The Hows and Whys of Wing Transparency in Mimetic Lepidoptera

Total Page:16

File Type:pdf, Size:1020Kb

The Hows and Whys of Wing Transparency in Mimetic Lepidoptera The hows and whys of wing transparency in mimetic Lepidoptera Charline2018 © II PinnaJoint Congress, onAaron Evolutionary BiologyPomerantz 2018. All rights reserved, Serge - Any reproduction Berthier, even in part is prohibited.Christine Andraud, Doris Gomez, Nipam Patel and Marianne Elias II Joint Congress on Evolutionary Biology 19th August 2018 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Evolution of transparency among Insects ODONATA ORTHOPTERA HEMIPTERA 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproductionHYMENOPTERA even in part is prohibited. DIPTERA 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 1 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Evolution of transparency among Insects ODONATA ORTHOPTERA HEMIPTERA © X. Léoty 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproductionHYMENOPTERA even in part is prohibited. LEPIDOPTERA DIPTERA 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 1 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Evolution of transparency among Insects ODONATA ORTHOPTERA HEMIPTERA © X. Léoty 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproductionHYMENOPTERA even in part is prohibited. LEPIDOPTERA DIPTERA 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 1 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Evolution of transparency among Insects PIERIDAE NYMPHALIDAE RIODINIDAE LEPIDOPTERA SPHINGIDAE SATURNIIDAE 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. GEOMETRIDAE EREBIDAE NOCTUIDAE 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 2 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Aposematism 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 3 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Aposematism 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 3 2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Material Transparency Transparency Transparency Introduction Conclusion & Methods & Structures & Development & Mimicry Aposematism 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. = Yuck! 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved
Recommended publications
  • A Revision of the New Genus Amiga Nakahara, Willmott & Espeland, Gen. N., Described for Papilio Arnaca Fabricius, 1776
    A peer-reviewed open-access journal ZooKeys 821: 85–152 (2019) A revision of the new genus Amiga 85 doi: 10.3897/zookeys.821.31782 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A revision of the new genus Amiga Nakahara, Willmott & Espeland, gen. n., described for Papilio arnaca Fabricius, 1776 (Lepidoptera, Nymphalidae, Satyrinae) Shinichi Nakahara1,2, Gerardo Lamas2, Stephanie Tyler1,3, Mario Alejandro Marín4, Blanca Huertas5, Keith R. Willmott1, Olaf H. H. Mielke6, Marianne Espeland7 1 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Flo- rida, Gainesville, Florida 32611 USA 2 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru 3 School of Architecture, Rice University, 6100 Main Street, Houston, Texas 77005 USA 4 Departamento de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. 13083-970 Campinas, São Paulo, Brazil 5 Life Sciences Department, Natural Hi- story Museum, Cromwell Road, London SW7 5BD, UK 6 Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa postal 19020, 81.531 Curitiba, Paraná, Brazil 7 Arthropoda Department, Zoological Research Museum Alexander Koenig, Adenauer Allee 160, 53113 Bonn, Germany Corresponding author: Shinichi Nakahara ([email protected]) Academic editor: T. Simonsen | Received 20 November 2018 | Accepted 3 January 2019 | Published 31 January 2019 http://zoobank.org/ECFCCAF6-8D99-457B-B9F8-2443089D0182 Citation: Nakahara S, Lamas G, Tyler S, Marín MA, Huertas B, Willmott KR, Mielke OHH, Espeland M (2019) A revision of the new genus Amiga Nakahara, Willmott & Espeland gen. n., described for Papilio arnaca Fabricius, 1776 (Lepidoptera, Nymphalidae, Satyrinae).
