ARTICLE https://doi.org/10.1038/s43247-020-00014-5 OPEN The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse ✉ Alina V. Shevchenko 1,2 , Viktor N. Dvigalo2, Thomas R. Walter1, Rene Mania1, Francesco Maccaferri1,3, Ilya Yu. Svirid2, Alexander B. Belousov 2 & Marina G. Belousova2 Continued post-collapse volcanic activity can cause the rise of a new edifice. However, details of such edifice rebirth have not been documented yet. Here, we present 7-decade-long 1234567890():,; photogrammetric data for Bezymianny volcano, Kamchatka, showing its evolution after the 1956 sector collapse. Edifice rebirth started with two lava domes originating at distinct vents ~400 m apart. After 2 decades, activity became more effusive with vents migrating within ~200 m distance. After 5 decades, the activity focused on a single vent to develop a stra- tocone with a summit crater. We determine a long-term average growth rate of 26,400 m3/ day, allowing us to estimate the regain of the pre-collapse size within the next 15 years. Numerical modeling explains the gradual vents focusing to be associated with loading changes, affecting magma pathways at depth. This work thus sheds light on the complex regrowth process following a sector collapse, with implications for regrowing volcanoes elsewhere. 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany. 2 Institute of Volcanology and Seismology FEB RAS, Piip boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia. 3 INGV National Institute of Geophysics and Volcanology, Via Diocleziano 328, 80124 Naples, Italy. ✉ email:
[email protected] COMMUNICATIONS EARTH & ENVIRONMENT | (2020) 1:15 | https://doi.org/10.1038/s43247-020-00014-5 | www.nature.com/commsenv 1 ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-020-00014-5 ctive volcanoes are subject to flank instability that may until today (Fig.