<<

GW190521 as a Highly Eccentric Merger

V. Gayathri,1 J. Healy,2 J. Lange,2 B. O’Brien,1 M. Szczepa´nczyk,1 I. Bartos,1, ∗ M. Campanelli,2 S. Klimenko,1 C. Lousto,2 and R. O’Shaughnessy2, † 1Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA 2Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623, USA The stellar-mass black hole merger GW190521 is the heaviest system discovered by LIGO/Virgo so far, with masses unexpected from . The system underwent precession due to its black hole spin orientation, a signature of binaries formed through gravitational capture. Capture through close encounters can also lead to eccentric binary orbits, but this feature is currently difficult to identify due to the lack of suitable gravitational waveforms. No eccentric merger has been reported to date. Here we show that GW190521 is the most consistent with a highly eccentric black hole merger. We carried out 325 simulations to generate an effective ∼ 3 × 104 gravitational waveforms to compare to the observed data, much greater than previously available at high eccentricities. We find that GW190521 is best explained by a high-eccentricity, precessing model with e ≈ 0.7. All properties of GW190521 point to its origin being the repeated gravitational capture of black holes, making GW190521 the first of LIGO/Virgo’s discoveries whose formation channel is identified.

I. INTRODUCTION Despite its importance, it is difficult to identify orbital eccentricity through observations [18–22]. Eccentricity As the LIGO [1] and Virgo [2] observatories are rapidly expands the degrees of freedom of - increasing the number of discovered black hole mergers, forms, making standard template-based searches prob- the origin of these mergers is still uncertain. The discov- lematic to carry out in practice. More fundamentally, ery of GW190521 is a milestone in resolving the question there is currently no comprehensive waveform family for +28 the full eccentric parameter space and current surveys[23] of origin [3,4]. With a total mass of 142 −16, at least one of the black holes of this binary is inconsistent with are limited to e < 0.5 and low black hole mass. As eccen- our understanding of stellar evolution, as pair-instability tric orbits combine close encounters with more distant, in massive stars limits the remnant black hole’s mass at slower orbital evolution, they present complications both for waveform computations utilizing numerical relativity, . 65 M . An alternate origin is required. The most plau- sible explanation is that the black holes in GW190521 and for those using post-Newtonian approximations [24]. were forged in previous mergers of smaller black holes In this paper we self-consistently analyzed the possibil- [5–7]. ity and implications of GW190521 being an eccentric bi- Such a black hole assembly through consecutive merg- nary source. We carried out 325 numerical relativity sim- ers can occur in environments with a high number density ulations to produce a suite of binary merger gravitational of black holes, such as galactic nuclei, in which chance waveforms that cover the full eccentricity range, includ- encounters between black holes is common, and in which ing non-spinning, aligned-spin and spin-induced precess- the newly formed black holes are unable to escape from ing waveforms (Sec.II). We estimated the binary prop- the system. erties of GW190521 using Bayesian parameter estima- An observational signature of chance encounters is or- tion through directly comparing our numerical-relativity bital eccentricity [8–11]. As black holes borne into a bi- simulations with gravitational-wave strain data using the nary will orbit each other for billions of years, their or- RIFT package [25–28] (Sec.III). To determine whether bital eccentricity will diminish through the emission of our reconstructed binary properties correspond to a grav- gravitational waves. Binaries formed through gravita- itational waveform that is an accurate explanation of the tional capture in chance encounters, on the other hand, observed data, we quantitatively tested this consistency arXiv:2009.05461v1 [astro-ph.HE] 11 Sep 2020 can form with small orbital radii and high initial eccen- using the a model-independent waveform reconstruction tricity, leaving insufficient time for the binary to lose its algorithm (Sec.IV). We present our conclusions from eccentricity before emitting gravitational waves at fre- these analyses in Sec.VI. quencies to which LIGO/Virgo is sensitive. Alternatively, interaction of an existing binary with nearby black holes can also increase its eccentricity [12–17]. This possibility II. NUMERICAL EVOLUTION also arises in a dense black hole population. We carried out numerical relativity simulations of ec- centric black hole mergers using the LazEv code [29], an implementation of the moving puncture approach [30]. ∗ imrebartos@ufl.edu We used the BSSNOK (Baumgarte-Shapiro-Shibata- † [email protected] Nakamura-Oohara-Kojima) family of evolution sys- 2 tems [31–33]. All simulations used 6th order spatial finite-differencing, 5th order Kreiss-Oliger dissipation, 110 and Courant factors of 1/3 [34–36]. These techniques are the same used to generate quasicircular simulations [37– 105 39], as our formalism is robust to deal with generic orbits. The LazEv code uses the EinsteinToolkit [40, 41]/ 100 ) g r

Cactus [42]/ Carpet [43] infrastructure. The Carpet a m mesh refinement driver provides a “moving boxes” style ( 95 g o l

of mesh refinement. In this approach, refined grids of fixed size are arranged about the coordinate centers of 90 Non-spinning both holes. The code then moves these fine grids about Head-on the computational domain by following the trajectories Precessing of the two black holes. 85 Aligned Anti-aligned To compute the numerical initial data, we used the NRSur7dq4 puncture approach [44] along with the TwoPunctures 80 0.0 0.2 0.4 0.6 0.8 1.0 [45] code. For each eccentric family, we first determined Eccentricity the initial separation and tangential quasicircular mo- mentum, pt,qc, that leads to a frequency of 10 Hz for a FIG. 1. Marginalized likelihood as a function of ec- 30 M system, using the post-Newtonian techniques de- centricity for our numerical relativity simulations ex- scribed in [46]. To increase the eccentricity of the system plaining GW190521. Each point corresponds to a sep- while keeping the initial data at an apocenter, the ini- arate numerical relativity simulation, categorized based on tial tangential momentum was modified by parameter, the black holes’ spin (see legend). Categories include ’non- 0 <  < 1, such that pt = pt,qc(1 − ). The eccentricity spinning’ (χeff = χp = 0), ’head-on’ (e = 1), ’precessing’ was then approximately e = 2/(1 + ). (χp > 0), ’aligned’ (χeff > 0) and ’anti-aligned’ (χeff < 0). Gravitational waveforms were calculated via the radia- The simulations are further distinguished using a model- tive Weyl Scalar ψ , which was decomposed into ` and m agnostic waveform consistency test. Large (small) marks cor- 4 respond to simulations in which the reconstructed gravita- modes. We extracted the gravitational radiation at finite tional waveform is consistent (inconsistent) with the highest- radius and extrapolated to r = ∞ using the perturbative likelihood waveform. We also include for comparison our like- extrapolation described in Ref. [47]. The gravitational lihood estimate for the much more detailed set NRSur7dq4 of strain waveform was then calculated from the extrapo- circular waveforms [50] used by LIGO/Virgo [3,4] (purple) . lated ψ4 in Fourier space [48, 49]. We carried out 325 eccentric simu- lations in this study, with eccentricities in the full [0, 1] prior for these parameters. The likelihood is also max- range. These simulations included non-spinning, aligned- imized over the intrinsic property Mz which then also spin and spin-precessing waveforms, and mass ratios serves as our reconstructed mass for the event. 1/7 ≤ q = m2/m1 ≤ 1. These gravitational waveforms The marginal likelihood values from Eq.1 for each were then scaled to correspond to different black hole numerical relativity simulation are shown in Fig.1. We masses, providing about 100 scaled mass values for each grouped waveforms with respect to the black holes’ spin simulation. See the Supplementary Table for a detailed and spin orientation. While the parameter space is not list of the parameters of the simulations. evenly covered, we see that the obtained marginal likeli- hood values peak at e ≈ 0.7 eccentricity and precession. In general, precessing waveforms correspond to higher III. ESTIMATION OF BINARY PROPERTIES marginal likelihoods than non-spinning or aligned/anti- aligned waveforms independently of eccentricity. Our numerical-relativity simulations were directly compared with gravitational-wave strain data using the RIFT package [25–28], assuming a Gaussian likelihood IV. WAVEFORM CONSISTENCY TEST L(d|h). Here, d is the recorded data, while h is the time- dependent strain of the incoming gravitational wave sig- Parameter estimation can determine the most likely nal. For each numerical-relativity simulation λ, we cal- gravitational-waveform. However, by itself it does not culated the marginal likelihood guarantee that the obtained waveform is indeed an ac- Z curate explanation of the observed data. This is partic- Lmarg = max dθp(θ)L(d|h(θ, λ,Mz)) , (1) ularly relevant for cases in which the parameter space M z explored in the estimation process does not cover the where we marginalized over a set of seven extrinsic pa- binary’s true parameters, e.g. when eccentricity or pre- rameters (distance, time, two sky position angles, and cession are not properly accounted for. three Euler angles describing the source orientation) de- We quantitatively tested the consistency between the noted with θ. The probability p(θ) is a non-informative observed gravitational wave signal and our numerical 3