    [Show full text]
  • (Lepidoptera: Pieridae) Butterflies Are Palatable to Avian Predators
    insects Article Evaluating an Alleged Mimic of the Monarch Butterfly: Neophasia (Lepidoptera: Pieridae) Butterflies are Palatable to Avian Predators Dale A. Halbritter 1,2,* , Johnalyn M. Gordon 3, Kandy L. Keacher 4, Michael L. Avery 4,5 and Jaret C. Daniels 2,6 1 USDA-ARS Invasive Plant Research Laboratory, 3225 College Ave, Fort Lauderdale, FL 33314, USA 2 Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Steinmetz Hall, Gainesville, FL 32611, USA; jdaniels@flmnh.ufl.edu 3 Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL 33314, USA; johnalynmgordon@ufl.edu 4 Florida Field Station, USDA-APHIS National Wildlife Research Center, 2820 E University Ave, Gainesville, FL 32641, USA; [email protected] (K.L.K.); [email protected] (M.L.A.) 5 2906 NW 14th Pl., Gainesville, FL 32605, USA 6 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 3215 Hull Road, Gainesville, FL 32611, USA * Correspondence: dhalb001@ufl.edu or [email protected]; Tel.: +1-661-406-8932 Received: 28 September 2018; Accepted: 22 October 2018; Published: 29 October 2018 Abstract: Some taxa have adopted the strategy of mimicry to protect themselves from predation. Butterflies are some of the best representatives used to study mimicry, with the monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae) a well-known model. We are the first to empirically investigate a proposed mimic of the monarch butterfly: Neophasia terlooii, the Mexican pine white butterfly (Lepidoptera: Pieridae). We used captive birds to assess the palatability of N. terlooii and its sister species, N.
    [Show full text]
  • Publications Files/2016 Talavera & Vila Cardui.Pdf
    Biological Journal of the Linnean Society, 2016, , –. With 3 figures. Discovery of mass migration and breeding of the painted lady butterfly Vanessa cardui in the Sub-Sahara: the Europe–Africa migration revisited GERARD TALAVERA1,2* and ROGER VILA1 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marıtim de la Barceloneta, 37, E-08003, Barcelona, Spain 2Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA Received 24 May 2016; revised 8 July 2016; accepted for publication 9 July 2016 Migratory behaviour has repeatedly evolved across taxa as an adaptation to heterogeneity in space and time. However, insect migration is still poorly understood, partly because of the lack of field data. The painted lady butterfly Vanessa cardui undertakes a long-distance annual migration between Europe and Africa. While spring flights from the Maghreb to Europe are well characterized, it is not known how far the European autumn migrants travel into Africa and whether they massively cross the Sahara Desert. We conducted fieldwork in four African countries (Chad, Benin, Senegal, and Ethiopia) in autumn and documented southward migrants in central Chad and abundant breeding sites across the tropical savannah as far south as the Niger River in the west and the Ethiopian highlands in the east. Given directionality and timing, these migrants probably originated in Europe and crossed the Mediterranean, the Sahara and the Sahel, a hypothesis that implies the longest (>4000 km) migratory flight recorded for a butterfly in a single generation. In the light of the new evidence, we revise the prevailing spatiotemporal model for the annual migration of V.
    [Show full text]
  • Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing
    Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing by Laura E. Hall A thesis submitted to the Faculty of Graduate Studies and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario, Canada © 2014 Laura E. Hall i Abstract Several Nymphalidae butterflies possess a sensory structure called the Vogel’s organ (VO) that is proposed to function in hearing. However, little is known about the VO’s structure, taxonomic distribution or function. My first research objective was to examine VO morphology and its accessory structures across taxa. Criteria were established to categorize development levels of butterfly VOs and tholi. I observed that enlarged forewing veins are associated with the VOs of several species within two subfamilies of Nymphalidae. Further, I discovered a putative light/temperature-sensitive organ associated with the VOs of several Biblidinae species. The second objective was to test the hypothesis that insect ears function to detect bird flight sounds for predator avoidance. Neurophysiological recordings collected from moth ears show a clear response to flight sounds and chirps from a live bird in the laboratory. Finally, a portable electrophysiology rig was developed to further test this hypothesis in future field studies. ii Acknowledgements First and foremost I would like to thank David Hall who spent endless hours listening to my musings and ramblings regarding butterfly ears, sharing in the joy of my discoveries, and comforting me in times of frustration. Without him, this thesis would not have been possible. I thank Dr.
