Advanced Food Packaging

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Food Packaging ® by Katie Clay Sabatini, RD, LDN Express Advanced Food Not a Galaxy Away…Right in Packaging Your Refrigerator FOOD PROTECTION CONNECTION 1 HOUR CE CBDM Approved SAN Imagine standing in the aisle of your local grocery functional and innovative, the passive protective barrier store and the packaging of your favorite breakfast functions that packaging was originally designed for are no cereal begins talking to you, telling you about the longer the only goals. Consumers want increased product health benefits of the product and marketing its safety, information, traceability, and innovation. Active packaging freshness, and quality. Does this sound like an episode (AP) and intelligent packaging (IP) can provide this and of the Jetsons to you? Believe it or not, technology like more. AP and IP are the wave of the future—the wave of this may not be a galaxy away—in fact you probably now! already purchase products with advanced packaging and you may not even know it! TRADITIONAL FOOD PACKAGING Traditional food packaging was designed to provide the The food packaging industry is one of the most four primary functions of protection, communication, dynamic, competitive, and developing markets within convenience, and containment. the economy today. With a desire to become more Continued on page 2 NUTRITION & FOODSERVICE EDGE EXPRESS | April 2019 1 [email protected] Continued from page 1 Katie Clay Sabatini, 1) Packaging protects item inside. An example TYPES AND RD, LDN is the Food the food product inside of combination packaging APPLICATIONS Safety and Quality from environmental would be high density OF COMMERCIAL Assurance Manager for Hershey contamination and polyethylene (a common AC T I V E Entertainment and influences. type of plastic used in food PACKAGING (AP) Resorts, where she 2) Packaging packaging materials) liners communicates Oxygen Scavengers puts into practice ingredients, nutritional in cardboard cereal boxes. her passion for food Oxygen results in the facts, and marketing— Food packaging has safety. Sabatini has deterioration of the comprehensive which are all displayed on historically been designed packaged end product knowledge of the exterior. to be as inert as possible, through oxidation, rancidity, industry food 3) Packaging provides minimizing the interaction safety application, and microbial growth—to convenience for the consumer of food product with its implementation, name a few. Therefore, such as dispensing and protective outer barrier. and management. a method to reduce or She received her resealing features, ease of However, AP is unique in eliminate oxygen within BS in nutrition handling, product visibility, that it utilizes the reaction the packaging atmosphere & dietetics from and uniqueness as well of said food product with the University of is very desirable and can as extra features, like the its packaging material or Delaware, and is be accomplished with ability to cook and eat the the environment to create actively completing oxygen scavengers that product within its specific a beneficial effect for the her MS in food either expunge or absorb safety at Michigan packaging. product and end user. AP oxygen. The most common State University. allows the food inside and 4) Packaging offers cost- oxygen scavenger works the environment outside effective containment through the oxidation of to play off of each other during transportation and iron compounds placed (in a controlled fashion) storage that maintains in sachets within the to dynamically preserve or food safety and minimizes package that absorb oxygen. protect the food inside. AP environmental impact, Additionally, certain iron systems are innovations in while complying with compounds are being the food industry and work industry requirements embedded in plastic through the processes of and meeting consumer polymers to perform the absorption or release of demands. same function, but reduce various gases, moisture, or the need for a foreign object Traditional packaging other substances into the (sachet) to be placed inside materials include glass, packaged environment. the package. Some of the metals, paper/paperboards, The goal of AP is to have products on the market and plastics, each being absolutely no effect on or using oxygen scavengers are used for different reasons transfer to the food item. baked goods, pizza, pasta, with unique specifications Rather, the desired outcome cured meats, cheeses, fish, regarding the packaging of this process is improved coffee, snack foods, dried material and the product conditions inside the foods, oils and fats, and inside. Over time, packaged environment to beverages. manufacturers have prolong shelf life, improve combined these materials to microbiological safety, Continued on page 3 provide the best functional, positively affect sensory aesthetic, and/or consumer- properties, and maintain driven attributes and food quality. properties for the food 2 NUTRITION & FOODSERVICE EDGE EXPRESS | April 2019 Continued from page 2 Carbon Dioxide Emitters Carbon dioxide (CO2) has innate antimicrobial properties. CO2 emitters actively produce and release this gas within the package to inhibit spoilage and control harmful microorganisms, preserving food quality. CO2 emitters are often found in products like coffee, snack foods, nuts, bakery items, dried and fresh meats, and fish. Additionally, bifunctional AP systems are often used which include oxygen scavengers working in tandem with CO2 emitters, whereby as oxygen is absorbed, it is replaced by CO2, optimizing the atmospheric conditions within the package. Ethylene Scavengers Ethylene is a phytohormone which accelerates produce ripening and results in spoilage of the packaged