2010 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

Total Page:16

File Type:pdf, Size:1020Kb

2010 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. 2010 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory Scientific Investigations Report 2014–5034 U.S. Department of the Interior U.S. Geological Survey Cover: Klyuchevskoy Volcano in eruption, March 20, 2010. Photograph by Yury Demyanchuk, Institute of Volcanology and Seismology. Used with permission. 2010 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory By Christina A. Neal, Julie Herrick, Olga A. Girina, Marina Chibisova, Alexander Rybin, Robert G. McGimsey, and Jim Dixon The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. Scientific Investigations Report 2014–5034 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Neal, C.A., Herrick, J., Girina, O.A., Chibisova, M., Rybin, A., McGimsey, R.G., and Dixon, J., 2014, 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands—Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2014–5034, 76 p., http://dx.doi.org/10.3133/ sir20145034. ISSN 2328-0328 (online) iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Volcanic Activity in Alaska, Northeast To Southwest Along Aleutian Arc.........................................17 Wrangell Volcano ...............................................................................................................................17 Mount Sanford Volcano .....................................................................................................................20 Redoubt Volcano .................................................................................................................................22 Fourpeaked Volcano ...........................................................................................................................25 Katmai Group (Novarupta) ................................................................................................................27 Becharof Lake Area............................................................................................................................28 Aniakchak Volcano .............................................................................................................................30 Mount Veniaminof Volcano ...............................................................................................................32 Westdahl Volcano ...............................................................................................................................33 Makushin Volcano ..............................................................................................................................35 Cleveland Volcano ..............................................................................................................................36 Kasatochi Volcano ..............................................................................................................................38 Volcanic Activity, Kamchatka Peninsula, and the Northern Kurile Islands, Russia ........................40 Sheveluch Volcano .............................................................................................................................43 Klyuchevskoy Volcano .......................................................................................................................46 Bezymianny Volcano ..........................................................................................................................50 Kizimen Volcano ..................................................................................................................................53 Karymsky Volcano ..............................................................................................................................55 Gorely Volcano ....................................................................................................................................58 Volcanic Activity, Central and Southern Kurile Islands, Russia ...........................................................61 Ekarma Volcano ..................................................................................................................................62 Summary........................................................................................................................................................67 Acknowledgments .......................................................................................................................................67 References Cited..........................................................................................................................................67 Glossary of Selected Terms and Acronyms ............................................................................................73 Appendix 1. Volcano Alert Levels and Aviation Color Codes Used by United States Volcano Observatories, KVERT, and SVERT ..............................................................................................76 iv Figures 1. Map showing 52 historically active volcanoes in Alaska along with place names used in this report .........................................................................................................................2 2. Oblique aerial photograph of the summit of Wrangell volcano, north at the top, June 15, 1948 ...............................................................................................................................17 3. Lidar image of the summit of Wrangell volcano ...................................................................18 4. Cross section from southeast to northwest along the center track of the lidar swath over North Crater at the summit of Wrangell volcano ............................................18 5. Photograph showing suspect cloud over summit of Wrangell volcano............................19 6. Photograph showing cloud from Mount Sanford ..................................................................20 7. Photograph showing cloud from Mount Sanford as viewed looking north from mile 5.5 of the Old Edgerton Highway in Kenny Lake, Alaska .............................................21 8. Photograph showing aerial view of the cooling 2009 lava dome at Redoubt Volcano ...23 9. Photograph showing geologist Steve Anderson (circled) approaches the toe of the Redoubt lava dome ..............................................................................................................24 10. Photograph showing oblique aerial view of Redoubt Volcano ...........................................24 11. Photograph showing aerial view of the northwestern flank of Fourpeaked ....................25 12. MODIS Aqua 1 km true color satellite image showing resuspended volcanic ash cloud (arrow) generated from high winds scouring exposed ash on the Pacific side of the Katmai volcanic range ...........................................................................................27 13. The Becharof swarm is the largest earthquake swarm since the Ugashik-Peulik seismograph network was installed in 1994 ..........................................................................29 14. Spectrogram for Aniakchak seismic stations on August 7, 2010 .......................................31 15. Plots of located events per month at Westdahl Volcano from 2002 through 2010...........34 16. Photograph showing oblique aerial view of the summit of Makushin Volcano ...............35 17. Cropped 15-m resolution ASTER visible/near infrared image showing recent debris flow and ash fall deposits on Cleveland Volcano......................................................36
Recommended publications
  • Wilderness Visitors and Recreation Impacts: Baseline Data Available for Twentieth Century Conditions
    United States Department of Agriculture Wilderness Visitors and Forest Service Recreation Impacts: Baseline Rocky Mountain Research Station Data Available for Twentieth General Technical Report RMRS-GTR-117 Century Conditions September 2003 David N. Cole Vita Wright Abstract __________________________________________ Cole, David N.; Wright, Vita. 2003. Wilderness visitors and recreation impacts: baseline data available for twentieth century conditions. Gen. Tech. Rep. RMRS-GTR-117. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 52 p. This report provides an assessment and compilation of recreation-related monitoring data sources across the National Wilderness Preservation System (NWPS). Telephone interviews with managers of all units of the NWPS and a literature search were conducted to locate studies that provide campsite impact data, trail impact data, and information about visitor characteristics. Of the 628 wildernesses that comprised the NWPS in January 2000, 51 percent had baseline campsite data, 9 percent had trail condition data and 24 percent had data on visitor characteristics. Wildernesses managed by the Forest Service and National Park Service were much more likely to have data than wildernesses managed by the Bureau of Land Management and Fish and Wildlife Service. Both unpublished data collected by the management agencies and data published in reports are included. Extensive appendices provide detailed information about available data for every study that we located. These have been organized by wilderness so that it is easy to locate all the information available for each wilderness in the NWPS. Keywords: campsite condition, monitoring, National Wilderness Preservation System, trail condition, visitor characteristics The Authors _______________________________________ David N.
    [Show full text]
  • Moüjmtaiim Operations
    L f\f¿ áfó b^i,. ‘<& t¿ ytn) ¿L0d àw 1 /1 ^ / / /This publication contains copyright material. *FM 90-6 FieW Manual HEADQUARTERS No We DEPARTMENT OF THE ARMY Washington, DC, 30 June 1980 MOÜJMTAIIM OPERATIONS PREFACE he purpose of this rUanual is to describe how US Army forces fight in mountain regions. Conditions will be encountered in mountains that have a significant effect on. military operations. Mountain operations require, among other things^ special equipment, special training and acclimatization, and a high decree of self-discipline if operations are to succeed. Mountains of military significance are generally characterized by rugged compartmented terrain witn\steep slopes and few natural or manmade lines of communication. Weather in these mountains is seasonal and reaches across the entireSspectrum from extreme cold, with ice and snow in most regions during me winter, to extreme heat in some regions during the summer. AlthoughNthese extremes of weather are important planning considerations, the variability of weather over a short period of time—and from locality to locahty within the confines of a small area—also significantly influences tactical operations. Historically, the focal point of mountain operations has been the battle to control the heights. Changes in weaponry and equipment have not altered this fact. In all but the most extreme conditions of terrain and weather, infantry, with its light equipment and mobility, remains the basic maneuver force in the mountains. With proper equipment and training, it is ideally suited for fighting the close-in battfe commonly associated with mountain warfare. Mechanized infantry can\also enter the mountain battle, but it must be prepared to dismount and conduct operations on foot.
    [Show full text]
  • Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist
    STATE OF NEVADA Steve Sisolak, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Bighorn Sheep and Mountain Goat Staff Specialist Pat Jackson, Predator Management Staff Specialist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Sarah Hale Ed Partee Kari Huebner Jason Salisbury Matt Jeffress Kody Menghini Tyler Nall Scott Roberts This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2018-2019 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Journal of Volcanology and Geothermal Research 263 (2013) 22–41 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Chronology of Bezymianny Volcano activity, 1956–2010 Olga A. Girina ⁎ Institute of Volcanology and Seismology, FED, RAS, Petropavlovsk-Kamchatsky, Russia article info abstract Article history: Bezymianny Volcano is one of the most active volcanoes in the world. In 1955, for the first time in history, Received 2 January 2012 Bezymianny started to erupt and after six months produced a catastrophic eruption with a total volume of Accepted 8 May 2013 eruptive products of more than 3 km3. Following explosive eruption, a lava dome began to grow in the Available online 28 May 2013 resulting caldera. Lava dome growth continued intermittently for the next 57 years and continues today. During this extended period of lava dome growth, 44 Vulcanian-type strong explosive eruptions occurred Keywords: between 1965 and 2012.
