Plants of the Month
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OSU Gardening with Oregon Native Plants
GARDENING WITH OREGON NATIVE PLANTS WEST OF THE CASCADES EC 1577 • Reprinted March 2008 CONTENTS Benefi ts of growing native plants .......................................................................................................................1 Plant selection ....................................................................................................................................................2 Establishment and care ......................................................................................................................................3 Plant combinations ............................................................................................................................................5 Resources ............................................................................................................................................................5 Recommended native plants for home gardens in western Oregon .................................................................8 Trees ...........................................................................................................................................................9 Shrubs ......................................................................................................................................................12 Groundcovers ...........................................................................................................................................19 Herbaceous perennials and ferns ............................................................................................................21 -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Phylogenetic Inferences in Prunus (Rosaceae) Using Chloroplast Ndhf and Nuclear Ribosomal ITS Sequences 1Jun WEN* 2Scott T
Journal of Systematics and Evolution 46 (3): 322–332 (2008) doi: 10.3724/SP.J.1002.2008.08050 (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences 1Jun WEN* 2Scott T. BERGGREN 3Chung-Hee LEE 4Stefanie ICKERT-BOND 5Ting-Shuang YI 6Ki-Oug YOO 7Lei XIE 8Joey SHAW 9Dan POTTER 1(Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA) 2(Department of Biology, Colorado State University, Fort Collins, CO 80523, USA) 3(Korean National Arboretum, 51-7 Jikdongni Soheur-eup Pocheon-si Gyeonggi-do, 487-821, Korea) 4(UA Museum of the North and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA) 5(Key Laboratory of Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China) 6(Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea) 7(State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) 8(Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403-2598, USA) 9(Department of Plant Sciences, MS 2, University of California, Davis, CA 95616, USA) Abstract Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to recon- struct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus. -
Portulacaceae – Purslane Family
PORTULACACEAE – PURSLANE FAMILY Plant: herbs, rarely shrubs Stem: usually fleshy or succulent Root: Leaves: simple, entire, opposite or alternate, or in basal rosettes; stipules mostly absent, may be represented by fleshy structures or modified into hairs Flowers: perfect; 2 sepals usually, rarely up to 9; 2-4-6 or > petals, united or separate at base; stamens usually opposite each petal, or more numerous in a bundle; ovary mostly superior or partially inferior, few to many ovules Fruit: capsule Other: mostly in southern hemisphere; Dicotyledons Group Genera: 30+ genera; locally Claytonia (spring-beauty), Montia, Portulaca, Talinum WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the 2 or more sepals, 4-6 (rarely more, often Portulacaceae (Purslane Family) 5) free petals, leaves simple and entire, no stipules; stem often succulent Examples of common genera Shoreline Seapurslane [Virginia] Spring-Beauty Sesuvium portulacastrum (L.) L. Claytonia virginica L. var. virginica Purslane [Little Hog Weed] Portulaca oleracea L. (Introduced) Largeflower Fameflower [Rock Pink] Phemeranthus calycinus (Engelm.) Kiger Kiss Me Quick Portulaca pilosa L. PORTULACACEAE – PURSLANE FAMILY Ozark [Wide-Leafed] Spring-Beauty; Claytonia ozarkensis Miller & Chambers [Virginia] Spring-Beauty; Claytonia virginica L. var. virginica Largeflower Fameflower [Rock Pink]; Phemeranthus calycinus (Engelm.) Kiger Purslane [Little Hog Weed] Portulaca oleracea L. (Introduced) Kiss Me Quick; Portulaca pilosa -
Claytonia Virginica & Claytonia Caroliniana: Spring Beauty
