Prokaryotes & Eukaryotes

Total Page:16

File Type:pdf, Size:1020Kb

Prokaryotes & Eukaryotes Prokaryotes & Eukaryotes All living cells can be divided into two groups: • Prokaryotic cells – simple cells – Single-celled organisms (bacteria and blue-green algae) • Eukaryotic cells – more complex cells – Single-celled organisms (protists) – Compose multi-cellular organisms (protists, fungi, plants and animals) Feature Function Prokaryotes Eukaryotes Cell (plasma) Regulate material entering All All membrane and exiting cell DNA Stores genetic material All All Cell wall Protect cell, provide shape All Some (plants) Cytoplasm Fluid inside cell All All Nucleus Houses DNA None All Ribosomes Site of protein synthesis All All Flagella Aid cell in locomotion Some Some Mitochondria Site of ATP synthesis None All Endoplasmic Synthesis of proteins and None All Reticulum lipids Golgi Storage and packaging of None All apparatus substances Lysosomes & Digest particles None All Peroxisomes Vacuoles Storage of material Some Some Plasmids Small pieces of DNA that Some None can exit the cell Plastids Contain food or pigments None Some (plants) Biology 4A Prokaryotes & Eukaryotes Prokaryotic Bacterial Cell Eukaryotic Plant Cell Eukaryotic Animal Cell Biology 4A Cellular Processes Energy conversions Photosynthesis – conversion of radiant energy (sunlight) into chemical energy (glucose), occurs in chloroplasts of autotrophs 6CO2 + 6H2O + energy → C6H12O6 + 6O2 Chemosynthesis – conversion of unusable chemical energy (methane) into usable chemical energy (carbohydrates) Adenosine triphosphate (ATP) – molecule which living things use to release and store energy, becomes adenosine diphosphate (ADP) when energy is released Glycolysis – process of producing 2 ATP by breaking down glucose into pyruvic acid, first step of respiration Aerobic respiration – respiration in which, after glycolysis, pyruvic acid is broken down into carbon dioxide and water, net gain of 36 additional ATP Anaerobic respiration – respiration in which, after glycolysis, pyruvic acid is broken down into either lactic acid or alcohol, does not provide ATP, allows glycolysis to continue Biology 4B Cellular Processes Synthesis of New Molecules DNA Replication 1. Helicases unwind and unzip DNA at replication forks 2. Free floating nucleotides bond to exposed bases 3. DNA polymerase bind nucleotides to each other in 5’ to 3’ direction a. Leading strand – elongates toward replication fork continuously b. Lagging strand – elongates away from replication fork discontinuously (called Okazaki fragments), bonded together by DNA ligase 4. New molecules each contain one original and one new strand Transcription – process by which a portion of DNA nucleotide sequence is used to produce a complementary mRNA strand by RNA polymerase Translation – process by which information in mRNA strand is used to create amino acid chain (polypeptide chain) by ribosomes and tRNAs Lipogenesis – process of synthesizing lipids from intermediates of cellular respiration, occurs along smooth endoplasmic reticulum Biology 4B Cellular Processes Transport of Molecules Intracellular transport – within the cell • Many molecules float freely through cytoplasm • Others are carried by motor proteins (kinesin) or the endoplasmic reticulum and Golgi apparatus Intercellular transport – in and out of the cell through plasma membrane Passive transport – does not use energy, movement down concentration gradient (high to low concentration) • Diffusion – net movement of small, nonpolar molecules directly through phospholipid bilayer • Facilitated diffusion – net movement of larger molecules and ions through ion channels or carrier proteins • Osmosis – net movement of water molecules through membrane Active transport – uses energy (ATP), movement up concentration gradient (low to high concentration) • Ion pumps – proteins that move ions one way • Cotransport – coupled passage of two molecules in the same direction (symport) or different directions (antiport) Homeostasis – ability of a cell to maintain stable internal conditions independent of environment, accomplished by passive and active transport • Carbonic acid – buffer that helps regular pH Biology 4B Biology 4C - Viruses Parts of Viruses capsid bacteriophage animal virus membranous tail envelope tail fibers Viruses vs. Cells Viruses Cells DNA or RNA Only DNA Need host for replication Can reproduce independently Never contain organelles Can contain organelles Do not