrlicher which are also located in Lorca, is scheduled for the Solar. To this end, the company plans to strengthen end of the year. These five ground-mounted PV pow- the collaboration of its local subsidiary with the pro- er plants have attracted an investment of approxi- vincial government. Gehrlicher recently installed five mately € 32 million to the region of Murcia.” projects with a total capacity of 12 MW, says the CEO. Another company that has been looking towards “Three of them have already been connected to the the Spanish market is the manufacturer of polysilicon grid in the municipalities of Lorca, Cartagena and Hankook Silicon based in South Korea. In a joint PHOTOVOLTAICS IBERIA Construction of an inverter station in the shade of a huge plastic sheet Photos (2): Innotech Solar PV modules being installed on the south- facing roofs of greenhouses near Atarfe in the region of Granada, Andalusia. Project realisation started in spring 2011. Granada: greenhouses covered with PV modules ITS Power, Swiss subdivision of the The PV modules are installed on the south- The investor, Swiss utility Energie Wasser Norwegian cell and module manufacturer facing roofs. On the north-facing sides, Bern, according to Roth, aimed at gaining ex- Innotech Solar, has completed two green- nets will be stretched to protect the plants perience in PV project development in Spain houses with PV power plant roofs outside from bird damages and storms.
Recommended publications
  • FACTBOOK Concentrating Solar Power SBC Energy
    LEADING THE ENERGY TRANSITION FACTBOOK Concentrating Solar Power SBC Energy Institute June 2013 © 2013 SBC Energy Institute. All Rights Reserved. FACTBOOK SERIES LEADING THE ENERGY TRANSITION Compiled by the SBC Energy Institute About SBC Energy Institute The SBC Energy Institute, a non-profit organization founded in 2011 at the initiative of Schlumberger Business Consulting (SBC), is a center of excellence for scientific and technological research into issues pertaining to the energy industry in the 21st century. Through its unique capability to leverage both Schlumberger’s technological expertise and SBC’s global network of energy leaders, the SBC Energy Institute is at the forefront of the search for solutions to today’s energy supply challenges. It is overseen by a scientific committee comprised of highly experienced individuals in the areas of natural and applied sciences, business, and petroleum engineering. About Leading the Energy Transition series “Leading the energy transition” is a series of publicly available studies on low-carbon energy technologies conducted by the SBC Energy Institute that aim to provide a comprehensive overview of their development status through a technological and scientific prism. About the Concentrating Solar Power factbook This factbook seeks to capture the current status and future developments of Concentrating Solar Power, detail the main technological hurdles and the areas for Research and Development, and finally analyze the economics of this technology. This factbook has been reviewed by Prof. Dr.-Ing. Robert Pitz-Paal, Co-Director of the Institute of Solar Research from the German Aerospace Center (DLR) and his team. For further information about SBC Energy Institute and to download the report, please visit http://www.sbc.slb.com/sbcinstitute.aspx, or contact us at [email protected] 1 © 2013 SBC Energy Institute.
    [Show full text]
  • Digital Solutions to Optimize PV's LCOE
    小三相最终用户主打广告5.pdf 1 2019/4/22 16:44:37 Special | 2019 | 78538 FusionSolar Residential Smart PV Solution Digital PV Solution for Ultimate Safety & Better Experience Solar grid parity French solar explorers accelerates with AI Next generation solar expands ULTRA SAFETY domestically and to new frontiers AI Powered AFCI to Proactively Mitigate Fire Risk Huawei plays a significant role in digitalization for smart PV Pages 26 – 29 Pages 4 – 7 HIGHER YIELDS The bifacial boost Shedding light Optimizing Each Module's Performance Independently AI algorithms crunch big data on oil kingdom to maximize energy yields Saudi Arabia’s first utility-scale Pages 9 – 11 PV project and the CEO behind it BATTERY READY Pages 32 – 35 Integrated Battery Interface for Future Quick Expansion C M Y CM Digital solutions MY CY CMY K to optimize PV’s LCOE SPECIAL EDITION DEVELOPED IN PARTNERSHIP WITH HUAWEI solar.huawei.com @ Huawei FusionSolar SUN2000-3-10KTL Optimizer Editorial The Force of Digitalization Photo: pv magazine/Thomas Beetz Located high up in the Himalayas, a 20 MW solar PV proj- ect rests upon the mountains. The ground-mounted installa- tion is a challenging one, also for people like Matthias Wagner, not acquainted with such elevations. Wagner is the Executive Director of Global Channel Sales Management in the Smart PV Business Unit at Huawei. In this position, he has to travel to countries around the globe to meet customers and colleagues to handle a wide variety of PV projects. When we met with Wagner in March, he highlighted how such a project poses challenges for the equipment used, be it the solar panels or the inverters.