Zachariah Wahid Ethnobotany (EEB 455) June 10, 2014 Instructors: Scott Herron and Adam Schubel Claytonia virginica & Claytonia caroliniana: Spring beauty Meeautikwaeaugpineeg Species Productivity Schedule Zachariah Wahid Ethnobotany (EEB 455) June 10, 2014 Instructors: Scott Herron and Adam Schubel Family: Montiaceae (formerly: Portulaceae) Latin Name: Claytonia virginica L., Claytonia caroliniana L. Common Names: Spring beauty, Fairy spud Anishinaabe Name: Meeautikwaeaugpineeg Taxonomy The genus Claytonia was named aFter John Clayton (1685-1773), an American botanist, physician, and clerk to the County Court of Gloucester County, VA where the species name virginica, meaning “oF Virginia”, comes From (Black & JudZiewicz, 2009; Couplan, 1998). C. caroliniana was similarly named aFter the Carolinas. The diFFerence in scientiFic nomenclature between these species reFlects a diFFerence in distributions and slight variation in morphology (C. virginica is sometimes referred to as narrow-leaved spring beauty). The Anishinaabemowin word For spring beauty is Meeautikwaeaugpineeg and it can be applied to both species since they are functionally the same For humans (Meeker & Elias, 1993). The Anishinaabemowin name may reFer to the plant’s preferred forest habitat and to the underground organs From which spring beauty’s most common use is derived. However, very few print or online sources (if any) exist that provide a literal translation of the word into English. The English common name, “Fairy spud”, was coined by a plant Forager named Euell Gibbons and has been used to describe the plant’s underground storage organ (Edsall, 1985; Thayer, 2006). Other names For the corm include “Indian potato”, “wild potato”, and “mountain potato” (Kuhnlein & Turner, 1991). The genus Claytonia used to be classiFied as a member oF the Family Portulaceae but was recently reclassiFied as a member oF the Family Montiaceae. -
Oemleria Cerasiformis (Torr
O&P genera Layout (a) 1/31/08 11:28 AM Page 749 Rosaceae—Rose family O Oemleria cerasiformis (Torr. & Gray ex Hook. & Arn.) Landon osoberry William I. Stein Dr. Stein is a forest ecologist emeritus at the USDA Forest Service’s Pacific Northwest Research Station, Corvallis, Oregon Other common names. Indian plum, squaw-plum, Ripening osoberry fruits are highly attractive to birds Indian peach. such as cedar waxwings (Bombycilla cedrorum), and ripe Growth habit, occurrence, and uses. The genus fruits are readily eaten by both birds and mammals (Dayton Oemleria contains a single species—osoberry, Oemleria 1931; Dimock and Stein 1974). The fruits were eaten in cerasiformis (Torr. & Gray ex Hook. & Arn.) Landon. small quantities fresh, cooked, or dried by Native American Osoberry was described originally as Nuttalia cerasiformis, peoples in the Pacific Northwest; twigs and bark were used then identified for decades as Osmaronia cerasiformis (Hunt for several medicinal purposes (Gunther 1945; Mitchem 1970) until an earlier legitimate name was rediscovered 1993; Pojar and Mackinnon 1994). Flavor of the fruits about 30 years ago (Landon 1975). apparently varies by locality, from sweet to bitter (Dayton Osoberry is a deciduous, generally multiple-stemmed 1931). Its attractiveness as an ornamental includes flushing shrub that is 1.5 to 5 m or taller and sometimes develops of light green leaves and white flowers much earlier than into a small tree (Abrams 1944; Hitchcock and others 1961). other plant associates, handsome variegated appearance as A plant may have 10 or more stems and can produce new scattered leaves throughout the crown turn yellow in early stems throughout its lifetime. -
A Reevaluation of the Ozark Endemic Claytonia Ozarkensis (Montiaceae)
Yatskievych, G., R.J. Evans, and C.T. Witsell. 2013. A reevaluation of the Ozark endemic Claytonia ozarkensis (Montiaceae). Phytoneuron 2013-50: 1–11. Published 25 July 2013. ISSN 2153 733X A REEVALUATION OF THE OZARK ENDEMIC CLAYTONIA OZARKENSIS (MONTIACEAE) GEORGE YATSKIEVYCH Missouri Botanical Garden P.O. Box 299 St. Louis, Missouri 63166 [email protected] RANDALL J. EVANS Missouri Department of Conservation 551 Joe Jones Blvd. West Plains, Missouri 65775 [email protected] C. THEO WITSELL Arkansas Natural Heritage Commission 1500 Tower Building, 323 Center St. Little Rock, Arkansas 72201 [email protected] ABSTRACT Claytonia ozarkensis was described in 2006 as a near-endemic to the Ozarks, based on a small number of specimens from Arkansas, Missouri, and Oklahoma. Field work at voucher sites in Missouri and Oklahoma failed to relocate populations, which led to more detailed morphological study of specimens purporting to document the species. Several of these specimens, including the type of C. ozarkensis , were redetermined as a broad-leaved form of the widespread C. virginica . The remaining specimens continue to represent a novel taxon, which