product if not properly controlled. Ethylene scavengers are used that are often used in foods with lower water activity like to control the ripening process in packaged fruits and snack foods, cereals, nuts, and spices. vegetables by absorbing ethylene from the packaged environment, preventing deterioration and increasing shelf Antimicrobial Emitters life. The most common ethylene scavenger is potassium Antimicrobial (also called antibacterial) packaging is permanganate embedded in silica gel sachets. Another based on the ability to slow or inhibit microbial growth option on the market is the addition of ethylene absorbers on the food item to extend shelf life and prevent to zeolite clay, which is then embedded into food-grade dangerous spoilage. Antimicrobial emitters can be found films used in packaging materials for fruits and vegetables. as sachets (the most common form on the market) or Odor Emitters and Absorbers mats; embedded in packaging polymers or bonded to the polymers during embossing; or in packaging films. Also known as “Artificial Nose,” odor emitters produce This technology is not as widely accepted or utilized as scent within packaging that enhances palatability to the aforementioned methods, due to strict regulations consumers like a ripe fruit scent, while odor absorbers surrounding the use of antimicrobial substances for human cover unpleasant off-odors produced by certain packaged consumption, as well as relatively low consumer acceptance items (also referred to as odor stabilizers). Odor emitters due to the high cost of this packaging technology. One of and absorbers are most often incorporated into plastic the more common commercially available antimicrobial packaging through additives embedded into the polymers. packaging options that you may already be familiar with Moisture Scavengers is Microban®, which uses silver in zeolite clay to control Gram-positive and Gram-negative bacteria growth. Humidity management within food packaging is essential Microban® is used in a lot more than just food packaging to a high quality end product. Moisture scavengers reduce materials, including some cutting boards, manufacturing water activity, thereby inhibiting spoilage microorganisms equipment and food grade sanitizing options, as well as from negatively effecting the food inside. There are two many other applications across the food industry. types of moisture scavengers. Liquid absorbers usually come in the form of pads or sheets that have a hygroscopic AN OVERVIEW OF INTELLIGENT layer that absorbs and holds moisture and are often used PACKAGING (IP) in high water activity items like meat, poultry, fish, and IP actually monitors the food and/or environment inside produce. Relative humidity regulators, commonly referred to the package and communicates information regarding as desiccants, absorb moisture and control humidity in the headspace of the package in the form of sachets or labels Continued on page 4 NUTRITION & FOODSERVICE EDGE EXPRESS | April 2019 3 SEE PAGE 5 FOR CE QUESTIONS Data Carriers The most common and simplest type of data carrier is a bar code, which has been used on packaging for decades. Barcodes are still used for identification, but have progressed to QR codes and the more advanced radio frequency identification (RFID). RFID tags have a microchip attached to an antenna and communicate through electromagnetic waves. RFIDs can be passive (no battery, powered by electromagnetic waves emitted by the reader); semi-passive (use a battery to emit electromagnetic waves or store information); or active (powered by an internal battery to run internal data management and broadcast it to a reader). Originally designed as tracking devices used for identification, traceability, counterfeit protection, and warehouse automatization, RFIDs have advanced Continued
Recommended publications
  • FDA Compliance and Printing Inks Often Printers Have Questions
    FDA Compliance and Printing Inks Often Printers have questions concerning the Food and Drug Administration (FDA) and compliance of the inks used to print on food packaging applications. The FDA permits the use of inks (e.g. solvent base, water base and UV) as components of food packaging under certain conditions. Several items must be understood before one can determine if a printing ink is suitable for use on food packaging applications: “Direct Food Additives” are substances directly and intentionally added to foods, including, but not limited to, ingredients, preservatives, colors and stabilizers. “Indirect Food Additives” generally refer to substances that are not intended to, but can become, components of food as a result of use in articles that contact food (e.g. ink on food packaging applications). Both “Direct and Indirect Food Additives” require complex petitions and filings with the FDA that can be very costly, burdensome and time consuming. Nazdar inks are not designed to be and are not approved as Direct or Indirect Food Additives. However, if an ink on food packaging applications is not expected to become a component of the food under its intended conditions of use, it is not a food additive by definition and, therefore, may be used without the need to obtain any FDA clearance. A properly conducted migration study is considered to be a sound basis for concluding that the substance is not a food additive. This study should be performed in accordance with FDA’s guidance document, entitled; Preparation of Food Contact Notifications and Food Additive Petitions for Food Contact Substances: Chemistry Recommendations https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry- preparation-premarket-submissions-food-contact-substances-chemistry Another method of concluding that a substance is not a food additive is the use of a functional barrier.