    [Show full text]
  • Simushir (January 15, 2009) and Samoa (September 30, 2009) Tsunami Recording in the Area of South Kuril Islands
    Geophysical Research Abstracts Vol. 12, EGU2010-13331-1, 2010 EGU General Assembly 2010 © Author(s) 2010 Simushir (January 15, 2009) and Samoa (September 30, 2009) tsunami recording in the area of South Kuril Islands Georgy Shevchenko (1), Anton Chernov (1), Peter Kovalev (1), Tatyana Ivelskaya (2), Artem Loskutov (1), and Alexander Shishkin (1) (1) Institute of Marine Geology and Geophysics, Russian Academy of Sciences. Yuzhno-Sakhalinsk, Russia, (2) Sakhalin Tsunami Warning Center, Federal Service of Russia for Hydrometeorology and Environmental Monitoring, Yuzhno-Sakhalinsk, Russia Institute of Marine Geology & Geophysics (the Far East Branch of Russian Academy of Sciences) carried out long wave measurements in the area of South Kuril Islands with the purpose of tsunami recording closely to the seismic active zone and study long wave spectra variability depending of weather conditions. Bottom pressure gauges were installed in several harbors of Shikotan Island, near Cape Lovtsov (north-eastern end of Kunashir Island), in the Kitoviy Bay (Iturup Island) and near Cape Van-der-Lind (Urup Island). Sakhalin Tsunami Center has a cable telemetry tsunami warning station in the Severo-Kurilsk (Paramushir Island). Two tsunamis - a remote Samoa (September 30) and nearby Simushir tsunami (January 15) were recorded by different gauges in the area of South Kuril Islands and by telemetry station in Severo-Kurilsk. To examine spectral properties of long wave oscillations at each gauge, we calculated power spectral estimation using two different data segments (both 1 day length): the period preceding the tsunami event, we identified as “normal” and selected for analysis of the background signal; the “tsunami period” included tsunami caused oscillations.
    [Show full text]
  • Marine Stewardship Council Iturup Pink & Chum Salmon Fisheries
    Marine Stewardship Council Iturup Pink & Chum Salmon Fisheries Expedited Assessment for the Addition of Purse Seine Gear Public Certification Report November 3, 2017 Evaluation Prepared for J.S.C. Gidrostroy Evaluation Prepared by Mr. Ray Beamesderfer, Team Leader, Principles 1 & 3 Mrs. Jennifer Humberstone, Principle 2 [BLANK] CONTENTS 1 EXECUTIVE SUMMARY ......................................................................................... 5 2 AUTHORSHIP & PEER REVIEWERS ........................................................................... 8 3 DESCRIPTION OF THE FISHERY ................................................................................ 9 3.1 Unit(s) of Certification & Scope of Certification Sought .................................................. 9 3.1.1 UoA and Unit of Certification (UoC) - FINAL...................................................................... 9 3.1.2 Total Allowable Catch (TAC) and Catch Data .................................................................. 10 3.1.3 Scope of Assessment in Relation to Enhanced Fisheries ................................................. 11 3.2 Overview of the Fishery ................................................................................................. 12 3.2.1 Area Description .............................................................................................................. 12 3.2.2 Fishing Method ............................................................................................................... 12 3.2.3 Enhancement .................................................................................................................