    [Show full text]
  • Concentrating Solar Power Clean Power on Demand 24/7 Concentrating Solar Power: Clean Power on Demand 24/7
    CONCENTRATING SOLAR POWER CLEAN POWER ON DEMAND 24/7 CONCENTRATING SOLAR POWER: CLEAN POWER ON DEMAND 24/7 © 2020 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW | Washington DC 20433 | USA 202-473-1000 | www.worldbank.org This work is a product of the staff of the World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries Rights and Permissions The material in this work is subject to copyright. Because the World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for non-commercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; [email protected]. All images remain the sole property of their source and may not be used for any purpose without written permission from the source. Attribution—Please cite the work as follows: World Bank. 2021. Concentrating Solar Power: Clean Power on Demand 24/7.
    [Show full text]
  • Solar Thermal Electricity Global Outlook 2016 2
    1 SOLAR THERMAL ELECTRICITY GLOBAL OUTLOOK 2016 2 This type of solar thermal power has an inexhaustible energy source, proven technology performance, and it is environmentally safe. It can be generated in remote deserts and transported to big populations who already have power supply problems. So what are we waiting for? Solar Thermal Electricity: Global Outlook 2016 Solar Image: Crescent Dunes, 10,347 tracking mirrors (heliostats), each 115.7 square meters, focus the sun’s energy onto the receiver ©SolarReserve Content 3 For more information, please contact: Foreword ........................................................ 5 [email protected] Executive Summary ......................................... 8 [email protected] 1. Solar Thermal Electricity: The Basics ............. 17 The Concept .........................................................18 Project manager & lead authors: Dr. Sven Requirements for STE .............................................19 Teske (Greenpeace International), Janis Leung How It Works – the STE Technologies.......................21 (ESTELA) Dispatchability and Grid Integration .........................21 Other Advantages of Solar Thermal Electricity ...........23 Co-authors: Dr. Luis Crespo (Protermosolar/ ESTELA), Marcel Bial, Elena Dufour (ESTELA), 2. STE Technologies and Costs ....................... 25 Dr. Christoph Richter (DLR/SolarPACES) Types of Generators ...............................................26 Editing: Emily Rochon (Greenpeace Parabolic Trough ....................................................28
    [Show full text]
  • Public Opinion on Renewable Energy Technologies: the Portuguese Case
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Public opinion on renewable energy technologies: the Portuguese case Fernando Ribeiro University of Minho Center for Industrial and Technology Management Campus Azurem, 4800-058 Guimaraes PORTUGAL [email protected] Paula Ferreira* University of Minho Center for Industrial and Technology Management Campus Azurem, 4800-058 Guimaraes PORTUGAL [email protected] *Corresponding author: Tel:+351253511670; Fax: +351253510343; Email: [email protected] Madalena Araújo University of Minho Center for Industrial and Technology Management Campus Azurem, 4800-058 Guimaraes PORTUGAL [email protected] Ana Cristina Braga University of Minho Algoritmi Research center Campus of Gualtar, 4710-057, Braga PORTUGAL [email protected] Abstract: Renewable energy technologies are part of the solution to meet future increasing demand of electricity and decommissioning of power plants in the European Union. Public opinion surveys indicate general support of these technologies, but particular projects face local opposition, a phenomenon known in the literature as the NIMBY (Not In My BackYard) hypothesis. In this study, the public opinion on renewable energy technologies was analyzed by means of a survey implemented in Portugal. The survey addresses four technologies: hydro, wind, biomass and solar power. The study has three main purposes: firstly, to recognize if the people acknowledges the existence of these technologies, secondly, to study the validity of the NIMBY hypothesis in Portugal while realizing in which technology it is more pronounced, and thirdly to perceive the levels of acceptance of each technology, under Sustainable Development aspects (Economy, Ecology and Society).