is described here as Claytonia arkansana Yatsk., R. Evans, & Witsell, sp. nov . The range of C. arkansana is even more restricted than originally believed, and the documented distribution of the taxon is limited to just three counties in the Ozark region of Arkansas. KEY WORDS: Arkansas flora, Ozark endemics, Claytonia , Montiaceae The genus Claytonia L. (Montiaceae) comprises some 27 species distributed in temperate North America and eastern Asia. Among these, the group of ca. nine tuberous species of Spring Beauties has been especially contentious taxonomically, in part because the plants are character-poor morphologically, having relatively simple and similar vegetative architecture and strong similarities in floral morphology. -
An Encyclopedia of Shade Perennials This Page Intentionally Left Blank an Encyclopedia of Shade Perennials
An Encyclopedia of Shade Perennials This page intentionally left blank An Encyclopedia of Shade Perennials W. George Schmid Timber Press Portland • Cambridge All photographs are by the author unless otherwise noted. Copyright © 2002 by W. George Schmid. All rights reserved. Published in 2002 by Timber Press, Inc. Timber Press The Haseltine Building 2 Station Road 133 S.W. Second Avenue, Suite 450 Swavesey Portland, Oregon 97204, U.S.A. Cambridge CB4 5QJ, U.K. ISBN 0-88192-549-7 Printed in Hong Kong Library of Congress Cataloging-in-Publication Data Schmid, Wolfram George. An encyclopedia of shade perennials / W. George Schmid. p. cm. ISBN 0-88192-549-7 1. Perennials—Encyclopedias. 2. Shade-tolerant plants—Encyclopedias. I. Title. SB434 .S297 2002 635.9′32′03—dc21 2002020456 I dedicate this book to the greatest treasure in my life, my family: Hildegarde, my wife, friend, and supporter for over half a century, and my children, Michael, Henry, Hildegarde, Wilhelmina, and Siegfried, who with their mates have given us ten grandchildren whose eyes not only see but also appreciate nature’s riches. Their combined love and encouragement made this book possible. This page intentionally left blank Contents Foreword by Allan M. Armitage 9 Acknowledgments 10 Part 1. The Shady Garden 11 1. A Personal Outlook 13 2. Fated Shade 17 3. Practical Thoughts 27 4. Plants Assigned 45 Part 2. Perennials for the Shady Garden A–Z 55 Plant Sources 339 U.S. Department of Agriculture Hardiness Zone Map 342 Index of Plant Names 343 Color photographs follow page 176 7 This page intentionally left blank Foreword As I read George Schmid’s book, I am reminded that all gardeners are kindred in spirit and that— regardless of their roots or knowledge—the gardening they do and the gardens they create are always personal. -
Joseph A. Antos
Joseph A. Antos Adjunct Professor Terrestrial Plant Ecology CONTACT INFORMATION: Department of Biology PO Box 3020 STN CSC University of Victoria Victoria, British Columbia V8W 3N5 Canada Telephone: (250) 721-7144 E-mail: [email protected] RESEARCH HISTORY AND INTERESTS: I have been conducting studies of various aspects of terrestrial plant ecology for over 30 years. My focus has been on the dynamics of forest stands and their constituent species in Northwestern North America. However, I have conducted studies on a wide range of topics and I have diverse interests under the broad umbrella of terrestrial plant ecology. I consider myself both a community and population ecologist. In somewhat the same way that high species diversity can make a region more interesting, a diversity of research topics can make life more interesting. I have worked on topics ranging from forest succession following volcanic disturbance to gender- specific reproductive differences in dioecious plants. 2 MAJOR AREAS OF RESEARCH: Forest succession: My first work was on forest succession and I have continued examining this topic in a variety of settings. Initially I studied temporal dynamics of moist forests in the Rocky Mountains. Subsequently I have considered early successional changes as well as development of old forests. Succession is a concept of fundamental importance in ecology and I continue to be very interested in how communities, especially forests, change through time. Volcanic disturbance: I didn’t plan to study volcanic disturbance, but life is unpredictable. It wasn’t in the study plan to have my initial Ph.D. project blown up by a volcano. -
I. Author Index