FIG. 2. Consistency of the model-independent (cWB) reconstruction of GW190521 with the numerical relativity simulations. Top panels - our high-eccentricity simulation, bottom panels - circular NRSur7dq4 simulations [50] for the LIGO- Hanford (a,d) and LIGO-Livingston (b,e) detectors. The colored lines in (a,b,d,e) show the cWB reconstruction of GW190521 (same as the cWB curve in Fig. 1 of [3]) together with the 90% confidence intervals calculated over the weighted RIFT samples injected into the off-source data and reconstructed with cWB. We see that the highly eccentric model (a,b) shows better waveform coherence with the cWB reconstruction (colored curves) than the circular NRSur7dq4 waveform model (d,e). The rec rec right column (c,f) shows the distributions of Overlap(hi , hi ) and Overlap(hi , hgw) (see legend) demonstrating the agreement of both models with the cWB reconstruction. relativity waveforms using a model-independent wave- using RIFT, where weights were proportional to the like- form reconstruction algorithm called coherent WaveBurst lihood of each set of parameters corresponding to obser- (cWB; [51–53]), which detected GW190521 with high sig- vations. For a given parameter set i we computed the nificance [3]. This comparison provided a robust test corresponding gravitational waveform hi, and calculated rec rec of our numerical relativity waveforms in addition to the Overlap(hi, hgw). The distribution of Overlap(hi, hgw) maximum likelihood statistic by RIFT. over the weighted samples for our highest-significance For a given waveform hi, we checked consistency with numerical-relativity simulation and the reference NR- the recorded gravitational wave hgw by using the follow- Sur7dq4 simulation are shown in Fig.2(c,f-black his- ing procedure [53]. We superimposed hi on the detector tograms). noise at the off-source time around the event and recon- rec rec rec The spread of the distribution of Overlap(hi, hgw) is structed both waveforms, denoted by hi and hgw, using due to the uncertainty of the reconstructed binary pa- cWB. We quantified consistency between two waveforms rameters, the cWB waveform reconstruction and detec- h1 and h2 using a normalized+whitened cross-correlation tor noise. To quantify the effect of the cWB waveform we call “Overlap”: reconstruction and noise, we computed the off-source dis- rec (hˆ ? hˆ ) tribution of Overlap(hi, hi ) over our weighted samples, Overlap(h , h ) = 1 2 . (2) 1 2 ˆ ˆ ˆ ˆ shown in Fig.2(c,f-grey histograms), which is indepen- (h1 ? h1)(h2 ? h2) dent of the RIFT binary parameter estimation. Any sig- Here, hˆ indicates spectral whitening of the waveform nificant separation of these two distributions would mean x that the waveform model used by RIFT is inconsistent hx, which we applied in order to account for the detector noise spectrum. For a waveform that perfectly matches with the observations. the incoming gravitational-wave signal, and in the pres- We characterized the separation between the two dis- ence of no noise, we would get Overlap = 1. tributions by computing the probability pgw that a ran- rec For each numerical relativity waveform, we generated domly drawn value from the Overlap(hi, h,gw) distribu- a weighted sample of Mz, λ and extrinsic parameters θk tion is greater than a randomly drawn value from the 4

rec Overlap(hi, h,i ) distribution. We considered those nu- V. ECCENTRICITY VS. NO ECCENTRICITY merical relativity simulations consistent with the obser- −2 vations for which pgw > 10 . These are shown with We find a high-eccentricity model with e ≈ 0.7 to large marks in Fig.1. We see that only a minority of have the highest likelihood, however our cWB consis- the numerical relativity simulations we carried out satisfy tency check also finds some of our e = 0 models to be this criterion. Notably, the simulations with the highest consistent with observations. The difference in Lmarg be- log Lmarg values for with e > 0.6 pass this criterion. tween our highest likelihood model and the highest likeli- hood e = 0 model is ∆ log L = 5.6, corresponding to In Fig.2 we show the gravitational waveform hˆrec re- marg gw an effective Bayes factor of B ≈ 300. Taking into account constructed by cWB and the 90% confidence intervals that the zero-eccentricity case has one less estimated pa- calculated over the weighted samples for our highest- rameter through the Akaike information criterion, we find significance numerical relativity simulation (a,b) and the an effective Bayes factor of B ≈ 100. reference NRSur7dq4 simulation (d,e). The confidence ˆrec We additionally computed Lmarg for the full NR- intervals are calculated from the waveforms hi and take Sur7dq4 non-eccentric, precessing waveform model used into account the model uncertainty of RIFT and the cWB by LIGO/Virgo [3,4]. NRSur7dq4 is substantially more reconstruction errors. Both models demonstrate agree- complete than our numerical relativity waveform fam- ment with the cWB reconstruction with a slight prefer- ily, in particular with respect to the binary’s mass ratio, ence of the highly-eccentric model. spin magnitude and spin direction. Despite this com- pleteness, our e ≈ 0.7 model has a higher Lmarg value than the NRSur7dq4 model. Although this difference is Parameters This work LIGO/Virgo not substantial, with an effective Bayes factor of B ≈ 4 +7 +21 favoring the e ≈ 0.7 model. Primary mass [M ]. 102−11 85−14 +7 +17 Secondary mass [M ] 102−11 66−18 +14 +29 VI. CONCLUSION Total mass [M ] 204−33 150−17 Mass ratio 1 0.79+0.19 −0.29 We carried out 325 numerical relativity simulations of +1.07 +2.4 Luminosity distance [Gpc] 1.84−0.054 5.3−2.6 black hole mergers to probe whether GW190521 could be +0.16 +0.28 0.35−0.09 0.82−0.34 an eccentric merger. These simulations are the first on this scale to include high eccentricity and spin-precession. Eccentricity 0.67 0 Our comparison of these simulations to observed data +0.27 Effective spin (χeff ) 0 0.08−0.36 shows that a high-eccentricity, precessing binary is the +0.25 most consistent with the observed gravitational wave sig- Precession spin (χp) 0.7 0.68−0.37 nal GW190521 than the precessing but circular waveform TABLE I. Reconstructed properties of GW190521 by identified by LIGO/Virgo. this work. For comparison we also show the properties Within our limited sampling of the mass ratio and the obtained by LIGO/Virgo [3,4] using the NRSur7dq4 non- spin parameter space, high eccentricity is favored over eccentric, precessing waveform model [50]. e = 0 with an effective Bayes factor of B = 100. However, compared to a the densely sampled NRSur7dq4 waveform model, high eccentricity is favored with B = 4. Further simulations will help to determine the effect of limited LIGO/Virgo carried out a binary parameter estima- sampling and could provide further supporting evidence tion for GW190521 and found evidence for precession of high-eccentricity for GW190521. [3]. The waveform family used for that analysis, however, Eccentricity in GW190521 points to the same direc- did not include the possibility of eccentricity. A previous tion as its other properties. The origin of this merger study showed that highly-eccentric, high-mass black hole is most consistent with a hierarchical black hole merger mergers can be confused with precession if one uses a as a consequence of chance encounters. High black hole non-eccentric, precessing waveform model [20]. A sep- spin is expected if the black hole is forged in the merger arate study considered low-eccentricity, non-precessing of smaller black holes. Gravitational capture in a chance waveforms and found that they match GW190521 obser- encounter is expected to bring together two black holes vations similarly to precessing but non-eccentric wave- with randomly oriented spins, with the black hole spins forms [54, 55]. Our results support the presence of both typically misaligned from the binary orbit, resulting in precession and high eccentricity. high χp. Such misaligned spins are not expected if the We list the binary parameters found by LIGO and binary is a remnant of a stellar binary system. Chance those found by our analysis for the waveform with encounters naturally lead to eccentric binary orbits, while the highest log Lmarg in TableI. We see that our re- no eccentricity is expected for a stellar binary origin. Fi- construction finds remarkably similar parameters than nally, the masses of the black holes are > 65 M and are LIGO/Virgo, except for the eccentricity. therefore too high to be explained by stellar evolution. 5

A hierarchical merger origin naturally explains such high 1550436, No. AST-1516150, No. ACI-1516125, No. PHY- masses without invoking new physics. 1726215, and the support of the Alfred P. Sloan Foun- dation. This work used the Extreme Science and En- gineering Discovery Environment (XSEDE) [allocation ACKNOWLEDGMENTS TG-PHY060027N], which is supported by NSF grant No. ACI-1548562 and Frontera projects PHY-20010 The authors would like to thank Erik Katsavounidis for and PHY-20007. Computational resources were also useful suggestions, and Gabriele Vedovato for his valu- provided by the NewHorizons, BlueSky Clusters, and able help with the cWB search algorithm and with the Green Prairies at the Rochester Institute of Technology, setup of the cWB waveform consistency study. The au- which were supported by NSF grants No. PHY-0722703, thors gratefully acknowledge the National Science Foun- No. DMS-0820923, No. AST-1028087, No. PHY-1229173, dation (NSF) for financial support from Grants No. PHY- and No. PHY-1726215. 1912632, No. PHY-1806165, No. PHY-1707946, No. ACI-

