Downloaded from the NCBI Nucleotide Database Map Reads Balls to Contains (Slow); Update Contains = [77] As Has Been Done in Other Studies [13, 79]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of the Effects That a Previously Uncharacterized Secreted Product from Klebsiella Pneumoniae Has on Citrobacter Fr
East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2017 Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms Cody M. Hastings Follow this and additional works at: https://dc.etsu.edu/honors Part of the Bacteria Commons, Bacteriology Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Medical Cell Biology Commons, Medical Microbiology Commons, Microbial Physiology Commons, and the Pathogenic Microbiology Commons Recommended Citation Hastings, Cody M., "Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms" (2017). Undergraduate Honors Theses. Paper 419. https://dc.etsu.edu/ honors/419 This Honors Thesis - Withheld is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms By Cody Hastings An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements -
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
Upper and Lower Case Letters to Be Used
Isolation, characterization and genome sequencing of a soil-borne Citrobacter freundii strain capable of detoxifying trichothecene mycotoxins by Rafiqul Islam A Thesis Presented to The University of Guelph In Partial Fulfilment of Requirements for the Degree of Doctor of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Rafiqul Islam, April, 2012 ABSTRACT ISOLATION, CHARACTERIZATION AND GENOME SEQUENCING OF A SOIL- BORNE CITROBACTER FREUNDII STRAIN CAPABLE OF DETOXIFIYING TRICHOTHECENE MYCOTOXINS Rafiqul Islam Advisors: University of Guelph, 2012 Dr. K. Peter Pauls Dr. Ting Zhou Cereals are frequently contaminated with tricthothecene mycotoxins, like deoxynivalenol (DON, vomitoxin), which are toxic to humans, animals and plants. The goals of the research were to discover and characterize microbes capable of detoxifying DON under aerobic conditions and moderate temperatures. To identify microbes capable of detoxifying DON, five soil samples collected from Southern Ontario crop fields were tested for the ability to convert DON to a de-epoxidized derivative. One soil sample showed DON de-epoxidation activity under aerobic conditions at 22-24°C. To isolate the microbes responsible for DON detoxification (de-epoxidation) activity, the mixed culture was grown with antibiotics at 50ºC for 1.5 h and high concentrations of DON. The treatments resulted in the isolation of a pure DON de-epoxidating bacterial strain, ADS47, and phenotypic and molecular analyses identified the bacterium as Citrobacter freundii. The bacterium was also able to de-epoxidize and/or de-acetylate 10 other food-contaminating trichothecene mycotoxins. A fosmid genomic DNA library of strain ADS47 was prepared in E. coli and screened for DON detoxification activity. However, no library clone was found with DON detoxification activity. -
Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets. -
SELECTION of STRAINS of Beauveria Bassiana and Metarhizium Anisopliae (ASCOMYCOTA: HYPOCREALES) for ENDOPHYTIC COLONIZATION in COCONUT SEEDLINGS
Chilean J. Agric. Anim.Gaviria Sci., et ex al. Agro-Ciencia Strains of B. bassiana(2020) 36(1): y M.3-13. anisopliae in coconut sedlings 3 ISSN 0719-3882 print ISSN 0719-3890 online SELECTION OF STRAINS OF Beauveria bassiana AND Metarhizium anisopliae (ASCOMYCOTA: HYPOCREALES) FOR ENDOPHYTIC COLONIZATION IN COCONUT SEEDLINGS Jackeline Gaviria 1*, Pedro Pablo Parra 2, Alonso Gonzales 3 1 Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Diagonal a la intersección de la Carrera 36A con Calle 23, Palmira, Colombia. 2 Tropical Research & Education Center, University of Florida, Homestead, FL 33031-3314, USA. 3 AGO Consulting, Cali, Colombia. * Corresponding author E-mail: [email protected] ABSTRACT Beauveria bassiana and Metarhizium anisopliae are considered virulent pathogens of the coconut weevil Rhynchophorus palmarum (Linnaeus). The objective of this study was to determine the ability of B. bassiana (Beauveriplant SBb36) and M. anisopliae (JGVM1) to establish an endophytic relationship with coconut Cocos nucifera (Linnaeus) seedlings. Strains were selected based on the mortality of adults of R. palmarum exposed to these fungi. Three methods of inoculation were used to inoculate the seedlings obtained through seed germination: foliar spray, stem injection and drench to the roots. Immersion of seedlings in a conidial suspension was used to inoculate seedlings obtained from tissue culture. Colonization was determined through the re-isolation of the fungi four weeks after inoculation. Beauveriplant SBb36 and JGVM1 colonized endophytically 100% of the seedlings obtained through tissue culture and 91.6% of seedlings obtained from germinated seeds. For plants inoculated by immersion with B. bassiana, the colonization rate in petioles (43%) was higher than in leaves and roots, 14 and 17%, respectively. -
Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup -
Genomic Structural and Transcriptional Variation of Oryctes Rhinoceros Nudivirus (Ornv) in Coconut Rhinoceros Beetle