    [Show full text]
  • The Mesa Site: Paleoindians Above the Arctic Circle
    U. S. Department of the Interior BLM-Alaska Open File Report 86 Bureau of Land Management BLM/AK/ST-03/001+8100+020 April 2003 Alaska State Office 222 West 7th Avenue Anchorage Alaska 99513 The Mesa Site: Paleoindians above the Arctic Circle Michael Kunz, Michael Bever, Constance Adkins Cover Photo View of Mesa from west with Iteriak Creek in foreground. Photo: Dan Gullickson Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government. Authors Michael Kunz is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Michael Bever is a project supervisor for Pacific Legacy Inc., 3081 Alhambra Drive, Suite 208, Cameron Park, CA 95682. Constance Adkins is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Open File Reports Open File Reports issued by the Bureau of Land Management-Alaska present the results of invento- ries or other investigations on a variety of scientific and technical subjects that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published and distributed in quantity. The reports are available while supplies last from BLM External Affairs, 222 West 7th Avenue #13, Anchorage, Alaska 99513 and from the Juneau Minerals Information Center, 100 Savikko Road, Mayflower Island, Douglas, AK 99824, (907) 364-1553. Copies are also available for inspection at the Alaska Resource Library and Information Service (Anchorage), the USDI Resources Library in Washington, D.
    [Show full text]
  • Volcanic Arc of Kamchatka: a Province with High-␦18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust
    Geochimica et Cosmochimica Acta, Vol. 68, No. 4, pp. 841–865, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2003.07.009 Volcanic arc of Kamchatka: a province with high-␦18O magma sources and large-scale 18O/16O depletion of the upper crust 1, 2 3 1 ILYA N. BINDEMAN, *VERA V. PONOMAREVA, JOHN C. BAILEY, and JOHN W. VALLEY 1Department of Geology and Geophysics, University of Wisconsin, Madison, WI, USA 2Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, Russia 3Geologisk Institut, University of Copenhagen, Copenhagen, Denmark (Received March 20, 2003; accepted in revised form July 16, 2003) Abstract—We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera- forming centers. The ␦18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for ␦18O(magma). Magmatic ␦18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-␦18O basaltic magmas (sampling mantle to lower crustal high-␦18O sources), and low-␦18O silicic volcanism (sampling low-␦18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-␦18O magmas (ϩ4 to 5‰). Most low-␦ 18O magmas are voluminous silicic ignimbrites related to large Ͼ10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas.
    [Show full text]
  • Case Study of Kamchatka Peninsula Rivers)
    Geophysical Research Abstracts Vol. 12, EGU2010-15653, 2010 EGU General Assembly 2010 © Author(s) 2010 Human activities impact on mountain river channels (case study of Kamchatka peninsula rivers) Aleksandra S. Ermakova Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia ([email protected]) Human-induced driving factors along with natural environmental changes greatly impact on fluvial regime of rivers. On mountain and semi-mountain territories these processes are developed in the most complicated manner due to man-made activities diversity throughout river basins. Besides these processes are significantly enhanced because of the disastrous natural processes (like volcanic and mud-flow activity) frequent occurrences in mountainous regions. On of the most striking example on the matter is Kamchatka peninsula which is located at the North-West part of Russian Federation. This paper contributes to the study of human activities impact on fluvial systems in this volcanic mountain region. Human effects on rivers directly alter channel morphology and deformations, dynamics of water and sediment movement, aquatic communities or indirectly affect streams by altering the movement of water and sediment into the channel. In case study of Kamchatka peninsula human activities affect fluvial systems through engineering works including construction of bridges, dams and channel diversions and placer mining. These processes are characterized by spatial heterogeneity because of irregular population distribution. Due to specific natural conditions of the peninsula the most populated areas are the valleys of big rivers (rivers Kamchatka, Avacha, Bistraya (Bolshaya), etc) within piedmont and plain regions. These rivers are characterized by very unstable channels. Both with man-made activities this determines wide range of fluvial system changes.