    [Show full text]
  • Assessment of the PV Self-Consumption Impact on the Portuguese Scenario Within the European Energy Legislative Scheme
    Assessment of the PV Self-Consumption Impact on the Portuguese Scenario within the European Energy Legislative Scheme Cristina Milagros Herce Villar Thesis to obtain the Master of Science Degree in Energy Engineering and Management Supervisors: Prof. Carlos Augusto Santos Silva Dra. Maria João Rodrigues Examination Committee Chairperson: Prof. Duarte de Mesquita e Sousa Supervisor: Prof. Carlos Augusto Santos Silva Member of the Committee: Prof. Luís Filipe Moreira Mendes July 2016 As a token of appreciation for your time of patience, “service” and inspiration, thank you Impasible and thank you Diana. I ABSTRACT Founded on the emerging new energy paradigm, which places decentralized renewable energy (RE) production as the core and engine of the XXI st century energy revolution, the domain of this work is to explore into how RE decentralization in Portugal would evolve by means of self-consumption (SC). For this study, it has been taken into account current legislative progress, assuming solar photovoltaics (PV) as the most convenient and plausible technology to be applied. Thus, it has been evaluated the adequacy and impact of real demand profiles of residential, retail, hotel and industrial sectors to simulated solar PV production profiles of different locations, orientations and inclinations. In order to assess the optimum prosumer (producer and consumer) profile, a techno-economic performance analysis using payback time and interest rate of investment as reference metrics, has been realized. Best economic indicators within each sector vary from a poor 6.85% Internal rate of return (IRR), 9 years payback time (PBT) of a residential profile (Demand1) in Porto (10SW) to an 27.07% IRR and 3 years PBT of a Retail profile (Retail1) in Faro (30SW) reaching a self- consumption of 39.14% (30S).
    [Show full text]
  • Evaluation of the Coupling of a Hybrid Power Plant with a Water Generation System
    applied sciences Article Evaluation of the Coupling of a Hybrid Power Plant with a Water Generation System Amanda del Moral and Fontina Petrakopoulou * Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avda. de la Universidad 30, 28911 Leganés (Madrid), Spain; [email protected] * Correspondence: [email protected] Received: 20 September 2019; Accepted: 11 November 2019; Published: 20 November 2019 Abstract: This paper presents the design and analysis of an energy/water system that combines a 20 MW hybrid concentrated solar/biomass power plant with an advanced wastewater treatment facility. Designed to be installed in one of the most demanding areas of the Iberian Peninsula, the Spanish region of Andalusia, this plant seeks to provide the area with potable water and electricity. The solar block works with a mixture of molten salts, while the biomass backup system of the power plant uses olive pomace. The implementation of a direct potable reuse facility further enhances the sustainability of the project. Urban sewage from the region is collected and passed through a series of purification procedures in order to generate potable water ready to be directly blended into the water distribution system. A sensitivity analysis is conducted to determine the feasibility of the co-generation of electricity and water in the area. With a capacity factor of 85% and an annual operation of 7,446 hours, the hybrid solar/biomass power plant generates 148.92 GWh. Exergetic analyses have been realized for two extreme cases: exclusive use of the solar block and exclusive use of the biomass system. An overall plant exergetic efficiency of 15% is found when the solar block is used and an efficiency of 34% is calculated when the biomass support system is used.
    [Show full text]
  • Annual Report 2016.Pdf
    16 17 Index 01 EDP Company Presentation 12 Recognition 24 02 Strategic Approach Business Framework 31 Strategic Agenda 48 Goals and Targets 52 Risk Management 53 03 Performance Material Themes of the Year 63 Financial Sustainability 65 Activities 74 Ethics 85 Innovation 91 Environment 95 Stakeholders 106 Complementary Indicators 135 04 Corporate Governance 145 05 Financial Statements 263 06 Annexes 425 16 17 18 19 EDP in Numbers Gross Operating Profit Net Profit 1 28% 28% 28% 27% 0,29 0,28 0,25 0,26 3.924 1.040 1.005 3.759 961 3.642 3.598 913 4 2013 2014 2015 2016 2013 2014 2015 2016 Gross Operating Profit (€M) Net Profit (€M) Earnings per share (euro) OPEX/Gross Profit (%) 4 Net Investments 2 Net Debt3 63% 63% 4,0 4,0 62% 3,8 4,0 38% 2.234 17.380 17.083 17.042 1.794 1.735 1.212 15.923 2013 2014 2015 2016 2013 2014 2015 2016 Net Investments (€M) 6 Net Debt (€M) Adjusted Net Debt /GOP (x) Net Investments in Renewables (%) 5 7 EDP Sustainability Index Economic Value Generated (€M) 17.509 17.672 17.278 15.900 1.956 2.299 2.115 114 1.349 110 106 105 104 101 93 92 15.553 15.373 15.163 14.551 Sustainability Economic Environmental Social Dimension 2013 2014 2015 2016 Index Dimension Dimension 8 9 Economic Value Distributed Economic Value Accumulated 2016 2015 Base 100 1 Net Profit attributable to EDP Equity holders. 2 From 2016, considers Capex (excluding REPSOL assets aquisition), organic Financial Investments and Divestments (“Asset Rotation”) including granted and/or sold shareholder loans.