[1] J. Aasi et al., Class. Quantum Grav. 32, 074001 (2015). [29] Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. [2] F. Acernese et al., Class. Quantum Grav. 32, 024001 Lousto, Phys. Rev. D 72, 024021 (2005). (2015). [30] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlo- [3] R. Abbott et al., Phys. Rev. Lett. 125, 101102 (2020). chower, Phys. Rev. Lett. 96, 111101 (2006). [4] R. Abbott et al., Astrophys. J. 900, L13 (2020). [31] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. [5] D. Gerosa and E. Berti, Phys. Rev. D 95, 124046 (2017). Phys. Suppl. 90, 1 (1987). [6] M. Fishbach, D. E. Holz, and B. Farr, Astrophys. J. Lett. [32] M. Shibata and T. Nakamura, Phys. Rev. D52, 5428 840, L24 (2017). (1995). [7] Y. Yang et al., Phys. Rev. Lett. 123, 181101 (2019). [33] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D59, [8] I. Mandel and R. O’Shaughnessy, Class. Quantum Grav. 024007 (1998). 27, 114007 (2010). [34] C. O. Lousto and Y. Zlochower, Phys. Rev. D77, 024034 [9] K. Breivik et al., Astrophys. J. Lett. 830, L18 (2016). (2008). [10] J. Samsing, Phys. Rev. D 97, 103014 (2018). [35] Y. Zlochower, M. Ponce, and C. O. Lousto, Phys. Rev. [11] C. L. Rodriguez et al., Phys. Rev. D 98, 123005 (2018). D86, 104056 (2012). [12] R. M. O’Leary, B. Kocsis, and A. Loeb, Mon. Notices [36] J. Healy and C. O. Lousto, Phys. Rev. D 95, 024037 Royal Astron. Soc 395, 2127 (2009). (2017). [13] G. Fragione, E. Grishin, N. W. C. Leigh, H. B. Perets, [37] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli, and R. Perna, Mon. Notices Royal Astron. Soc 488, 47 Class. Quant. Grav. 34, 224001 (2017). (2019). [38] J. Healy et al., Phys. Rev. D 100, 024021 (2019). [14] C. L. Rodriguez and F. Antonini, Astrophys. J. 863, 7 [39] J. Healy and C. O. Lousto, arXiv:2007.07910 (2020). (2018). [40] F. L¨offler et al., Class. Quant. Grav. 29, 115001 (2012). [15] F. Antonini et al., Astrophys. J. 816, 65 (2016), [41] http://einsteintoolkit.org. arXiv:1509.05080. [42] http://cactuscode.org. [16] F. Antonini and F. A. Rasio, Astrophys. J. 831, 187 [43] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quant. (2016). Grav. 21, 1465 (2004). [17] F. Antonini and H. B. Perets, Astrophys. J. 757, 27 [44] S. Brandt and B. Br¨ugmann,Phys. Rev. Lett. 78, 3606 (2012). (1997). [18] A. Ramos-Buades, S. Tiwari, M. Haney, and S. Husa, [45] M. Ansorg, B. Br¨ugmann,and W. Tichy, Phys. Rev. Phys. Rev. D 102, 043005 (2020). D70, 064011 (2004). [19] B. P. Abbott et al., Astrophys. J. 883, 149 (2019). [46] J. Healy, C. O. Lousto, H. Nakano, and Y. Zlochower, [20] J. C. Bustillo, N. Sanchis-Gual, A. Torres-Forn´e,and Class. Quant. Grav. 34, 145011 (2017). J. A. Font, arXiv:2009.01066 (2020). [47] H. Nakano, J. Healy, C. O. Lousto, and Y. Zlochower, [21] I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Mon. Phys. Rev. D91, 104022 (2015). Notices Royal Astron. Soc 490, 5210 (2019). [48] M. Campanelli, C. O. Lousto, H. Nakano, and Y. Zlo- [22] W. E. East, S. T. McWilliams, J. Levin, and F. Pretorius, chower, Phys. Rev. D79, 084010 (2009). Phys. Rev. D 87, 043004 (2013). [49] C. Reisswig and D. Pollney, Class. Quant. Grav. 28, [23] A. Ramos-Buades et al., Phys. Rev. D 101, 083015 195015 (2011). (2020). [50] V. Varma et al., Phys. Rev. Research 1, 033015 (2019). [24] B. Ireland, O. Birnholtz, H. Nakano, E. West, and [51] S. Klimenko, S. Mohanty, M. Rakhmanov, and G. Mit- M. Campanelli, Phys. Rev. D 100, 024015 (2019). selmakher, Phys. Rev. D 72, 122002 (2005). [25] J. Lange, R. O’Shaughnessy, and M. Rizzo, [52] S. Klimenko et al., Phys. Rev. D93, 042004 (2016). arXiv:1805.10457 (2018). [53] F. Salemi et al., Phys. Rev. D 100, 042003 (2019). [26] J. Lange et al., Phys. Rev. D 96, 104041 (2017). [54] I. Romero-Shaw et al., GW190521: orbital eccentricity [27] B. P. Abbott et al., Phys. Rev. D 94, 064035 (2016). and signatures of dynamical formation in a binary black [28] J. Healy et al., Phys. Rev. D 97, 064027 (2018). hole merger signal, (in Prep). 6

[55] M. E. Lower, E. Thrane, P. D. Lasky, and R. Smith, A. SUPPLEMENTARY MATERIAL Physical Review D 98 (2018).

No m1 m2 M q D z e χeff χp log Lmarg Consistency [M ] [M ] [M ] [Gpc] Non-spinning eBBH runs +16 +2 +19 +0.54 +0.08 1 113−20 16−3 129−23 0.14 2.14−0.47 0.39−0.08 0.46 0.0 0.0 84.71 N +5 +1 +6 +0.38 +0.06 2 128−9 18−1 146−10 0.14 1.97−0.33 0.37−0.05 0.5 0.0 0.0 98.77 N +4 +1 +5 +0.26 +0.04 3 137−8 20−1 156−9 0.14 1.64−0.16 0.31−0.03 0.52 0.0 0.0 99.09 N +3 +0 +4 +0.22 +0.04 4 144−6 21−1 164−7 0.14 1.27−0.21 0.25−0.04 0.55 0.0 0.0 98.85 N +0 +0 +0 +0.2 +0.03 5 149−9 21−1 170−10 0.14 1.17−0.04 0.23−0.01 0.57 0.0 0.0 97.77 N +8 +1 +9 +0.19 +0.03 6 145−5 21−1 166−6 0.14 1.16−0.19 0.23−0.03 0.59 0.0 0.0 97.16 N +7 +1 +8 +0.16 +0.03 7 150−7 21−1 171−8 0.14 0.95−0.27 0.2−0.05 0.62 0.0 0.0 96.14 N +0 +0 +0 +0.13 +0.02 8 158−7 23−1 181−8 0.14 0.78−0.01 0.16−0.0 0.67 0.0 0.0 95.76 N +7 +1 +8 +0.12 +0.02 9 153−5 22−1 174−5 0.14 0.7−0.12 0.15−0.02 0.71 0.0 0.0 94.1 N +9 +1 +10 +0.18 +0.04 10 154−5 22−1 176−6 0.14 0.52−0.1 0.11−0.02 0.75 0.0 0.0 93.19 N +6 +1 +7 +0.14 +0.03 11 156−6 22−1 178−7 0.14 0.44−0.09 0.1−0.02 0.79 0.0 0.0 92.56 N +0 +0 +0 +0.0 +0.0 12 160−12 23−2 182−14 0.14 0.45−0.09 0.1−0.02 0.82 0.0 0.0 91.44 N +6 +1 +7 +0.09 +0.02 13 156−5 22−1 178−6 0.14 0.3−0.1 0.07−0.02 0.86 0.0 0.0 92.09 N +6 +1 +7 +0.06 +0.01 14 157−12 22−2 180−14 0.14 0.25−0.1 0.06−0.02 0.89 0.0 0.0 90.2 N +3 +0 +4 +0.02 +0.0 15 166−10 24−1 190−11 0.14 0.14−0.04 0.03−0.01 0.95 0.0 0.0 88.22 N +5 +1 +5 +0.02 +0.0 16 163−5 23−1 186−6 0.14 0.1−0.03 0.02−0.01 0.96 0.0 0.0 87.26 N +14 +2 +16 +0.08 +0.02 17 154−4 22−1 177−5 0.14 0.28−0.21 0.06−0.05 0.98 0.0 0.0 84.17 Y +11 +2 +13 +0.08 +0.02 18 156−8 22−1 178−9 0.14 0.33−0.09 0.07−0.02 0.99 0.0 0.0 77.62 N +4 +1 +5 +0.17 +0.03 19 131−8 22−1 153−10 0.17 2.33−0.39 0.42−0.06 0.4 −0.0 0.0 83.16 Y +0 +0 +0 +0.55 +0.09 20 127−29 21−5 148−33 0.17 1.85−0.02 0.35−0.0 0.43 −0.0 0.0 86.48 N +7 +1 +8 +0.4 +0.06 21 117−19 20−3 137−22 0.17 2.36−0.36 0.43−0.06 0.46 −0.0 0.0 87.77 N +8 +1 +9 +0.3 +0.05 22 122−5 20−1 143−6 0.17 2.28−0.42 0.42−0.07 0.5 −0.0 0.0 98.87 Y +8 +1 +10 +0.25 +0.04 23 132−5 22−1 154−6 0.17 1.91−0.28 0.36−0.05 0.52 −0.0 0.0 99.57 N +5 +1 +6 +0.36 +0.06 24 137−5 23−1 160−5 0.17 1.52−0.09 0.3−0.02 0.55 −0.0 0.0 98.54 N +4 +1 +5 +0.26 +0.04 25 138−7 23−1 161−8 0.17 1.53−0.29 0.3−0.05 0.57 −0.0 0.0 98.71 N +7 +1 +8 +0.23 +0.04 26 143−5 24−1 167−6 0.17 1.24−0.14 0.25−0.02 0.59 −0.0 0.0 97.5 N +7 +1 +9 +0.22 +0.04 27 144−4 24−1 168−4 0.17 1.11−0.13 0.22−0.02 0.62 −0.0 0.0 96.86 N +6 +1 +7 +0.16 +0.03 28 146−9 24−2 171−11 0.17 0.96−0.23 0.2−0.04 0.67 −0.0 0.0 95.71 N +6 +1 +7 +0.16 +0.03 29 149−6 25−1 174−8 0.17 0.81−0.16 0.17−0.03 0.71 −0.0 0.0 94.34 N +5 +1 +6 +0.13 +0.02 30 150−5 25−1 175−5 0.17 0.69−0.1 0.15−0.02 0.75 −0.0 0.0 92.98 N +6 +1 +7 +0.13 +0.03 31 152−6 25−1 177−7 0.17 0.53−0.11 0.11−0.02 0.79 −0.0 0.0 92.91 N +6 +1 +6 +0.11 +0.02 32 152−8 25−1 177−10 0.17 0.43−0.16 0.09−0.03 0.82 −0.0 0.0 92.32 N +5 +1 +6 +0.13 +0.03 33 154−7 26−1 180−8 0.17 0.34−0.1 0.07−0.02 0.86 0.0 0.0 92.49 N +5 +1 +6 +0.11 +0.02 34 155−9 26−1 181−10 0.17 0.26−0.08 0.06−0.02 0.89 0.0 0.0 92.06 N +5 +1 +6 +0.05 +0.01 35 158−10 26−2 184−12 0.17 0.14−0.05 0.03−0.01 0.95 −0.0 0.0 89.19 N +9 +1 +10 +0.03 +0.01 36 159−4 26−1 185−5 0.17 0.12−0.03 0.03−0.01 0.96 −0.0 0.0 87.02 N +11 +2 +13 +0.07 +0.01 37 152−10 25−2 177−12 0.17 0.34−0.26 0.07−0.06 0.98 0.0 0.0 83.59 N +10 +2 +11 +0.07 +0.01 38 150−13 25−2 175−15 0.17 0.36−0.11 0.08−0.02 0.99 0.0 0.0 77.25 Y +6 +1 +7 +0.39 +0.06 39 124−5 25−1 149−7 0.2 2.33−0.4 0.42−0.06 0.43 −0.0 0.0 94.37 N +8 +2 +9 +0.69 +0.1 40 114−28 23−6 137−33 0.2 2.42−0.07 0.44−0.01 0.46 −0.0 0.0 83.28 N +6 +1 +7 +0.36 +0.05 41 120−7 24−1 145−9 0.2 2.62−0.36 0.47−0.05 0.5 −0.0 0.0 98.9 N +10 +2 +12 +0.15 +0.02 42 125−6 25−1 150−7 0.2 2.4−0.67 0.44−0.1 0.52 −0.0 0.0 99.52 N +6 +1 +7 +0.2 +0.03 43 132−5 26−1 158−6 0.2 1.92−0.31 0.36−0.05 0.55 −0.0 0.0 99.54 N +8 +2 +9 +0.19 +0.03 44 134−4 27−1 161−5 0.2 1.82−0.31 0.34−0.05 0.57 −0.0 0.0 99.15 N +6 +1 +8 +0.12 +0.02 45 136−5 27−1 163−6 0.2 1.65−0.51 0.32−0.09 0.59 −0.0 0.0 98.81 N +8 +2 +9 +0.32 +0.05 46 141−6 28−1 169−7 0.2 1.4−0.23 0.27−0.04 0.62 −0.0 0.0 97.82 N +6 +1 +7 +0.09 +0.02 47 142−5 28−1 170−6 0.2 1.17−0.26 0.23−0.05 0.67 −0.0 0.0 96.5 N +7 +1 +9 +0.18 +0.03 48 143−4 29−1 172−5 0.2 0.97−0.22 0.2−0.04 0.71 0.0 0.0 94.87 N +7 +1 +9 +0.13 +0.02 49 144−5 29−1 173−6 0.2 0.81−0.22 0.17−0.04 0.75 −0.0 0.0 94.34 N +4 +1 +5 +0.16 +0.03 50 148−7 30−1 178−9 0.2 0.57−0.27 0.12−0.05 0.79 0.0 0.0 93.88 N +7 +1 +9 +0.16 +0.03 51 149−6 30−1 178−8 0.2 0.48−0.17 0.1−0.03 0.82 0.0 0.0 92.31 N +8 +2 +9 +0.15 +0.03 52 149−8 30−2 179−10 0.2 0.39−0.13 0.09−0.03 0.86 0.0 0.0 92.82 N +9 +2 +10 +0.16 +0.03 53 150−5 30−1 180−6 0.2 0.31−0.1 0.07−0.02 0.89 0.0 0.0 92.1 N 7