convert energy Convert energy Replication Cycles Lytic Lysogenic Biology 4C Biology 4C - Viruses Human Viral Diseases AIDS • Loss of immune system effectiveness • Caused HIV - human immunodeficiency virus • Period of dormancy before loss of immune system • Prevention • No vaccine (yet) • Limit and avoid transmission Influenza (the flu) • Fever, fatigue, and respiratory infections • Can be deadly • Caused a variety of influenza viruses • Can mutate rapidly and blend together • Prevention • Seasonal vaccine • Limit transmission The Common Cold • Fever, fatigue, and respiratory infections • Caused a variety of rhinoviruses • Prevention • No vaccine • Limit transmission Hepatitis A • Inflammation of liver, jaundice (yellow) appearance • Caused a hepatitis A virus in food and water • Prevention • Vaccine • Limit transmission Biology 4C Cell Cycle Cell cycle – the sequence of cell growth and division that occurs in a cell between the beginning of one cell division and the beginning of next cell division • Interphase (G1, S, G2) – period in which cell prepares for division. DNA and organelles replicate. • Mitotic phase (mitosis and cytokinesis) – period in which cell divides into two daughter cells. Ensures that daughter cells receive correct number of chromosomes. Biology 5A Cell Cycle Mitosis – the process by which each daughter cell receives an exact copy of chromosomes present in parent cell • Prophase – chromatin coils into chromatid, centrioles move apart, spindle fibers form • Metaphase – chromosomes arranged along spindle equator by spindle fibers, centromeres attach to separate spindle fibers • Anaphase – spindle fibers shorten and pull chromatids apart at the centromere • Telophase – chromatids reach opposite poles, spindle fibers disappear, nuclear membrane forms, chromosome uncoil Cytokinesis – the division of the cell’s cytoplasm into two daughter cells • Animal cell – cell membrane pinches together, groove forms until membrane separates • Plant cell – cell plate extends outward until it divides cells Biology 5A Cell Cycle DNA replication – the process by which DNA is copied into a new strand, occurs during S phase of interphase • Semiconservative replication – each new molecule contains one original and one new strand • Helicase unwinds DNA and break hydrogen bonds between complementary base pairs o Replication fork – site which separation occurs • Free-floating nucleotides bond to exposed bases (A & T, C & G) • DNA polymerase bond nucleotides to each other in 5’ to 3’ direction o Leading strand: elongates continuously toward replication fork o Lagging strand: elongates discontinuously as Okazaki fragments away from replication fork, sealed by DNA ligase Why is the cell cycle important? • Cells are limited in size. Large organisms need to be multicellular. Proper cell division ensures daughter cells have correct DNA • Mode of reproduction for unicellular organisms • Mode of growth, maintenance, and replacement for multicellular organisms Biology 5A Specialized Cells Specialized Plant Cells Cell Feature Function Concentric circles of Transport water and Root cells vascular tissue minerals upward Hairs protruding from cell Absorb water and minerals Root cells walls from soil Concentric circles of Transport water and Stem cells vascular tissues minerals throughout plant Thick-walled cells around Stem cells Provides support outer edge Cells have many Leaf cells chloroplasts, arranged in Carry out photosynthesis layers Specialized Animal Cells Cell Feature Function Deliver oxygen to body Red blood cells Contain hemoglobin cells Contain filaments that can Cause movement of body Muscle cells contract parts or substances Epithelium cells Cells packed tightly Form a protective cover (exterior skin) together Epithelium cells High surface area Exchange molecules (internal lining) Contain dendrites and Transmit electrical signals Nerve cells axon throughout body Biology 5B Cell Differentiation Stem cells – cells that can differentiate into a variety of specialized cell types Specialized cells – cells with specific structure and function • Examples: blood cells, leaf cells Cell differentiation – process of converting stem cells into more specialized cell types in multicellular organisms How does cell differentiation occur? • Proteins are produced by the cell – Direct the modification of the cell’s structure – Allow the cell to begin carrying out specialized functions • Role of DNA – Segments not needed are coiled tightly around