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.119867; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genomic structural and transcriptional variation of Oryctes rhinoceros nudivirus (OrNV) in Coconut Rhinoceros Beetle Kayvan Etebari1*, Rhys Parry1, Marie Joy B. Beltran2 and Michael J. Furlong1 1- School of Biological Sciences, The University of Queensland, Brisbane, Australia. 2- National Crop Protection Centre, College of Agriculture and Food Science, University of the Philippines Los Baños College, Laguna 4031, the Philippines. * Corresponding Author Kayvan Etebari School of Biological Sciences, Goddard Bldg. (No. 8) The University of Queensland St Lucia QLD 4072, Australia Tel: (+61 7) 3365 7086 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.119867; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Oryctes rhinoceros nudivirus (OrNV) is a large circular double-stranded DNA virus which has been used as a biological control agent to suppress Coconut Rhinoceros Beetle (Oryctes rhinoceros) in Southeast Asia and the Pacific Islands. Recently a new wave of O. rhinoceros incursions in Oceania in previously non-infested areas is thought to be related to the presence of low virulence isolates of OrNV or virus tolerant haplotypes of beetles. -
Efficacy of Native Entomopathogenic Fungus, Isaria Fumosorosea, Against
Kushiyev et al. Egyptian Journal of Biological Pest Control (2018) 28:55 Egyptian Journal of https://doi.org/10.1186/s41938-018-0062-z Biological Pest Control RESEARCH Open Access Efficacy of native entomopathogenic fungus, Isaria fumosorosea, against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae) Rahman Kushiyev, Celal Tuncer, Ismail Erper* , Ismail Oguz Ozdemir and Islam Saruhan Abstract The efficacy of the native entomopathogenic fungus, Isaria fumosorosea TR-78-3, was evaluated against females of the bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae), under laboratory conditions by two different methods as direct and indirect treatments. In the first method, conidial suspensions (1 × 106 and 1 × 108 conidia ml−1) of the fungus were directly applied to the beetles in Petri dishes (2 ml per dish), using a Potter spray tower. In the second method, the same conidial suspensions were applied 8 −1 on a sterile hazelnut branch placed in the Petri dishes. The LT50 and LT90 values of 1 × 10 conidia ml were 4.78 and 5.94/days, for A. dispar in the direct application method, while they were 4.76 and 6.49/days in the branch application 8 −1 method. Similarly, LT50 and LT90 values of 1 × 10 conidia ml for X. germanus were 4.18 and 5.62/days, and 5.11 and 7.89/days, for the direct and branch application methods, respectively. The efficiency of 1 × 106 conidia ml−1 was lower than that of 1 × 108 against the beetles in both application methods. -
Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet). -
Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates. -
Interaction Between Metarhizium Anisopliae and Its Host, the Subterranean Termite Coptotermes Curvignathus During the Infection Process
biology Article Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process Samsuddin Ahmad Syazwan 1,2 , Shiou Yih Lee 1, Ahmad Said Sajap 1, Wei Hong Lau 3, Dzolkhifli Omar 3 and Rozi Mohamed 1,* 1 Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (S.A.S.); [email protected] (S.Y.L.); [email protected] (A.S.S.) 2 Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Malaysia 3 Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (W.H.L.); zolkifl[email protected] (D.O.) * Correspondence: [email protected]; Tel.: +60-397-697-183 Simple Summary: The use of Metarhizium anisopliae as a biological control of insect pests has been experimented in the laboratory as well as in field trials. This includes against the termite Coptotermes curvignathus, however the results have varying degrees of success. One reason could be due to the lack of detailed knowledge on the molecular pathogenesis of M. anisopliae. In the current study, the conidial suspension of M. anisopliae isolate PR1 was first inoculated on the C. curvignathus, after which the pathogenesis was examined using two different approaches: electron microscopy and protein expression. At the initiation stage, the progression observed and documented including Citation: Syazwan, S.A.; Lee, S.Y.; adhesion, germination, and penetration of the fungus on the cuticle within 24 h after inoculation. Sajap, A.S.; Lau, W.H.; Omar, D.; Later, this was followed by colonization and spreading of the fungus at the cellular level. -
The Serology of Citrobacter Koseri, Levinea Malonatica, and Levinea Amalonatica
THE SEROLOGY OF CITROBACTER KOSERI, LEVINEA MALONATICA, AND LEVINEA AMALONATICA R. J. GROSSAND B. ROWE Salmonella and Shigella Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, London NW9 SHT FREDERIKSEN(1970) described a collection of 30 strains belonging to the genus Citrobacter, but differing in several respects from C.freundii. Adonitol was fermented, malonate was utilised, indole was produced, and there was no growth in Moeller’s potassium cyanide medium (KCN). Hydrogen sulphide (H2S) production in ferric chloride gelatin was weak. Frederiksen considered that these strains should be regarded as a new species, and proposed the name C. koseri. Booth and McDonald (1971) examined 40 biochemically similar strains and proposed that they be regarded as a new species of Citrobacter. Young et al. (1971) studied 108 strains and proposed the establishment of a new genus, Levinea, having two species, L. malonatica and L. amalonatica. The biochemical reactions described for L. malonatica were similar to those of C. koseri, but H2S production was not detected in triple sugar iron agar (TSI agar). The reactions of L. amalonatica differed in that adonitol was not fermented, malonate was not utilised, and growth was always seen in KCN. Limited serological studies showed considerable antigenic sharing within the proposed species L. malonatica. Gross, Rowe and Easton (1973) studied four cases of neonatal meningitis in a premature-baby unit; C. koseri was the causative organism in all, but serological studies showed that two distinct serotypes were involved. We now report a biochemical and serological study of representative strains from all these authors, and a previously undescribed strain.