+7 +1 +8 +0.07 +0.01 54 152−6 30−1 183−7 0.2 0.17−0.05 0.04−0.01 0.95 0.0 0.0 88.27 N +4 +1 +4 +0.11 +0.02 55 158−16 32−3 190−20 0.2 0.12−0.01 0.03−0.0 0.96 0.0 0.0 88.46 N +15 +3 +18 +0.1 +0.03 56 148−11 30−2 178−13 0.2 0.37−0.29 0.08−0.05 0.98 0.0 0.0 83.15 Y +7 +1 +9 +0.1 +0.02 57 146−17 29−3 175−21 0.2 0.4−0.13 0.09−0.03 0.99 0.0 0.0 78.22 N +15 +4 +19 +0.41 +0.06 58 109−4 27−1 136−5 0.25 3.14−0.62 0.54−0.09 0.4 0.0 0.0 92.69 N +17 +4 +21 +0.5 +0.07 59 113−8 28−2 141−10 0.25 3.0−1.08 0.52−0.16 0.43 0.0 0.0 87.54 N +6 +1 +7 +0.81 +0.11 60 109−9 27−2 136−12 0.25 3.12−0.33 0.54−0.05 0.46 0.0 0.0 86.71 N +9 +2 +11 +0.0 +0.0 61 1080 270 1340 0.25 3.53−0.82 0.6−0.12 0.5 −0.0 0.0 97.55 N +10 +2 +12 +0.19 +0.03 62 115−2 29−1 144−3 0.25 3.12−0.6 0.54−0.09 0.52 0.0 0.0 100.12 Y +5 +1 +6 +0.44 +0.07 63 124−10 31−3 155−13 0.25 2.46−0.38 0.44−0.06 0.55 0.0 0.0 99.87 N +8 +2 +10 +0.37 +0.06 64 127−6 32−2 159−8 0.25 2.2−0.35 0.4−0.05 0.57 0.0 0.0 99.92 N +7 +2 +9 +0.38 +0.07 65 130−7 33−2 163−8 0.25 1.96−0.44 0.37−0.06 0.59 0.0 0.0 99.19 N +0 +0 +0 +0.0 +0.0 66 135−4 34−1 169−5 0.25 1.73−0.14 0.33−0.02 0.62 0.0 0.0 98.25 N +5 +1 +6 +0.38 +0.06 67 139−7 35−2 174−9 0.25 1.28−0.17 0.25−0.03 0.67 0.0 0.0 96.65 N +7 +2 +8 +0.16 +0.03 68 138−4 35−1 173−5 0.25 1.21−0.23 0.24−0.04 0.71 −0.0 0.0 95.97 N +4 +1 +5 +0.21 +0.04 69 137−1 340 171−1 0.25 0.810.0 0.170.0 0.75 −0.0 0.0 93.99 N +7 +2 +9 +0.24 +0.04 70 142−5 36−1 178−7 0.25 0.65−0.35 0.14−0.07 0.79 0.0 0.0 93.53 N +7 +2 +9 +0.07 +0.01 71 1370 340 1710 0.25 0.65−0.14 0.14−0.03 0.82 0.0 0.0 93.73 N +4 +1 +5 +0.13 +0.03 72 144−8 36−2 180−9 0.25 0.46−0.15 0.1−0.03 0.86 0.0 0.0 92.81 N +0 +0 +0 +0.0 +0.0 73 1420 350 1770 0.25 0.320.0 0.070.0 0.89 0.0 0.0 92.33 N +6 +1 +7 +0.06 +0.01 74 148−6 37−1 185−7 0.25 0.2−0.08 0.05−0.02 0.95 0.0 0.0 90.64 N +7 +2 +9 +0.05 +0.01 75 1400 350 1750 0.25 0.130.0 0.030.0 0.96 0.0 0.0 87.0 N +17 +4 +22 +0.1 +0.02 76 139−8 35−2 174−10 0.25 0.43−0.34 0.09−0.07 0.98 0.0 0.0 84.66 N +10 +2 +12 +0.11 +0.02 77 138−9 35−2 173−12 0.25 0.49−0.14 0.11−0.03 0.99 0.0 0.0 78.13 Y +7 +2 +10 +0.47 +0.07 78 110−6 37−2 147−8 0.33 3.3−0.57 0.57−0.08 0.18 0.0 0.0 95.4 N +4 +1 +6 +0.66 +0.09 79 112−9 37−3 149−12 0.33 3.05−0.46 0.53−0.07 0.33 −0.0 0.0 96.05 N +6 +2 +8 +0.62 +0.1 80 111−8 37−3 147−11 0.33 3.33−0.75 0.57−0.09 0.4 0.0 0.0 89.73 N +0 +0 +1 +0.92 +0.13 81 114−10 38−3 152−13 0.33 2.910.0 0.510.0 0.43 0.0 0.0 97.0 N +10 +3 +13 +1.1 +0.15 82 99−3 33−1 132−4 0.33 3.22−0.03 0.56−0.0 0.46 −0.0 0.0 88.06 N +8 +3 +10 +0.87 +0.12 83 101−6 34−2 135−8 0.33 4.01−0.57 0.67−0.08 0.5 0.0 0.0 96.24 N +2 +1 +2 +0.85 +0.12 84 112−8 37−3 149−10 0.33 3.37−0.11 0.58−0.02 0.52 0.0 0.0 100.22 Y +2 +1 +3 +0.81 +0.12 85 116−5 39−2 155−7 0.33 2.75−0.0 0.49−0.0 0.55 0.0 0.0 100.81 N +6 +2 +8 +0.16 +0.02 86 117−3 39−1 156−5 0.33 2.96−0.61 0.52−0.09 0.57 −0.0 0.0 100.66 N +7 +2 +9 +0.34 +0.05 87 120−7 40−2 160−10 0.33 2.55−0.69 0.46−0.11 0.59 0.0 0.0 100.26 N +5 +2 +6 +0.39 +0.06 88 123−5 41−2 164−6 0.33 2.18−0.33 0.4−0.05 0.62 0.0 0.0 99.08 N +0 +0 +0 +0.0 +0.0 89 1280 430 1710 0.33 1.640.0 0.310.0 0.67 0.0 0.0 98.01 N +6 +2 +8 +0.26 +0.04 90 129−7 43−2 172−9 0.33 1.44−0.36 0.28−0.06 0.71 0.0 0.0 96.62 N +6 +2 +7 +0.29 +0.05 91 131−10 44−3 175−14 0.33 1.17−0.33 0.23−0.06 0.75 0.0 0.0 95.44 N +0 +0 +0 +0.0 +0.0 92 1320 440 1760 0.33 0.950.0 0.190.0 0.79 −0.0 0.0 94.49 N +7 +2 +10 +0.38 +0.07 93 131−3 44−1 175−4 0.33 0.53−0.13 0.11−0.03 0.82 −0.0 0.0 94.81 N +6 +2 +8 +0.23 +0.04 94 135−7 45−2 180−10 0.33 0.48−0.27 0.1−0.06 0.86 0.0 0.0 95.9 N +9 +3 +12 +0.12 +0.02 95 133−3 44−1 177−5 0.33 0.48−0.19 0.1−0.04 0.89 0.0 0.0 94.04 N +5 +2 +7 +0.05 +0.01 96 138−8 46−3 184−11 0.33 0.28−0.1 0.06−0.02 0.95 0.0 0.0 90.16 N +0 +0 +0 +0.08 +0.02 97 149−9 50−3 198−12 0.33 0.150.0 0.040.0 0.96 0.0 0.0 89.33 N +8 +3 +11 +0.33 +0.07 98 138−15 46−5 184−20 0.33 0.22−0.13 0.05−0.03 0.98 0.0 0.0 86.4 Y +11 +4 +15 +0.18 +0.04 99 128−8 43−3 170−11 0.33 0.53−0.12 0.11−0.02 0.99 0.0 0.0 78.58 N +9 +5 +14 +1.16 +0.15 100 97−6 48−3 145−9 0.5 4.13−0.98 0.68−0.14 0.18 0.0 0.0 96.91 N +9 +5 +14 +0.09 +0.01 101 94−3 47−1 141−4 0.5 4.57−1.15 0.74−0.16 0.33 −0.0 0.0 97.82 N +9 +5 +14 +0.58 +0.08 102 95−3 47−1 142−4 0.5 4.52−1.19 0.74−0.16 0.4 0.0 0.0 96.11 N +6 +3 +9 +1.02 +0.13 103 100−10 50−5 150−14 0.5 4.11−0.67 0.68−0.09 0.43 0.0 0.0 98.08 N +9 +5 +14 +1.42 +0.18 104 92−8 46−4 138−12 0.5 4.65−1.15 0.75−0.16 0.46 0.0 0.0 89.61 N +12 +6 +18 +1.05 +0.14 105 85−7 43−3 128−10 0.5 4.85−1.44 0.78−0.19 0.5 −0.0 0.0 90.87 N +8 +4 +13 +0.72 +0.09 106 93−5 46−2 139−7 0.5 4.94−1.07 0.79−0.14 0.52 0.0 0.0 100.84 N +4 +2 +5 +0.9 +0.16 107 102−7 51−3 152−10 0.5 4.08−0.66 0.68−0.05 0.55 0.0 0.0 102.35 N +4 +2 +6 +0.62 +0.08 108 104−7 52−3 157−10 0.5 3.97−0.76 0.66−0.11 0.57 0.0 0.0 101.69 Y +3 +2 +5 +1.14 +0.16 109 107−6 53−3 160−9 0.5 3.04−0.26 0.53−0.04 0.59 0.0 0.0 101.47 N +11 +6 +17 +0.61 +0.09 110 109−5 55−2 164−7 0.5 2.77−1.07 0.49−0.17 0.62 −0.0 0.0 100.92 N +8 +4 +12 +0.0 +0.0 111 109−3 55−1 164−4 0.5 2.79−0.89 0.49−0.14 0.67 0.0 0.0 99.49 N 8