histones – Segments needed are transcribed into proteins • Role of RNA – mRNA transcript used to create protein during translation – Small RNA remove introns from mRNA strands • Change the protein produced – Small RNA can bind and degrade mRNA strands • Stop protein from being produced • Role of environment – Neighboring cells can send signaling proteins to alter gene expression – Temperate can alter gene expression – Low oxygen concentration can suppress gene expression Biology 5C Cell Cycle and Cancer Cell cycle – the sequence of cell growth and division that occurs in a cell between the beginning of one cell division and the beginning of next cell division • End of G1 – vital checkpoint,
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Prokaryotes (Domains Bacteria & Archaea)
    2/4/15 Prokaryotes (Domains Bacteria & Archaea) KEY POINTS 1. Decomposers: recycle organic and inorganic molecules in environment; makes them available to other organisms. 2. Essential components of symbioses. 3. Encompasses the origins of metabolism and metabolic diversity. 4. Origin of photosynthesis and formation of atmospheric Oxygen Ceno- Meso- zoic zoic ANTIQUITY Humans Paleozoic Colonization of land Animals Origin of solar system and Earth • >3.5 BILLION years old. • Alone for 2 1 4 billion years Proterozoic Archaean Prokaryotes Billions of 2 years ago3 Multicellular eukaryotes Single-celled eukaryotes Atmospheric oxygen General characteristics 1. Small: compare to 10-100µm for 0.5-5µm eukaryotic cell; single-celled; may form colonies. 2. Lack membrane- enclosed organelles. 3. Cell wall present, but different from plant cell wall. 1 2/4/15 General characteristics 4. Occur everywhere, most numerous organisms. – More individuals in a handful of soil then there are people that have ever lived. – By far more individuals in our gut than eukaryotic cells that are actually us. General characteristics 5. Metabolic diversity established nutritional modes of eukaryotes. General characteristics 6. Important decomposers and recyclers 2 2/4/15 General characteristics 6. Important decomposers and recyclers • Form the basis of global nutrient cycles. General characteristics 7. Symbionts!!!!!!! • Parasites • Pathogenic organisms. • About 1/2 of all human diseases are caused by Bacteria General characteristics 7. Symbionts!!!!!!! • Parasites • Pathogenic organisms. • Extremely important in agriculture as well. Pierce’s disease is caused by Xylella fastidiosa, a Gamma Proteobacteria. It causes over $56 million in damage annually in California. That’s with $34 million spent to control it! = $90 million in California alone.
    [Show full text]
  • The First Cells Were Most Likely Very Simple Prokaryotic Forms. Ra- Spirochetes
    T HE O RIGIN OF E UKARYOTIC C ELLS The first cells were most likely very simple prokaryotic forms. Ra- spirochetes. Ingestion of prokaryotes that resembled present-day diometric dating indicates that the earth is 4 to 5 billion years old cyanobacteria could have led to the endosymbiotic development of and that prokaryotes may have arisen more than 3.5 billion years chloroplasts in plants. ago. Eukaryotes are thought to have first appeared about 1.5 billion Another hypothesis for the evolution of eukaryotic cells proposes years ago. that the prokaryotic cell membrane invaginated (folded inward) to en- The eukaryotic cell might have evolved when a large anaerobic close copies of its genetic material (figure 1b). This invagination re- (living without oxygen) amoeboid prokaryote ingested small aerobic (liv- sulted in the formation of several double-membrane-bound entities ing with oxygen) bacteria and stabilized them instead of digesting them. (organelles) in a single cell. These entities could then have evolved This idea is known as the endosymbiont hypothesis (figure 1a) and into the eukaryotic mitochondrion, nucleus, and chloroplasts. was first proposed by Lynn Margulis, a biologist at Boston Univer- Although the exact mechanism for the evolution of the eu- sity. (Symbiosis is an intimate association between two organisms karyotic cell will never be known with certainty, the emergence of of different species.) According to this hypothesis, the aerobic bac- the eukaryotic cell led to a dramatic increase in the complexity and teria developed into mitochondria, which are the sites of aerobic diversity of life-forms on the earth. At first, these newly formed eu- respiration and most energy conversion in eukaryotic cells.