    [Show full text]
  • Nymphalidae): Conserved Ancestral Tropical Niche but Different Continental Histories
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045575; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The latitudinal diversity gradient in brush-footed butterflies (Nymphalidae): conserved ancestral tropical niche but different continental histories Authors: Nicolas Chazot1, Fabien L. Condamine2, Gytis Dudas3,4, Carlos Peña5, Pavel Matos-Maraví6, Andre V. L. Freitas7, Keith R. Willmott8, Marianne Elias9, Andrew Warren8, Kwaku Aduse- Poku10, David J. Lohman11,12, Carla M. Penz13, Phil DeVries13, Ullasa Kodandaramaiah14, Zdenek F. Fric6, Soren Nylin15, Chris Müller16, Christopher Wheat15, Akito Y. Kawahara8, Karina L. Silva-Brandão17, Gerardo Lamas5, Anna Zubek18, Elena Ortiz-Acevedo8,19, Roger Vila20, Richard I Vane-Wright21,22, Sean P. Mullen23, Chris D. Jiggins24,25, Irena Slamova6, Niklas Wahlberg1. 1Systematic Biology Group, Department of Biology, Lund University, Lund, Sweden. 2CNRS, UMR 5554 Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugene Bataillon, 34095 Montpellier, France. 3Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 4Gothenburg Global Biodiversity Centre, Gothenburg, Sweden. 5Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru. 6Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic. 7Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil. 8Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
    [Show full text]
  • The Arthropoda Fauna of Corvo Island (Azores): New Records and Updated List of Species
    VIERAEA Vol. 31 145-156 Santa Cruz de Tenerife, diciembre 2003 ISSN 0210-945X The Arthropoda fauna of Corvo island (Azores): new records and updated list of species VIRGÍLIO VIEIRA*, PAULO A. V. BORGES**, OLE KARSHOLT*** & JÖRG WUNDERLICH**** *Universidade dos Açores, Departamento de Biologia, CIRN, Rua da Mãe de Deus, PT - 9501-801 Ponta Delgada, Açores, Portugal [email protected] **Universidade dos Açores, Dep. de Ciências Agrárias, Terra-Chã, 9701 – 851 Angra do Heroísmo, Açores, Portugal [email protected] ***Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark [email protected] ****Jörg Wunderlich, Hindenburgstr. 94, D-75334 Straubenhardt, Germany [email protected] VIEIRA, V., P.A.V. BORGES, O. KARSHOLT & J. WUNDERLICH (2003). La fauna de artrópodos de la isla de Corvo (Azores): lista actualizada de las especies incluyendo nuevos registros. VIERAEA 31: 145-156. RESUMEN: Se exponen los resultados de artrópodos (phylum Arthropoda) colectados y observados en la isla de Corvo, archipiélago de las Azores, durante los días 26.VII.1999 y 11-13.IX.2002. Con la inclusión de la literatura disponible, se citan 175 especies y subespecies (11.43% son endemismos comunes a las otras islas de las Azores), repartidas per 16 órdenes y 83 familias, de las que 32 son nuevas citas para la isla de Corvo. Phaneroptera nana Fieber (Orthoptera: Tettigonidae) se cita por primera vez para las Azores. Palabras clave: Arthropoda, isla de Corvo, Azores. ABSTRACT: The arthropod fauna (phylum Arthropoda) from the island of Corvo, Azores archipelago, was surveyed during four sampling days (26 July 1999; 11-13 September 2002).
    [Show full text]
  • Immature Stages of the Neotropical Butterfly, Dynamine Agacles Agacles
    Immature Stages of the Neotropical Butterfly, Dynamine agacles agacles Author(s): Luis Anderson Ribeiro Leite, Mirna Martins Casagrande, Olaf Hermann Hendrik Mielke and André Victor Lucci Freitas Source: Journal of Insect Science, 12(37):1-12. 2012. Published By: University of Wisconsin Library DOI: http://dx.doi.org/10.1673/031.012.3701 URL: http://www.bioone.org/doi/full/10.1673/031.012.3701 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science: Vol. 12 | Article 37 Leite et al. Immature stages of the Neotropical butterfly, Dynamine agacles agacles Luis Anderson Ribeiro Leite1a*, Mirna Martins Casagrande1b, Olaf Hermann Hendrik Mielke1c, and André Victor Lucci Freitas2d 1Departamento de Zoologia; Setor de Ciências Biológicas; Universidade Federal do Paraná; C. P.: 19020; 81531- 980, Curitiba, Paraná, Brazil 2Departamento de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas; C.