+9 +4 +13 +0.53 +0.09 112 117−6 59−3 176−10 0.5 1.59−0.82 0.31−0.14 0.71 0.0 0.0 97.88 N +8 +4 +12 +0.46 +0.08 113 121−8 60−4 181−12 0.5 1.22−0.48 0.24−0.09 0.75 0.0 0.0 97.82 N +9 +4 +13 +0.45 +0.08 114 122−8 61−4 182−11 0.5 0.8−0.38 0.17−0.07 0.79 −0.0 0.0 98.79 N +7 +4 +11 +0.25 +0.05 115 121−7 61−4 182−11 0.5 0.7−0.37 0.15−0.07 0.82 −0.0 0.0 97.5 N +5 +2 +7 +0.04 +0.01 116 123−7 62−4 185−11 0.5 0.75−0.42 0.16−0.08 0.86 0.0 0.0 97.48 N +23 +12 +35 +0.27 +0.05 117 122−9 61−4 183−13 0.5 0.44−0.29 0.1−0.06 0.89 0.0 0.0 95.6 N +14 +7 +21 +0.12 +0.02 118 122−5 61−3 184−8 0.5 0.28−0.08 0.06−0.02 0.95 0.0 0.0 92.64 N +4 +2 +6 +0.07 +0.01 119 126−10 63−5 190−15 0.5 0.23−0.07 0.05−0.02 0.96 0.0 0.0 89.96 N +19 +10 +29 +0.45 +0.09 120 123−12 61−6 184−18 0.5 0.17−0.12 0.04−0.03 0.98 0.0 0.0 86.49 Y +8 +4 +12 +0.15 +0.03 121 112−9 56−4 168−13 0.5 0.64−0.22 0.14−0.04 0.99 0.0 0.0 78.83 N +5 +3 +8 +0.85 +0.11 122 98−8 59−5 157−13 0.6 3.96−0.89 0.66−0.12 0.57 −0.0 0.0 101.81 Y +10 +6 +16 +0.45 +0.07 123 105−4 63−2 167−6 0.6 2.56−1.1 0.46−0.18 0.67 0.0 0.0 99.83 N +11 +6 +17 +0.38 +0.06 124 112−6 67−4 179−9 0.6 1.29−0.71 0.25−0.13 0.75 0.0 0.0 99.3 N +8 +5 +13 +0.15 +0.03 125 117−8 70−5 187−13 0.6 0.36−0.26 0.08−0.06 0.92 0.0 0.0 96.66 N +9 +6 +15 +1.82 +0.23 126 83−9 58−6 141−15 0.7 5.09−1.43 0.81−0.19 0.46 0.0 0.0 88.97 N +15 +10 +25 +2.23 +0.29 127 71−12 50−9 121−21 0.7 4.3−2.22 0.7−0.32 0.5 0.0 0.0 82.65 N +10 +7 +18 +1.4 +0.17 128 80−7 56−5 136−11 0.7 5.82−1.72 0.9−0.22 0.52 0.0 0.0 100.27 N +7 +5 +12 +1.12 +0.14 129 85−5 59−3 144−8 0.7 5.02−1.07 0.8−0.14 0.55 0.0 0.0 102.34 N +6 +4 +10 +0.8 +0.1 130 90−7 63−5 153−12 0.7 4.47−1.14 0.73−0.16 0.57 0.0 0.0 102.21 N +0 +0 +0 +0.0 +0.0 131 930 650 1580 0.7 3.840.0 0.640.0 0.59 0.0 0.0 101.68 N +8 +5 +13 +0.77 +0.11 132 96−9 67−6 163−15 0.7 3.39−1.09 0.58−0.16 0.62 0.0 0.0 100.87 N +4 +3 +7 +0.64 +0.1 133 100−5 70−4 169−9 0.7 2.48−0.32 0.45−0.05 0.67 0.0 0.0 99.13 N +13 +9 +22 +0.91 +0.14 134 105−7 74−5 179−12 0.7 1.72−0.76 0.33−0.13 0.71 0.0 0.0 99.03 N +10 +7 +17 +0.34 +0.06 135 106−6 74−4 180−11 0.7 1.39−0.73 0.27−0.13 0.75 0.0 0.0 99.19 N +9 +6 +15 +0.47 +0.09 136 112−6 78−4 190−10 0.7 0.61−0.23 0.13−0.05 0.79 0.0 0.0 99.55 N +6 +4 +10 +0.33 +0.06 137 113−7 79−5 192−12 0.7 0.51−0.15 0.11−0.03 0.82 0.0 0.0 100.23 N +6 +4 +11 +0.24 +0.05 138 114−9 80−6 193−15 0.7 0.4−0.17 0.09−0.04 0.86 0.0 0.0 99.5 N +7 +5 +12 +0.27 +0.06 139 113−11 79−7 192−18 0.7 0.3−0.15 0.07−0.03 0.89 0.0 0.0 98.79 N +6 +4 +11 +0.27 +0.06 140 112−6 78−4 190−11 0.7 0.24−0.1 0.05−0.02 0.92 0.0 0.0 96.11 N +7 +5 +11 +0.13 +0.03 141 108−2 76−2 184−4 0.7 0.26−0.08 0.06−0.02 0.95 0.0 0.0 95.19 N +7 +5 +11 +0.07 +0.01 142 109−2 76−2 185−4 0.7 0.24−0.09 0.05−0.02 0.96 0.0 0.0 92.5 N +9 +6 +15 +0.33 +0.07 143 116−12 81−9 198−21 0.7 0.11−0.08 0.02−0.02 0.98 0.0 0.0 89.74 N +7 +5 +12 +0.2 +0.04 144 98−7 69−5 167−11 0.7 0.67−0.22 0.14−0.04 0.99 0.0 0.0 78.96 Y +7 +5 +12 +1.74 +0.22 145 79−9 64−7 143−17 0.8 4.97−1.18 0.79−0.16 0.46 0.0 0.0 89.2 N +1 +1 +2 +2.46 +0.33 146 70−12 56−10 126−22 0.8 2.86−0.22 0.5−0.03 0.5 0.0 0.0 81.64 N +8 +7 +15 +1.62 +0.2 147 76−7 61−5 137−12 0.8 6.08−1.34 0.93−0.17 0.52 0.0 0.0 100.3 N +7 +6 +13 +0.84 +0.11 148 81−4 65−3 145−8 0.8 5.34−1.07 0.84−0.14 0.55 0.0 0.0 101.96 N +6 +4 +10 +0.98 +0.13 149 85−7 68−5 153−12 0.8 4.72−1.09 0.76−0.15 0.57 0.0 0.0 102.15 N +11 +9 +20 +0.71 +0.12 150 85−4 68−4 153−8 0.8 4.49−1.44 0.73−0.17 0.59 0.0 0.0 101.76 N +8 +6 +14 +0.77 +0.1 151 88−3 70−3 158−6 0.8 3.65−0.75 0.62−0.11 0.62 0.0 0.0 100.51 N +12 +9 +21 +0.83 +0.12 152 95−6 76−5 170−11 0.8 2.57−0.97 0.46−0.15 0.67 0.0 0.0 99.16 N +10 +8 +17 +0.65 +0.1 153 99−8 79−6 178−14 0.8 1.92−0.96 0.36−0.16 0.71 0.0 0.0 99.03 N +9 +8 +17 +0.18 +0.03 154 1000 800 1800 0.8 1.11−0.38 0.22−0.07 0.75 0.0 0.0 99.91 N +8 +6 +14 +0.34 +0.07 155 107−8 86−6 193−14 0.8 0.54−0.2 0.12−0.04 0.82 0.0 0.0 100.15 N +7 +5 +12 +0.2 +0.04 156 108−7 87−6 195−13 0.8 0.39−0.15 0.09−0.03 0.86 0.0 0.0 100.91 N +6 +5 +10 +0.26 +0.05 157 109−8 87−6 196−14 0.8 0.31−0.11 0.07−0.02 0.89 0.0 0.0 98.3 N +7 +5 +12 +0.16 +0.03 158 108−9 86−7 194−16 0.8 0.22−0.14 0.05−0.03 0.92 0.0 0.0 99.49 N +5 +4 +9 +0.04 +0.01 159 109−8 87−7 196−15 0.8 0.32−0.26 0.07−0.06 0.95 0.0 0.0 95.73 Y +4 +3 +8 +0.06 +0.01 160 105−5 84−4 188−9 0.8 0.23−0.15 0.05−0.03 0.96 0.0 0.0 93.11 N +7 +6 +13 +0.44 +0.09 161 104−8 84−7 188−15 0.8 0.15−0.07 0.04−0.02 0.98 0.0 0.0 89.89 N +7 +6 +13 +0.14 +0.03 162 92−7 74−5 166−12 0.8 0.7−0.29 0.15−0.06 0.99 0.0 0.0 78.08 N +9 +8 +17 +1.67 +0.2 163 70−7 63−6 134−13 0.9 5.91−1.53 0.91−0.2 0.46 0.0 0.0 87.88 N +11 +9 +20 +2.88 +0.37 164 58−10 52−9 110−19 0.9 3.67−1.84 0.62−0.27 0.5 0.0 0.0 81.63 N +6 +5 +11 +1.37 +0.17 165 72−7 65−6 137−13 0.9 6.16−1.18 0.94−0.15 0.52 0.0 0.0 98.6 N +7 +7 +14 +1.25 +0.15 166 75−6 68−5 143−11 0.9 5.75−1.28 0.89−0.16 0.55 0.0 0.0 101.48 N +9 +8 +17 +0.5 +0.06 167 78−3 70−3 148−6 0.9 5.25−1.69 0.83−0.23 0.57 0.0 0.0 100.99 N +7 +7 +14 +1.04 +0.14 168 83−7 75−7 157−14 0.9 4.35−1.14 0.71−0.16 0.59 0.0 0.0 100.91 N +10 +9 +19 +0.19 +0.03 169 81−1 73−1 153−2 0.9 4.47−1.37 0.73−0.19 0.62 0.0 0.0 99.4 N 9