    [Show full text]
  • Supplementary Table S2: New Taxonomic Assignment of Sequences of Basal Fungal Lineages
    Supplementary Table S2: New taxonomic assignment of sequences of basal fungal lineages. Fungal sequences were subjected to BLAST-N analysis and checked for their taxonomic placement in the eukaryotic guide-tree of the SILVA release 111. Sequences were classified depending on combined results from the methods mentioned above as well as literature searches. Accession Name New classification Clustering of the sequence in the Best BLAST-N hit number based on combined results eukaryotic guide tree of SILVA Name Accession number E.value Identity AB191431 Uncultured fungus Chytridiomycota Chytridiomycota Basidiobolus haptosporus AF113413.1 0.0 91 AB191432 Unculltured eukaryote Blastocladiomycota Blastocladiomycota Rhizophlyctis rosea NG_017175.1 0.0 91 AB252775 Uncultured eukaryote Chytridiomycota Chytridiomycota Blastocladiales sp. EF565163.1 0.0 91 AB252776 Uncultured eukaryote Fungi Nucletmycea_Fonticula Rhizophydium sp. AF164270.2 0.0 87 AB252777 Uncultured eukaryote Chytridiomycota Chytridiomycota Basidiobolus haptosporus AF113413.1 0.0 91 AB275063 Uncultured fungus Chytridiomycota Chytridiomycota Catenomyces sp. AY635830.1 0.0 90 AB275064 Uncultured fungus Chytridiomycota Chytridiomycota Endogone lactiflua DQ536471.1 0.0 91 AB433328 Nuclearia thermophila Nuclearia Nucletmycea_Nuclearia Nuclearia thermophila AB433328.1 0.0 100 AB468592 Uncultured fungus Basal clone group I Chytridiomycota Physoderma dulichii DQ536472.1 0.0 90 AB468593 Uncultured fungus Basal clone group I Chytridiomycota Physoderma dulichii DQ536472.1 0.0 91 AB468594 Uncultured
    [Show full text]
  • Repurposing of Conserved Autophagy-Related Protein ATG8 in a Divergent Eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro
    Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro To cite this version: Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote. Communicative and Integrative Biology, Taylor & Francis Open, 2016, 9 (4), pp.e1197447. 10.1080/19420889.2016.1197447. hal-01824938 HAL Id: hal-01824938 https://hal.archives-ouvertes.fr/hal-01824938 Submitted on 1 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License COMMUNICATIVE & INTEGRATIVE BIOLOGY 2016, VOL. 9, NO. 4, e1197447 (4 pages) http://dx.doi.org/10.1080/19420889.2016.1197447 ARTICLE ADDENDUM Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude F. Lev eque,^ Hoa Mai Nguyen, and Sebastien Besteiro DIMNP- UMR5235, CNRS, Universite de Montpellier, Montpellier, France ABSTRACT ARTICLE HISTORY Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid Received 18 May 2016 called the apicoplast, which is essential for their survival. The localization of autophagy-related Accepted 30 May 2016 protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been KEYWORDS described, and we have shown this protein is essential for proper inheritance of this complex plastid apicomplexa; apicoplast; into daughter cells during cell division.