    [Show full text]
  • SOLAR IS DRIVING a GLOBAL SHIFT in ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018
    SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ...................................................................................................................... 50 Appendix: Videoclips
    [Show full text]
  • International NEWS
    Review inteRnational newS Gujarat inks deals for International 215 MW solar power Recently the State Government of Gujarat, Western India, announced NEWS their “Solar Power Policy 2009” to achieve a capacity of 500 MW in the state. The government guarantees a feed-in-tariff of 0.27 US$/kWh for a period of 12 years. The maximum size per project is 5 MW to en- able more customers to participate. The state has already received proposals worth 2,000 MW. Reacting to this policy, Astonfield Renewable Resources Ltd. signed a deal for 200 MW and is already in talks with global majors from Europe and USA for technology tie-ups. TATA Power has announced setting up a 5 MW project. Infrastructure Development Finance Company Ltd. said, its fully owned subsi- diary IDFC Projects Ltd. inked two memo- randums of understanding with Gujarat State Electricity Corporation Ltd. and Bharat Heavy Electricals Ltd. to establish a Giving great pleasure: The electricity of the new solar power system in a western Chinese village will be 10 MW solar plant. used for lighting and for the operation of radios and television. Photo: SolarWorld AG Modules for Mexico’s Solar power for Chinese villages largest rooftop project The German SolarWorld AG has been promoting the solar electrification of more The German aleo solar AG delivered than one hundred villages in the West of China that had previously been cut off around 450 kW of solar modules to from the power supply. As a result 29,000 people in a total of 142 villages in the thinly a Mexican project developer.
    [Show full text]
  • Technological Assessment of Different Solar-Biomass Systems for Hybrid Power Generation in Europe
    Technological University Dublin ARROW@TU Dublin Articles School of Civil and Structural Engineering 2016-9 Technological Assessment of Different Solar-Biomass Systems for Hybrid Power Generation in Europe C. M. Iftekhar Hussain Technological University Dublin, [email protected] Brian Norton Technological University Dublin, [email protected] Aidan Duffy Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/engschcivart Part of the Power and Energy Commons Recommended Citation Hussain C.M.I, Norton. B. & Duffy. A. (2016) Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renewable and Sustainable Energy Reviews (2016), doi:10.1016/j.rser.2016.08.016 This Article is brought to you for free and open access by the School of Civil and Structural Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Technological assessment of different solar-biomass systems for combined heat and power generation in Europe C. M. Iftekhar Hussain, Brian Norton, Aidan Duffy Dublin Energy Lab, Dublin Institute of Technology, Grangegorman, Dublin 7, Ireland Abstract: Solar Tower thermal (ST), Parabolic Trough thermal (PT), Linear Fresnel thermal (LF) and Solar PV are discussed in the context of suitability for hybridization with biomass in Europe. Technical, economical and climate data have been compared to identify the key drivers of technology selection in setting up large scale solar-biomass hybrid power plants.
    [Show full text]
  • “Power from Sunshine”: a Business History of Solar Energy
    “Power from Sunshine”: A Business History of Solar Energy Geoffrey Jones Loubna Bouamane Working Paper 12-105 May 25, 2012 Copyright © 2012 by Geoffrey Jones and Loubna Bouamane Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. “Power from Sunshine”: A Business History of Solar Energy Geoffrey Jones Loubna Bouamane Harvard Business School Harvard Business School May 2012 Abstract This working paper provides a longitudinal perspective on the business history of solar energy between the nineteenth century and the present day. Its covers early attempts to develop solar energy, the use of passive solar in architecture before World War 2, and the subsequent growth of the modern photovoltaic industry. It explores the role of entrepreneurial actors, sometimes motivated by broad social and environmental agendas, whose strategies to build viable business models proved crucially dependent on two exogenous factors: the prices of alternative conventional fuels and public policy. Supportive public policies in various geographies facilitated the commercialization of photovoltaic technologies, but they also encouraged rent-seeking and inefficiencies, while policy shifts resulted in a regular boom and bust cycle. The perceived long-term potential of solar energy, combined with the capital- intensity and cyclical nature of the industry, led to large electronics, oil and engineering companies buying entrepreneurial firms in successive generations. These firms became important drivers of innovation and scale, but they also found solar to be an industry in which achieving a viable business model proved a chimera, whilst waves of creative destruction became the norm.
    [Show full text]