+9 +8 +17 +1.14 +0.16 170 91−7 81−6 172−13 0.9 2.62−0.8 0.47−0.12 0.67 0.0 0.0 98.65 N +10 +9 +18 +0.76 +0.12 171 92−8 83−7 175−16 0.9 2.1−0.95 0.39−0.16 0.71 0.0 0.0 99.02 N +7 +7 +14 +0.85 +0.14 172 99−9 89−8 189−17 0.9 1.07−0.35 0.22−0.07 0.75 0.0 0.0 99.33 N +9 +8 +18 +0.37 +0.07 173 101−5 91−4 192−9 0.9 0.77−0.31 0.16−0.06 0.79 0.0 0.0 99.6 N +7 +7 +14 +0.16 +0.03 174 102−4 92−4 194−8 0.9 0.58−0.21 0.12−0.04 0.82 0.0 0.0 99.42 N +5 +5 +10 +0.13 +0.03 175 105−6 95−5 200−10 0.9 0.37−0.14 0.08−0.03 0.86 0.0 0.0 100.74 N +10 +9 +19 +0.01 +0.0 176 98−3 88−3 186−6 0.9 0.46−0.28 0.1−0.06 0.89 0.0 0.0 99.6 N +6 +5 +11 +0.23 +0.05 177 104−9 93−8 197−18 0.9 0.2−0.11 0.05−0.02 0.92 0.0 0.0 98.46 N +0 +0 +0 +0.0 +0.0 178 990 890 1880 0.9 0.280.0 0.060.0 0.95 0.0 0.0 97.72 N +8 +7 +14 +0.08 +0.02 179 100−7 90−6 190−13 0.9 0.21−0.18 0.05−0.04 0.96 0.0 0.0 95.52 N +7 +6 +13 +0.5 +0.1 180 99−9 89−8 188−18 0.9 0.15−0.11 0.03−0.02 0.98 0.0 0.0 89.93 N +6 +5 +11 +0.37 +0.07 181 89−6 80−5 168−11 0.9 0.6−0.18 0.13−0.04 0.99 0.0 0.0 82.66 Y +7 +7 +14 +1.04 +0.13 182 71−5 71−5 143−11 1.0 5.32−1.07 0.84−0.14 0.18 0.0 0.0 94.63 N +7 +7 +14 +1.06 +0.13 183 71−6 71−6 142−12 1.0 5.29−1.15 0.84−0.15 0.26 0.0 0.0 93.49 N +5 +5 +10 +1.55 +0.19 184 71−8 71−8 142−16 1.0 5.32−0.9 0.84−0.12 0.31 0.0 0.0 93.75 N +5 +5 +11 +1.17 +0.15 185 70−6 70−6 141−12 1.0 5.44−0.99 0.85−0.13 0.33 0.0 0.0 94.49 N +7 +7 +13 +1.19 +0.18 186 70−8 70−8 140−15 1.0 5.53−1.62 0.87−0.18 0.36 0.0 0.0 93.8 N +6 +6 +13 +0.98 +0.15 187 70−6 70−6 141−12 1.0 5.64−1.49 0.88−0.17 0.37 0.0 0.0 91.04 N +5 +5 +10 +1.11 +0.14 188 74−7 74−7 147−14 1.0 5.0−0.88 0.8−0.12 0.39 0.0 0.0 95.1 N +6 +6 +13 +1.16 +0.15 189 73−6 73−6 145−12 1.0 5.2−1.23 0.82−0.16 0.4 0.0 0.0 96.5 N +6 +6 +13 +1.25 +0.15 190 69−6 69−6 139−13 1.0 5.61−1.19 0.88−0.15 0.41 0.0 0.0 91.33 N +10 +10 +19 +0.73 +0.09 191 72−3 72−3 145−6 1.0 5.16−1.24 0.82−0.16 0.43 0.0 0.0 95.01 N +6 +6 +11 +1.06 +0.13 192 70−7 70−7 139−14 1.0 5.85−1.42 0.91−0.18 0.44 0.0 0.0 93.43 N +3 +3 +6 +1.16 +0.15 193 75−8 75−8 150−15 1.0 4.76−0.94 0.77−0.13 0.45 0.0 0.0 97.02 N +7 +7 +14 +1.38 +0.17 194 67−6 67−6 135−13 1.0 6.0−1.39 0.92−0.18 0.46 0.0 0.0 88.07 N +7 +7 +14 +1.13 +0.18 195 69−7 69−7 137−14 1.0 5.75−1.66 0.89−0.18 0.47 0.0 0.0 94.82 N +6 +6 +11 +0.97 +0.12 196 75−6 75−6 150−11 1.0 5.33−1.13 0.84−0.15 0.48 0.0 0.0 90.2 N +9 +9 +18 +2.82 +0.36 197 58−9 58−9 115−19 1.0 3.82−2.19 0.64−0.33 0.5 0.0 0.0 82.35 N +8 +8 +17 +1.19 +0.14 198 65−5 65−5 130−10 1.0 6.38−1.92 0.97−0.24 0.51 0.0 0.0 94.1 N +7 +7 +15 +1.16 +0.14 199 69−6 69−6 137−11 1.0 6.23−1.47 0.95−0.19 0.52 0.0 0.0 98.66 N +6 +6 +12 +1.34 +0.16 200 70−6 70−6 141−13 1.0 6.0−1.13 0.92−0.14 0.53 0.0 0.0 100.16 N +6 +6 +11 +1.15 +0.14 201 72−6 72−6 144−13 1.0 5.61−1.07 0.88−0.14 0.55 0.0 0.0 100.98 N +7 +7 +14 +0.87 +0.11 202 74−5 74−5 149−10 1.0 5.25−1.29 0.83−0.17 0.57 0.0 0.0 100.74 N +7 +7 +14 +1.15 +0.15 203 77−8 77−8 155−16 1.0 4.46−1.03 0.73−0.14 0.59 0.0 0.0 100.32 N +7 +7 +14 +1.28 +0.17 204 80−7 80−7 161−14 1.0 3.76−0.88 0.63−0.13 0.62 0.0 0.0 99.15 N +8 +8 +16 +1.15 +0.16 205 84−8 84−8 168−15 1.0 2.84−0.82 0.5−0.13 0.67 0.0 0.0 97.84 N +9 +9 +18 +0.88 +0.13 206 89−9 89−9 178−17 1.0 1.99−0.91 0.37−0.15 0.71 0.0 0.0 97.97 N +8 +8 +17 +0.92 +0.15 207 93−9 93−9 186−17 1.0 1.2−0.45 0.24−0.08 0.75 0.0 0.0 98.49 N +7 +7 +14 +0.22 +0.04 208 96−5 96−5 192−10 1.0 0.81−0.36 0.17−0.07 0.79 0.0 0.0 99.07 N +6 +6 +13 +0.09 +0.02 209 98−4 98−4 196−8 1.0 0.64−0.27 0.14−0.05 0.82 0.0 0.0 99.23 N +6 +6 +13 +0.27 +0.05 210 98−7 98−7 196−14 1.0 0.41−0.2 0.09−0.04 0.86 0.0 0.0 99.87 N +1 +1 +2 +0.04 +0.01 211 102−4 102−4 204−7 1.0 0.25−0.06 0.06−0.01 0.89 0.0 0.0 99.07 N +7 +7 +13 +0.22 +0.05 212 98−8 98−8 197−15 1.0 0.19−0.11 0.04−0.02 0.92 0.0 0.0 98.6 N +0 +0 +0 +0.21 +0.05 213 106−12 106−12 213−25 1.0 0.050.0 0.010.0 0.95 0.0 0.0 97.02 N +5 +5 +11 +0.12 +0.03 214 94−3 94−3 189−7 1.0 0.2−0.12 0.05−0.03 0.96 0.0 0.0 93.56 N +4 +4 +7 +0.08 +0.02 215 96−5 96−5 193−9 1.0 0.1−0.05 0.02−0.01 0.98 0.0 0.0 90.9 N +4 +4 +8 +0.25 +0.05 216 84−9 84−9 169−19 1.0 0.64−0.25 0.14−0.05 0.99 0.0 0.0 78.41 Y Head-on eBBH runs +8 +8 +16 +0.0 +0.0 1 960 960 1930 1.0 0.4−0.13 0.09−0.03 1.0 0.7 0.0 98.43 Y +2 +2 +5 +0.07 +0.02 2 97−6 97−6 194−12 1.0 0.28−0.17 0.06−0.04 1.0 0.35 0.7 94.95 Y +0 +0 +0 +0.0 +0.0 3 1020 1020 2040 1.0 0.360.0 0.080.0 1.0 0.7 0.0 97.41 Y +0 +0 +0 +0.03 +0.01 4 1030 1030 206−1 1.0 0.19−0.0 0.04−0.0 1.0 0.53 0.61 101.24 Y +6 +6 +11 +0.14 +0.03 5 101−3 101−3 202−7 1.0 0.18−0.07 0.04−0.02 1.0 0.53 0.61 100.39 N +6 +6 +11 +0.23 +0.04 6 82−5 82−5 165−9 1.0 0.74−0.32 0.15−0.06 1.0 −0.0 0.61 89.19 Y +11 +11 +21 +0.13 +0.03 7 99−11 99−11 198−21 1.0 0.07−0.06 0.02−0.01 1.0 0.18 0.7 96.42 Y +4 +4 +9 +0.14 +0.03 8 101−7 101−7 201−15 1.0 0.18−0.1 0.04−0.02 1.0 0.42 0.67 99.39 N +3 +3 +5 +0.13 +0.03 9 950 950 1900 1.0 0.25−0.01 0.06−0.0 1.0 0.23 0.7 95.08 N +7 +7 +14 +0.25 +0.05 10 82−4 82−4 163−8 1.0 0.77−0.29 0.16−0.06 1.0 −0.0 0.0 83.97 Y 10