    [Show full text]
  • Eukaryote Cell Biology - Michelle Gehringer
    FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer EUKARYOTE CELL BIOLOGY Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: cell theory, cell diversity, eukaryote cell structure, nucleus, chromatin, DNA, organelles, mitochondria, chloroplasts, transcription, RNA, translation, ribosomes, cell cycle, interphase, mitosis, meiosis, signal transduction, growth regulation, cancer, oncogenesis. Contents 1. Introduction 1.1. The first cell 2. Origin of Eukaryotes 3. Cellular differentiation in multicellular organisms 3.1. Plants 3.2. Animals 4. Eukaryotic cell structure 5. Organization of eukaryotic cells 5.1. Plasma membrane 5.2. Extracellular matrices 5.3. Protein synthesis and transport 5.4. Cytoskeleton and movement 5.5. Nucleus 5.5.1 Genomes 5.5.2 Gene expression 5.5.3 Maintaining the genome 5.6. Organelles 6. The cell cycle 6.1. Mitosis 6.2. Meiosis 7. Regulation of cell growth 7.1. Signal transduction 7.2. Programmed cell death 7.3. CancerUNESCO – EOLSS 8. Experimental Models 8.1. Yeast SAMPLE CHAPTERS 8.2. Arabidopsis 8.3. Drosophila 8.4. The mouse 8.5. Cell culture 8.6. Separation of cellular contents 8.7. Tracing biochemical pathways 9. Future Investigations Glossary Bibliography ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer Biographical Sketch Summary Cells form the basic unit of life on our planet. They are well organized systems which perform all the essential tasks of eating, respiring, replicating and excreting waste products. The first cells, which are thought to have evolved about 3.8 billion years ago, much resembled present day prokaryotes.
    [Show full text]
  • Mixotrophic Protists Among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology
    FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Woraporn Tarangkoon Mixotrophic Protists among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology Academic advisor: Associate Professor Per Juel Hansen Submitted: 29/04/10 Contents List of publications 3 Preface 4 Summary 6 Sammenfating (Danish summary) 8 สรุป (Thai summary) 10 The sections and objectives of the thesis 12 Introduction 14 1) Mixotrophy among marine planktonic protists 14 1.1) The role of light, food concentration and nutrients for 17 the growth of marine mixotrophic planktonic protists 1.2) Importance of marine mixotrophic protists in the 20 planktonic food web 2) Marine symbiont-bearing dinoflagellates 24 2.1) Occurrence of symbionts in the order Dinophysiales 24 2.2) The spatial distribution of symbiont-bearing dinoflagellates in 27 marine waters 2.3) The role of symbionts and phagotrophy in dinoflagellates with symbionts 28 3) Symbiosis and mixotrophy in the marine ciliate genus Mesodinium 30 3.1) Occurrence of symbiosis in Mesodinium spp. 30 3.2) The distribution of marine Mesodinium spp. 30 3.3) The role of symbionts and phagotrophy in marine Mesodinium rubrum 33 and Mesodinium pulex Conclusion and future perspectives 36 References 38 Paper I Paper II Paper III Appendix-Paper IV Appendix-I Lists of publications The thesis consists of the following papers, referred to in the synthesis by their roman numerals. Co-author statements are attached to the thesis (Appendix-I). Paper I Tarangkoon W, Hansen G Hansen PJ (2010) Spatial distribution of symbiont-bearing dinoflagellates in the Indian Ocean in relation to oceanographic regimes. Aquat Microb Ecol 58:197-213.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • The Apicoplast: a Review of the Derived Plastid of Apicomplexan Parasites
    Curr. Issues Mol. Biol. 7: 57-80. Online journalThe Apicoplastat www.cimb.org 57 The Apicoplast: A Review of the Derived Plastid of Apicomplexan Parasites Ross F. Waller1 and Geoffrey I. McFadden2,* way to apicoplast discovery with studies of extra- chromosomal DNAs recovered from isopycnic density 1Botany, University of British Columbia, 3529-6270 gradient fractionation of total Plasmodium DNA. This University Boulevard, Vancouver, BC, V6T 1Z4, Canada group recovered two DNA forms; one a 6kb tandemly 2Plant Cell Biology Research Centre, Botany, University repeated element that was later identifed as the of Melbourne, 3010, Australia mitochondrial genome, and a second, 35kb circle that was supposed to represent the DNA circles previously observed by microscopists (Wilson et al., 1996b; Wilson Abstract and Williamson, 1997). This molecule was also thought The apicoplast is a plastid organelle, homologous to to be mitochondrial DNA, and early sequence data of chloroplasts of plants, that is found in apicomplexan eubacterial-like rRNA genes supported this organellar parasites such as the causative agents of Malaria conclusion. However, as the sequencing effort continued Plasmodium spp. It occurs throughout the Apicomplexa a new conclusion, that was originally embraced with and is an ancient feature of this group acquired by the some awkwardness (“Have malaria parasites three process of endosymbiosis. Like plant chloroplasts, genomes?”, Wilson et al., 1991), began to emerge. apicoplasts are semi-autonomous with their own genome Gradually, evermore convincing character traits of a and expression machinery. In addition, apicoplasts import plastid genome were uncovered, and strong parallels numerous proteins encoded by nuclear genes. These with plastid genomes from non-photosynthetic plants nuclear genes largely derive from the endosymbiont (Epifagus virginiana) and algae (Astasia longa) became through a process of intracellular gene relocation.