    [Show full text]
  • Vila Et Al 10 ESM 5
    Electronic supplementary material Phylogeny and paleoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World Roger Vila, Charles D. Bell, Richard Macniven, Benjamin Goldman-Huertas, Richard H. Ree, Charles R. Marshall, Zsolt Bálint, Kurt Johnson, Dubi Benyamini, Naomi E. Pierce Contents Supplementary Methods. 2 Taxon sampling. 2 DNA extraction and sequencing . 2 Sequence alignments and characteristics. 3 Phylogenetic analyses. 4 Ancestral area reconstruction . 5 Ancestral hostplant reconstruction. 6 Ancestral temperature tolerance reconstruction . 6 Divergence time estimation . 7 Supplementary Results and Discussion. .8 Phylogenetic analyses. 8 Ancestral area reconstruction . 9 Ancestral hostplant reconstruction. 10 Ancestral temperature tolerance reconstruction . 10 Supplementary systematic discussion. 10 Interesting Nabokov citations. 13 List of Figures Supplementary Figure S1. Biogeographical model. 14 Supplementary Figure S2. Bayesian cladogram of the Polyommatini tribe. 15 Supplementary Figure S3. Polyommatini tribe node numbers. 16 Supplementary Figure S4. Polyommatus section node numbers . 17 Supplementary Figure S5. DIVA ancestral area reconstruction . 18 Supplementary Figure S6. Lagrange ancestral area reconstruction. 19 Supplementary Figure S7. Ancestral hostplant reconstruction . 20 Supplementary Figure S8. Ancestral and current thermal range tolerances. 21 List of Tables Supplementary Table S1. Samples used in this study . 22 Supplementary Table S2. Primer sequences . 25 Supplementary
    [Show full text]
  • A Systematic Review of Arthropod Community Diversity in Association with Invasive Plants
    A peer-reviewed open-access journal NeoBiota A16: systematic 81–102 (2013) review of arthropod community diversity in association with invasive plants 81 doi: 10.3897/neobiota.16.4190 REVIEW ARTICLE NeoBiota www.pensoft.net/journals/neobiota Advancing research on alien species and biological invasions A systematic review of arthropod community diversity in association with invasive plants Ryan D. Spafford1, Christopher J. Lortie1, Bradley J. Butterfield2 1 Department of Biology, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada 2 Merriam-Powell Center for Environmental Research and Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, United States Corresponding author: Ryan D. Spafford ([email protected]) Academic editor: A. Roques | Received 25 October 2012 | Accepted 29 January 2013 | Published 8 April 2013 Citation: Spafford RD, Lortie CJ, Butterfield BJ (2013) A systematic review of arthropod community diversity in association with invasive plants. NeoBiota 16: 81–102. doi: 10.3897/neobiota.16.4190 Abstract Invasive plants represent a significant financial burden for land managers and also have the potential to severely degrade ecosystems. Arthropods interact strongly with plants, relying on them for food, shelter, and as nurseries for their young. For these reasons, the impacts of plant invasions are likely strongly reflected by arthropod community dynamics including diversity and abundances. A systematic review was conducted to ascertain the state of the literature with respect to plant invaders and their associated arthropod communities. We found that the majority of studies did not biogeographically contrast arthro- pod community dynamics from both the home and away ranges and that studies were typically narrow in scope, focusing only on the herbivore feeding guild, rather than assessing two or more trophic levels.
    [Show full text]
  • The Systematics of Polyommatus Blue Butterflies (Lepi
    Cladistics Cladistics (2012) 1–27 10.1111/j.1096-0031.2012.00421.x Establishing criteria for higher-level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae) Gerard Talaveraa,b, Vladimir A. Lukhtanovc,d, Naomi E. Piercee and Roger Vilaa,* aInstitut de Biologia Evolutiva (CSIC-UPF), Passeig Marı´tim de la Barceloneta, 37, 08003 Barcelona, Spain; bDepartament de Gene`tica i Microbiologia, Universitat Auto`noma de Barcelona, 08193 Bellaterra (Barcelona), Spain; cDepartment of Karyosystematics, Zoological Institute of Russian Academy of Science, Universitetskaya nab. 1, 199034 St Petersburg, Russia; dDepartment of Entomology, St Petersburg State University, Universitetskaya nab. 7 ⁄ 9, 199034 St Petersburg, Russia; eDepartment of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Accepted 11 June 2012 Abstract Most taxonomists agree on the need to adapt current classifications to recognize monophyletic units. However, delineations between higher taxonomic units can be based on the relative ages of different lineages and ⁄or the level of morphological differentiation. In this paper, we address these issues in considering the species-rich Polyommatus section, a group of butterflies whose taxonomy has been highly controversial. We propose a taxonomy-friendly, flexible temporal scheme for higher-level classification. Using molecular data from nine markers (6666 bp) for 104 representatives of the Polyommatus section, representing all but two of the 81 described genera ⁄ subgenera and five outgroups, we obtained a complete and well resolved phylogeny for this clade. We use this to revise the systematics of the Polyommatus blues, and to define criteria that best accommodate the described genera within a phylogenetic framework.