+0 +0 +0 +0.23 +0.05 11 106−6 106−6 211−13 1.0 0.070.0 0.020.0 1.0 0.35 0.7 97.75 Y +5 +5 +10 +0.12 +0.03 12 103−14 103−14 207−27 1.0 0.11−0.05 0.03−0.01 1.0 0.37 0.7 99.76 Y Precessing eBBH runs +7 +5 +12 +1.18 +0.19 1 81−6 61−5 142−11 0.75 6.33−1.42 0.97−0.13 0.0 −0.0 0.53 100.24 Y +12 +8 +19 +2.11 +0.27 2 93−15 62−10 156−25 0.67 4.68−1.48 0.76−0.2 0.0 0.02 0.8 101.47 Y +15 +12 +26 +1.01 +0.13 3 81−6 66−5 147−12 0.82 5.56−2.31 0.87−0.31 0.0 0.01 0.8 102.27 Y +11 +11 +21 +1.57 +0.2 4 74−10 74−10 148−20 1.0 5.28−2.16 0.83−0.29 0.0 0.01 0.8 101.93 N +8 +8 +16 +1.34 +0.16 5 65−6 65−6 130−12 1.0 7.6−1.8 1.12−0.22 0.0 0.0 0.78 101.5 Y +4 +4 +8 +0.78 +0.11 6 86−10 86−10 172−19 1.0 3.71−1.28 0.62−0.18 0.26 0.0 0.7 102.23 N +15 +15 +30 +1.41 +0.19 7 87−9 87−9 174−19 1.0 3.44−1.51 0.59−0.22 0.33 0.0 0.7 101.87 N +14 +14 +27 +1.75 +0.23 8 82−10 82−10 163−20 1.0 4.15−1.68 0.69−0.24 0.4 0.0 0.7 97.59 Y +0 +0 +0 +1.29 +0.21 9 109−16 109−16 218−32 1.0 1.210.0 0.240.0 0.46 0.0 0.7 97.37 N +13 +13 +27 +1.97 +0.25 10 79−11 79−11 159−22 1.0 4.41−2.05 0.72−0.29 0.52 0.0 0.7 98.58 Y +5 +5 +11 +1.01 +0.13 11 81−9 81−9 162−18 1.0 5.21−1.31 0.82−0.17 0.57 0.0 0.7 105.32 N +7 +7 +14 +1.07 +0.16 12 102−16 102−16 204−33 1.0 1.84−0.54 0.35−0.09 0.67 0.0 0.7 107.91 Y +4 +4 +8 +0.2 +0.04 13 104−5 104−5 209−10 1.0 0.53−0.15 0.11−0.03 0.86 0.0 0.7 103.52 Y +0 +0 +0 +0.03 +0.01 14 115−4 115−4 229−9 1.0 0.110.0 0.030.0 0.95 0.0 0.7 100.64 N +15 +15 +31 +0.75 +0.1 15 80−4 80−4 160−8 1.0 5.04−2.03 0.8−0.28 0.57 0.0 0.7 105.83 N +12 +12 +24 +1.41 +0.18 16 80−9 80−9 159−18 1.0 4.69−1.65 0.76−0.23 0.57 0.0 0.7 106.22 Y +16 +16 +33 +0.43 +0.05 17 71−3 71−3 143−7 1.0 5.99−2.92 0.92−0.39 0.57 0.0 0.7 104.97 Y +9 +9 +19 +1.89 +0.23 18 70−8 70−8 139−15 1.0 6.3−1.72 0.96−0.22 0.57 0.0 0.7 103.5 Y +9 +9 +17 +1.01 +0.13 19 74−5 74−5 149−10 1.0 5.11−1.36 0.81−0.18 0.26 0.0 0.7 98.21 N +7 +7 +14 +0.65 +0.08 20 72−3 72−3 144−6 1.0 5.63−1.4 0.88−0.18 0.33 0.0 0.7 99.77 Y +8 +8 +15 +1.78 +0.26 21 72−11 72−11 145−23 1.0 5.28−1.62 0.83−0.18 0.4 0.0 0.7 97.25 N +7 +7 +14 +1.2 +0.14 22 64−5 64−5 128−11 1.0 6.98−1.69 1.05−0.21 0.46 0.0 0.7 94.44 N +7 +7 +15 +1.31 +0.16 23 72−6 72−6 144−13 1.0 5.9−1.37 0.91−0.17 0.52 0.0 0.7 100.81 N +8 +8 +15 +1.63 +0.2 24 70−7 70−7 140−14 1.0 6.15−1.57 0.94−0.2 0.57 0.0 0.7 102.63 Y +12 +12 +24 +1.38 +0.2 25 88−11 88−11 177−23 1.0 2.43−0.9 0.44−0.14 0.67 0.0 0.7 101.72 N +3 +3 +7 +0.4 +0.08 26 100−12 100−12 200−24 1.0 0.57−0.34 0.12−0.07 0.86 0.0 0.7 98.77 N +0 +0 +0 +0.0 +0.0 27 880 880 1760 1.0 0.660.0 0.140.0 0.95 0.0 0.7 96.25 N +21 +21 +42 +1.43 +0.18 28 79−8 79−8 159−15 1.0 4.51−2.67 0.73−0.39 0.57 0.0 0.7 105.65 N +7 +7 +14 +1.24 +0.15 29 76−5 76−5 152−10 1.0 7.76−1.12 1.14−0.13 0.0 0.6 0.77 100.04 N Aligned eBBH runs +11 +6 +17 +2.06 +0.25 1 72−9 36−5 108−14 0.5 5.58−3.11 0.87−0.43 0.57 0.8 0.0 65.56 Y +12 +6 +18 +1.1 +0.13 2 101−7 51−4 152−11 0.5 7.69−1.27 1.13−0.15 0.57 0.67 0.0 91.17 Y +7 +3 +10 +3.02 +0.39 3 52−10 26−5 78−15 0.5 3.45−1.22 0.59−0.18 0.57 0.53 0.0 46.52 Y +7 +4 +11 +1.64 +0.19 4 83−9 42−4 125−13 0.5 7.05−1.11 1.05−0.14 0.57 0.4 0.0 79.74 N +10 +5 +15 +2.09 +0.25 5 75−12 37−6 112−18 0.5 5.75−1.42 0.89−0.18 0.57 0.53 0.0 72.93 Y +9 +4 +13 +1.19 +0.14 6 91−6 45−3 136−9 0.5 7.03−1.46 1.05−0.18 0.57 0.4 0.0 98.57 Y +10 +5 +15 +0.36 +0.05 7 95−2 47−1 142−3 0.5 6.56−1.39 0.99−0.17 0.57 0.27 0.0 102.33 Y +5 +3 +8 +1.16 +0.15 8 100−10 50−5 150−14 0.5 4.78−0.71 0.77−0.09 0.57 0.27 0.0 102.89 Y +7 +3 +10 +0.78 +0.09 9 93−4 47−2 140−6 0.5 7.82−1.16 1.15−0.14 0.57 0.27 0.0 98.8 N +8 +4 +12 +0.19 +0.02 10 98−3 49−1 147−4 0.5 5.72−1.21 0.89−0.16 0.57 0.13 0.0 102.95 Y +5 +2 +7 +0.88 +0.12 11 104−10 52−5 156−15 0.5 3.99−0.77 0.66−0.11 0.57 0.13 0.0 103.72 N +9 +5 +14 +1.22 +0.18 12 108−9 54−4 162−13 0.5 2.48−0.56 0.45−0.09 0.57 0.0 0.0 101.59 Y +7 +2 +9 +0.08 +0.02 13 171−6 43−1 214−7 0.25 0.22−0.09 0.05−0.02 0.99 0.64 0.0 102.47 N +6 +2 +8 +0.19 +0.04 14 157−16 52−5 210−21 0.33 0.21−0.08 0.05−0.02 0.99 0.6 0.0 102.71 N Anti-aligned eBBH runs +7 +3 +10 +0.64 +0.08 1 102−6 51−3 153−9 0.5 4.85−0.97 0.78−0.13 0.57 −0.0 0.0 102.59 Y +8 +4 +12 +0.42 +0.06 2 101−4 51−2 152−5 0.5 3.5−0.84 0.6−0.12 0.57 −0.13 0.0 101.09 N +6 +3 +9 +0.66 +0.1 3 106−11 53−5 159−16 0.5 2.73−0.78 0.48−0.12 0.57 −0.13 0.0 100.77 N +6 +3 +8 +0.53 +0.08 4 103−3 51−2 154−5 0.5 3.13−0.43 0.54−0.06 0.57 −0.27 0.0 100.03 N +7 +3 +10 +0.97 +0.14 5 105−7 53−4 158−11 0.5 2.46−0.65 0.44−0.1 0.57 −0.27 0.0 100.32 N +7 +4 +11 +0.59 +0.09 6 108−8 54−4 163−13 0.5 1.83−0.63 0.35−0.11 0.57 −0.27 0.0 100.94 N +11 +6 +17 +0.34 +0.05 7 980 490 1470 0.5 2.58−0.66 0.46−0.1 0.57 −0.4 0.0 98.42 N +4 +2 +5 +0.63 +0.1 8 109−10 54−5 163−15 0.5 1.58−0.68 0.31−0.12 0.57 −0.4 0.0 98.83 N +7 +2 +9 +0.47 +0.08 9 110−8 28−2 138−10 0.25 1.57−0.44 0.3−0.08 0.43 −0.64 0.0 97.1 N +7 +2 +8 +0.23 +0.04 10 114−8 28−2 142−10 0.25 1.56−0.66 0.3−0.12 0.46 −0.64 0.0 97.01 N 11