    [Show full text]
  • Prokaryotes, Protists, Reconstructing the Photosynthesis, Evolution of Living Things
    Prokaryotes, Protists, Reconstructing the Photosynthesis, evolution of living things Endosymbiosis • Systematists study evolutionary relationships Ch 28 & 29 •Look for shared derived (=different from ancestor) traits to group organisms • Evidence used: morphology, 26 February 2009 development, and molecular data (especially DNA sequences) ECOL 182R UofA K. E. Bonine 1 2 Why can’t we figure it out perfectly? • More distant history is obscured by more changes trypanosomes • Among oldest lineages of Bacteria and Archaea in particular, lots of “lateral gene transfer.” Makes it difficult to infer relationships from phylogeny of red blood cells single genes. 3 4 Early prokaryote fossil Diversity of Prokaryotes Bacteria & Archaea 5 6 1 What are microbes? Life can be divided into 3 domains • Only a minority make us sick •Robert Koch, Germ Theory of Disease • In ordinary English, might be anything small 3.8bya –bacteria 1.5bya –yeast –protists – viruses •Prokaryotes = bacteria + archaea • In science, classify by evolutionary • Prokaryote was ancestral and only form for relationships… 7 billions of years 8 Eukarya Scheme has been revised before: Haeckel (1894) Whittaker (1959) Woese (1977) Woese (1990) Three kingdoms Five kingdoms Six kingdoms Three domains Eubacteria Bacteria Monera (prokaryotes) Protista Archaebacteria Archaea Protista Protista Fungi Fungi Plantae Eukarya are Prokaryotes monophyletic, Plantae Plantae Animalia Animalia Animalia paraphyleticparaphyletic, polyphyletic? 9 modified from Wikipedia 10 Shared by all 3 domains Unique to
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • Prokaryote Vs. Eukaryote Campaign Biology Name: ______Period: ______
    Prokaryote vs. Eukaryote Campaign Biology Name: ___________________________________________ Period: ____________ Prokaryotes vs. Eukaryotes: A Campaign for Election as Coolest Cell Type! Purpose: While prokaryotes and eukaryotes share some similar structures and characteristics of life, the two lead some pretty different lives! Your job in this assignment is to create a campaign poster and a campaign platform commercial for a prokaryote or a eukaryote as they campaign to be elected coolest cell type! Directions: Each group will be assigned a campaign platform from those listed below. Use the resources listed (as well as any others you might find) to understand why your platform makes your cell type the coolest. Create a campaign poster (using one slide on a Google Presentation, shared between partners, and submitted by due date via a form) and a short campaign platform commercial (given as a speech in class) using the attached rubric. Prokaryotic campaign platforms: 1. Ability to form endospores http://goo.gl/Y1tUK http://goo.gl/DhVNe 2. Ability to form biofilms with other cells http://goo.gl/umy7Z http://goo.gl/m9d5W 3. Quorum sensing neighboring cells http://goo.gl/DSiJU http://goo.gl/IFFtA 4. Production of bacteriocins http://goo.gl/lW75y http://goo.gl/WzFv1 5. Endosymbiotic theory http://goo.gl/6VIba http://goo.gl/uSYh4 Eukaryotic campaign platforms: 6. Contain organelles that have their own genetic material in addition to that found in the nucleus http://goo.gl/6VIba http://goo.gl/Nqesq 7. Vesicles http://goo.gl/bwF3x http://goo.gl/j3qY3 8. Membrane bound organelles that facilitate transport (endomembrane system) http://goo.gl/j3qY3 http://goo.gl/i4brZ 9.
    [Show full text]