I. Author index Adatia, R. D., Sharma, Y. B. & Vijaijaragliavan, Almén, O. see Almén, B. & Almén, O. M. R. Studies in the Gesneriaceae. I. Morphol Almquist, E. Ett par skånska hieracier av dansk ogy and embryology of Platystemma violoi- härkomst. 62: 101. des. 71: 25. — Vad är Hieracium auricula ß majus Wahlen Adsersen, H. Ombrophytum peruvianum (Balano- berg? (mit deutscher Zusammenfassung). 66: phoraceae) found in the Galåpagos Islands. 259. 76: 113. Al-Sani, N. see Fadeel, A. A. & Al-Sani, N. Afzelius, K. Some species of Pseudogynoxys from Al-Shebaz, I. A. see Al-Mayali, A.-R. A. & Al- Ecuador. 66: 233. Shebaz, I. A. Agarwal, S. see Chopra, R. N. & Agarwal, S. Amin, A. Chromosome counts of some Egyptian Ahlstrand, L. Embryology of Ursinia (Composi- plants. 72: 536. tae). 78:487. —• Seven chromosome numbers of Egyptian — Embryology of Arctoteae-Arctotinae (Corn- plants. 72: 537. positae). 79: 109. — liequest for seeds and flower buds. 78: 387. — Embryology of Arctotideae-Gorteriinae (Com- — On the genus Launaea Cass. 78:444. positae). 79: 371. Andersson, F. Soil moisture in relation to heath — Embryology of Arctotideae-Gundeliinae (Corn- and meadow vegetation. II. Soil moisture con positae). 79: 377. ditions in a tall herb meadow. 63: 376. Ahmad, K. J. Cuticular and epidermal structures — Ecological studies in a Scanian woodland and in some species of Eranthemum and Pseud- meadow area, Southern Sweden. II. Plant bio erantbemum (Acanthaceae). 74:256. mass, primary production and turnover of Akhtar, S. see Baquar, S. R., Akhtar, S. & Hu organic matter. 70: 8. sain, A. — Ericson, J. Soil moisture in relation to heath — see also Baquar, S. -
A Brief Review of the Fossil History of the Family Rosaceae with a Focus On
Pl. Syst. Evol. 266: 45–57 (2007) Plant Systematics DOI 10.1007/s00606-007-0540-3 and Evolution Printed in The Netherlands A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada M. L. DeVore1 and K. B. Pigg2 1Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA, USA 2School of Life Sciences, Arizona State University, Tempe, AZ, USA Received January 16, 2006; accepted August 17, 2006 Published online: June 28, 2007 Ó Springer-Verlag 2007 Abstract. Many of the oldest definitive members of temperate regions (Heywood 1993). Members the Rosaceae are present in the Eocene upland floras of the Rosaceae have radiated into a wide of the Okanogan Highlands of northeastern Wash- variety of environments ranging from mesic to ington State and British Columbia, Canada. Over a xeric communities and are elements of boreal dozen rosaceous taxa representing extant and extinct and tundra ecosystems. No doubt one of the genera of all four traditionally recognized subfam- driving forces for the Rosaceae’s success is the ilies are known from flowers, fruits, wood, pollen, presence of agamospermy, hybridization, poly- and especially leaves. The complexity seen in Eocene Rosaceae suggests that hybridization and poly- ploidy and vegetative reproduction within the ploidy may have played a pivotal role in the early family. All of these microevolutionary pro- evolution of the family. Increased species diversity cesses contribute to generating novel genetic and the first appearance of additional modern taxa combinations capable of colonizing and per- occur during the Late Paleogene in North America sisting in new, open habitats. -
Phylogenetic Relationships in Rosaceae Inferred from Chloroplast Matk and Trnl-Trnf Nucleotide Sequence Data
Plant Syst. Evol. 231: 77±89 32002) Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data D. Potter1, F. Gao1, P. Esteban Bortiri1, S.-H. Oh1, and S. Baggett2 1Department of Pomology, University of California, Davis, USA 2Ph.D. Program Biology, Lehman College, City University of New York, New York, USA Received February 27, 2001 Accepted October 11, 2001 Abstract. Phylogenetic relationships in Rosaceae economically important fruits of temperate were studied using parsimony analysis of nucleo- regions is produced by members of this family, tide sequence data from two regions of the including species of Malus 3apples), Pyrus chloroplast genome, the matK gene and the trnL- 3pears), Prunus 3plums, peaches, cherries, trnF region. As in a previously published phylog- almonds, and apricots), Rubus 3raspberries), eny of Rosaceae based upon rbcL sequences, and Fragaria 3strawberries). The family also monophyletic groups were resolved that corre- includes many ornamentals, e.g., species of spond, with some modi®cations, to subfamilies Maloideae and Rosoideae, but Spiraeoideae were Rosa 3roses), Potentilla 3cinquefoil), and polyphyletic. Three main lineages appear to have Sorbus 3mountain ash). A variety of growth diverged early in the evolution of the family: 1) habits, fruit types, and chromosome numbers Rosoideae sensu stricto, including taxa with a base is found within the family 3Robertson 1974), chromosome number of 7 3occasionally 8); 2) which is traditionally divided into four sub- actinorhizal Rosaceae, a group of taxa that engage families on the basis of fruit type 3e.g., Schulze- in symbiotic nitrogen ®xation; and 3) the rest of the Menz 1964).