+2 +1 +3 +0.53 +0.09 11 123−15 31−4 154−18 0.25 1.18−0.18 0.24−0.03 0.5 −0.64 0.0 95.73 N +15 +4 +18 +0.46 +0.08 12 122−7 30−2 152−9 0.25 1.05−0.36 0.21−0.07 0.52 −0.64 0.0 96.1 N +8 +2 +10 +0.13 +0.02 13 1180 300 1480 0.25 1.07−0.12 0.22−0.02 0.55 −0.64 0.0 94.83 N +12 +3 +14 +0.42 +0.08 14 122−5 30−1 152−6 0.25 0.88−0.26 0.18−0.05 0.57 −0.64 0.0 95.21 N +9 +2 +11 +0.25 +0.05 15 126−8 31−2 157−10 0.25 0.89−0.34 0.18−0.06 0.59 −0.64 0.0 93.92 N +8 +2 +10 +0.25 +0.05 16 125−9 31−2 157−11 0.25 0.81−0.33 0.17−0.06 0.62 −0.64 0.0 93.09 Y +3 +1 +3 +0.0 +0.0 17 133−8 33−2 166−11 0.25 0.57−0.08 0.12−0.02 0.67 −0.64 0.0 91.1 N +6 +1 +7 +0.25 +0.05 18 127−6 32−1 159−7 0.25 0.45−0.02 0.1−0.0 0.71 −0.64 0.0 89.76 N +10 +3 +13 +0.24 +0.05 19 129−8 32−2 161−11 0.25 0.52−0.2 0.11−0.04 0.75 −0.64 0.0 88.43 N +9 +2 +11 +0.02 +0.0 20 127−4 32−1 158−6 0.25 0.48−0.23 0.1−0.05 0.79 −0.64 0.0 87.85 N +5 +1 +7 +0.24 +0.05 21 134−8 33−2 167−10 0.25 0.33−0.16 0.07−0.03 0.82 −0.64 0.0 87.94 N +8 +2 +10 +0.16 +0.03 22 129−3 32−1 161−4 0.25 0.26−0.09 0.06−0.02 0.86 −0.64 0.0 86.47 N +6 +1 +7 +0.12 +0.02 23 128−4 32−1 160−5 0.25 0.27−0.02 0.06−0.0 0.89 −0.64 0.0 86.96 N +8 +2 +10 +0.09 +0.02 24 1350 340 1690 0.25 0.17−0.0 0.04−0.0 0.95 −0.64 0.0 93.94 N +24 +6 +30 +0.03 +0.01 25 153−9 38−2 191−12 0.25 0.2−0.1 0.05−0.02 0.96 −0.64 0.0 97.76 N +17 +4 +21 +0.08 +0.02 26 172−7 43−2 215−9 0.25 0.19−0.1 0.04−0.02 0.98 −0.64 0.0 100.44 Y +10 +3 +13 +0.8 +0.12 27 99−10 33−3 132−13 0.33 2.1−0.56 0.39−0.09 0.4 −0.6 0.0 83.57 N +8 +3 +10 +0.58 +0.09 28 102−9 34−3 136−12 0.33 2.19−0.7 0.4−0.11 0.43 −0.6 0.0 98.76 N +7 +2 +10 +0.64 +0.1 29 109−8 36−3 146−11 0.33 1.79−0.56 0.34−0.1 0.46 −0.6 0.0 98.45 N +9 +3 +12 +0.48 +0.08 30 111−7 37−2 148−9 0.33 1.7−0.75 0.32−0.13 0.5 −0.6 0.0 97.27 N +1 +0 +1 +0.03 +0.0 31 109−1 360 145−1 0.33 2.06−0.18 0.38−0.03 0.52 −0.6 0.0 96.6 N +9 +3 +12 +0.0 +0.0 32 116−5 39−2 154−7 0.33 1.52−0.67 0.29−0.12 0.57 −0.6 0.0 95.29 N +12 +4 +16 +0.5 +0.09 33 111−2 37−1 148−2 0.33 1.06−0.15 0.22−0.03 0.59 −0.6 0.0 95.39 N +9 +3 +11 +0.36 +0.06 34 119−9 40−3 158−12 0.33 1.08−0.46 0.22−0.09 0.62 −0.6 0.0 94.42 N +9 +3 +12 +0.32 +0.06 35 120−9 40−3 160−12 0.33 0.92−0.36 0.19−0.07 0.67 −0.6 0.0 92.39 N +9 +3 +11 +0.29 +0.06 36 123−8 41−3 163−10 0.33 0.63−0.15 0.13−0.02 0.71 −0.6 0.0 91.97 N +9 +3 +12 +0.33 +0.06 37 126−10 42−3 168−13 0.33 0.53−0.11 0.11−0.02 0.75 −0.6 0.0 89.91 N +9 +3 +12 +0.23 +0.05 38 124−8 41−3 166−11 0.33 0.53−0.22 0.12−0.04 0.79 −0.6 0.0 89.6 N +8 +3 +11 +0.11 +0.02 39 125−7 42−2 167−10 0.33 0.5−0.26 0.11−0.05 0.82 −0.6 0.0 87.92 N +5 +2 +7 +0.13 +0.03 40 126−9 42−3 168−12 0.33 0.38−0.22 0.08−0.04 0.86 −0.6 0.0 86.69 N +5 +2 +6 +0.18 +0.04 41 126−6 42−2 167−9 0.33 0.29−0.14 0.06−0.03 0.89 −0.6 0.0 86.64 N +4 +1 +5 +0.12 +0.03 42 131−4 44−1 175−5 0.33 0.17−0.06 0.04−0.01 0.95 −0.6 0.0 94.91 Y +27 +9 +36 +0.11 +0.02 43 139−7 47−2 186−9 0.33 0.18−0.12 0.04−0.03 0.96 −0.6 0.0 99.14 N +2 +1 +3 +0.02 +0.0 44 157−18 52−6 210−24 0.33 0.22−0.11 0.05−0.02 0.98 −0.6 0.0 100.91 Y +9 +4 +13 +0.96 +0.15 45 107−10 53−5 160−15 0.5 1.65−0.58 0.32−0.1 0.57 −0.53 0.0 97.8 N +7 +3 +10 +1.08 +0.15 46 95−9 48−5 143−14 0.5 2.88−0.9 0.51−0.14 0.46 −0.53 0.0 100.05 N +9 +5 +14 +0.65 +0.1 47 103−7 52−4 155−11 0.5 1.71−0.68 0.33−0.12 0.57 −0.53 0.0 97.96 N +0 +0 +0 +0.73 +0.12 48 109−7 54−4 163−11 0.5 1.140.0 0.230.0 0.62 −0.53 0.0 96.71 N +9 +5 +14 +0.57 +0.1 49 112−9 56−5 168−14 0.5 0.97−0.28 0.2−0.05 0.67 −0.53 0.0 95.08 N +9 +5 +14 +0.32 +0.06 50 110−7 55−3 164−10 0.5 0.84−0.32 0.17−0.06 0.75 −0.53 0.0 92.5 N +8 +4 +12 +0.51 +0.1 51 115−11 57−5 172−16 0.5 0.47−0.19 0.1−0.04 0.82 −0.53 0.0 89.57 N +2 +1 +4 +0.94 +0.14 52 107−9 54−5 161−14 0.5 1.95−0.12 0.37−0.02 0.57 −0.53 0.0 97.68 N +11 +6 +17 +0.43 +0.07 53 104−6 52−3 155−8 0.5 1.83−0.72 0.35−0.12 0.57 −0.67 0.0 96.21 N +8 +4 +12 +0.53 +0.09 54 103−9 52−4 155−13 0.5 1.61−0.58 0.31−0.1 0.57 −0.8 0.0 95.18 N TABLE II: Details of selected source parameters of GW190521. Each parameter reported with median value with 90% C.L, that include statis- tical error and systematic error. Here we report total 325 estimation with different NR simulations. The columns show the source-frame primary mass m1, source-frame secondary mass m2, source frame total mass M, mass ratio q, luminosity distance D, redshift z, eccentricity e, dimension- less effective aligned spin χeff , dimensionless dominant effective preces- sion spin χp, marginalized likelihood log Lmarg and consistency for each estimation.