    [Show full text]
  • USGS Open-File Report 2004-1234
    Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2003 By James P. Dixon1, Scott D. Stihler2, John A. Power3, Guy Tytgat2, Seth C. Moran4, John J. Sánchez2, Stephen R. McNutt2, Steve Estes2, and John Paskievitch3 Open-File Report 2004-1234 2004 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government U.S. Department of the Interior U.S. Geological Survey 1 Alaska Volcano Observatory, U. S. Geological Survey, 903 Koyukuk Drive, Fairbanks, AK 99775-7320 2 Alaska Volcano Observatory, Geophysical Institute, 903 Koyukuk Drive, Fairbanks, AK 99775-7320 3 Alaska Volcano Observatory, U. S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 4 Cascades Volcano Observatory, U. S. Geological Survey, 1300 SE Cardinal Ct., Bldg. 10, Vancouver, WA 99508 2 CONTENTS Introduction...................................................................................................3 Instrumentation .............................................................................................5 Data Acquisition and Reduction ...................................................................8 Velocity Models...........................................................................................10 Seismicity.....................................................................................................11 Summary......................................................................................................14 References....................................................................................................15
    [Show full text]
  • The Magma Plumbing System of Bezymianny Volcano: Insights from a 54 Year Time Series of Trace Element Whole-Rock Geochemistry and Amphibole Compositions
    VOLGEO-05044; No of Pages 14 Journal of Volcanology and Geothermal Research xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores The magma plumbing system of Bezymianny Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions Stephen J. Turner a,⁎, Pavel Izbekov b, Charles Langmuir a a Department of Earth and Planetary Sciences, Harvard University, United States b Geophysical Institute, University of Alaska Fairbanks, United States article info abstract Article history: Samples from 33 individual eruptions of Bezymianny volcano between 1956 and 2010 provide an opportunity Received 12 January 2012 to study in detail the temporal evolution of an arc volcano. Major element and ICP-MS trace element analyses Accepted 21 December 2012 show that the eruptive products shifted progressively from relatively silicic magma in 1956 (~60.4% SiO2)to Available online xxxx more mafic compositions (e.g. 56.8% SiO2 in 2010). Amphibole compositions changed concurrently from low-Al O to high-Al O . Whole rock element-element variation diagrams show tight compositional arrays, Keywords: 2 3 2 3 some with a distinct kink in the late 1970s, which cannot be reproduced by fractionation of a single magma Bezymianny ICPMS along a liquid line of descent. Amphibole thermobarometry indicates amphibole crystallization in two sepa- Trace-element rate reservoirs, one between 200 and 300 MPa, and another between 500 and 750 MPa. Liquid compositions Amphibole calculated from the amphibole analyses show that liquids stored in each reservoir become increasingly mafic Magma-mixing from 1956 to 2010, suggesting that each reservoir received magma inputs from more mafic sources through- out the eruptive cycle.
    [Show full text]
  • Kamchatka Peninsula and Salmon Research with Pro Plus
    YSI Environmental Application Note Kamchatka Peninsula: Where the Waters Run Free and Salmon Thrive In Russia’s Far East lies the 1,250 km (780 mile) Kamchatka The habitat on the Kol is nearly ideal for salmon. The salmon run Peninsula. Situated between the Pacific Ocean and the Sea of includes over seven million fish returning to spawn. The fish fill Okhotsk, Kamchatka is home to Steller’s sea-eagles, brown bears, the river channel so fully that some sections block the view to the World Heritage List volcanoes, and a remarkable amount of Pacific river bottom. The Kol also has the world’s first whole-basin refuge salmon (genus Oncorhynchus) that are being studied, protected, and for the conservation of Pacific salmon - the Kol-Kekhta Regional even filmed for television. Experimental Salmon Reserve. Kamchatka may contain the world’s Research greatest diversity of salmonids including Along the Kol’s north bank is the Kol River chinook, chum, coho, seema, pink and Biostation established for the sole purpose sockeye salmon. Rainbow trout and dolly of serving as a binational research station varden char are also highly abundant. between Russia and the U.S. Researchers Biologists estimate at least 20% of all wild are studying the dynamics of the Kol Pacific salmon originates in Kamchatka. ecosystem and addressing the question of the importance of the salmon to the health The life of a salmon is far from easy as a of the entire river’s ecosystem. fish life goes. Millions of fry, roughly five inches long after a few months of growth, While there is no question to the have to navigate close to a hundred miles All six species of Pacific salmon spawn in the importance of the healthy ecosystem on to the sea.
    [Show full text]