    [Show full text]
  • S1 – Details of Literature Search Methodology on Carrion-Baited Butterfly Trapping Studies, and Summary Results Table of the Search
    S1 – Details of literature search methodology on carrion-baited butterfly trapping studies, and summary results table of the search. We carried out a literature review to assess the prevalence of butterfly studies that include carrion- baited traps in their methodology on the ISI Web of Science database (http://wok.mimas.ac.uk/). Search terms focused on tropical butterfly studies, and those that assessed anthropogenic disturbance, habitat loss and habitat change. The timeframe of publishing date was not specified so that papers from all available years would be included. Studies were located using keywords: tropical, Neotropical, butterflies, Lepidoptera, Papilionoidea, disturbance, habitat change, habitat loss, deforestation, regeneration, and carrion. In most cases * was used in conjunction with the search term to include all variations of the word. Only studies that sampled adult butterflies were included, and studies that focused on a single genus or species were not included. Only three studies were located that included carrion as a bait to sample tropical butterflies in areas of anthropogenic disturbance, one of which was carried out at the same site that this study is located (Whitworth et al. 2016b). Comparison between … Survey period Vertical trap Bait type Study location Reference height Forest interior patches, forest edges and Dry season Understorey only Fermented Atlantic Forest, Filgueiras et al., small forest fragments banana with sugar Brazil 2016 cane juice 3 forest areas with different reforestation Hot season Not stated
    [Show full text]
  • Two Consecutive Wolbachia‐Mediated Mitochondrial Introgressions Obscure Taxonomy in Palearctic Swallowtail Butterflies (Lepidoptera, Papilionidae)
    Received: 17 January 2019 | Revised: 17 April 2019 | Accepted: 19 April 2019 DOI: 10.1111/zsc.12355 ORIGINAL ARTICLE Two consecutive Wolbachia‐mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae) Aurélien Gaunet1 | Vlad Dincă2 | Leonardo Dapporto3 | Sergio Montagud4 | Raluca Vodă5 | Sämi Schär1 | Arnaud Badiane6,7 | Enrique Font7 | Roger Vila1 1Institute of Evolutionary Biology (CSIC- UPF), Barcelona, Spain Abstract 2Department of Ecology and Swallowtail butterflies (Papilionidae) are among the most spectacular and well‐ Genetics, University of Oulu, Oulu, Finland known Lepidoptera in the European fauna, but their systematics is not fully elu- 3 Dipartimento di Biologia, Università degli cidated. A notable case is that of Iphiclides feisthamelii which, after more than Studi di Firenze, Florence, Italy 4 180 years since description, still has a debated status, being often considered as a Museu [UV] Història Natural, Universitat Iphiclides podalirius de València, Burjassot (Valencia), Spain subspecies of . To elucidate the relationship between the two 5Dipartimento di Scienze della Vita e taxa and the evolutionary processes that led to their separation, we combine mi- Biologia dei Sistemi, Università degli Studi tochondrial and nuclear DNA (mtDNA and nDNA) data, Wolbachia screening, di Torino, Turin, Italy genitalia morphology and wing UV reflectance. Our results show that the two taxa 6Department of Biological clearly differ in male and female genital morphology, male wing UV reflectance Sciences, Macquarie University, Sydney, New South Wales, Australia and nDNA. Two Wolbachia strains were found to widely infect the studied sam- 7Ethology Lab, Cavanilles Institute ples, apparently explaining the phylogeographic pattern displayed by mtDNA. The of Biodiversity and Evolutionary available data point towards a historical Wolbachia infection that spread from I.
    [Show full text]