    [Show full text]
  • Barriers and Chemistry in a Bottle: Mechanisms in Today's Oxygen Barriers for Tomorrow's Materials
    applied sciences Review Barriers and Chemistry in a Bottle: Mechanisms in Today’s Oxygen Barriers for Tomorrow’s Materials Youri Michiels 1,* , Peter Van Puyvelde 2 and Bert Sels 1,* 1 Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium 2 Soft Matter, Rheology and Technology, KU Leuven, 3001 Heverlee, Belgium; [email protected] * Correspondence: [email protected] (Y.M.); [email protected] (B.S.); Tel.: +32-16-377690 (Y.M.); +32-16-321593 (B.S.) Received: 3 June 2017; Accepted: 21 June 2017; Published: 28 June 2017 Abstract: The stability of many organic compounds is challenged by oxidation reactions with molecular oxygen from the air in accordance with thermodynamics. Whereas glass or metal containers may protect such products, these packaging types also offer severe disadvantages over plastics. Large-scale packaging, especially for food and beverage industries, has shifted towards polymeric materials with passive and active oxygen barrier technologies over the last decades. Even though patent literature is flooded with innovative barrier systems, the mechanisms behind them are rarely reported. In a world where packaging requirements regarding recyclability and safety are continuously getting stricter, accompanied by the appearance of emerging applications for plastic oxygen barriers (such as organic semi-conductors), research towards new materials seems inevitable. To this cause, proper in-depth knowledge of the existing solutions is a prerequisite. This review therefore attempts to go deep into the problems at hand and explain the chemistry behind the existing solution strategies and finally discusses perspectives suggesting new applications such as organic light-emitting diodes (OLEDs) and solar cells.
    [Show full text]
  • 4 Active Packaging in Polymer Films M.L
    4 Active packaging in polymer films M.L. ROONEY 4.1 Introduction Polymers constitute either all or part of most primary packages for foods and beverages and a great deal of research has been devoted to the introduction of active packaging processes into plastics. Plastics are thermoplastic polymers containing additional components such as antioxidants and processing aids. Most forms of active packaging involve an intimate interaction between the food and its package so it is the layer closest to the food that is often chosen to be active. Thus polymer films potentially constitute the position of choice for incorporation of ingredients that are active chemically or physically. These polymer films might be used as closure wads, lacquers or enamels in cans and as the waterproof layer in liquid cartonboard, or as packages in their own right. The commercial development of active packaging plastics has not occurred evenly across the range of possible applications. Physical processes such as microwave heating by use of susceptor films and the generation of an equilibrium modified atmosphere (EMA) by modification of plastics films have been available for several years. Research continues to be popular in both these areas. Chemical processes such as oxygen scavenging have been adopted more rapidly in sachet form rather than in plastics. Oxygen scavenging sachets were introduced to the Japanese market in 1978 (Abe and Kondoh, 1989) whereas the first oxygen-scavenging beer bottle closures were used in 1989 (see Chapter 8). The development of plastics active packaging systems has been more closely tied to the requirements of particular food types or food processes than has sachet development.
    [Show full text]
  • Food Brochure Audion
    //// F O O D PACKAGING SOLUTIONS THE STORY OF AUDION Audion Elektro B.V. was established in 1947 in Amsterdam. In the fifties the company started to focus on manufacturing sealing machines besides the trading business. In the past decades Audion has grown to become a leading name in the packaging industry. Today, with a worldwide dealer network, Audion is represented in more than 65 countries throughout the world. Audion packaging machines are characterised by outstanding quality. By keeping control over the development and production of the machines in the Netherlands and Germany, Audion has ma- naged to stay flexible and customer oriented. The service Audion provides is regarded as a decisive advantage by our customers. Short delivery times of machines, parts and accessories and innovative solutions to diverse packaging problems are important qualities that distinguish Audion in the industry. With Audion, you have a large choice of packaging machines that meet your production requirements. The experience and expertise accumulated over the years, in finding solutions for customers, is unique. The extensive machine range on our website (audion.com) shows that there’s a solution for every packaging problem. Together we make the perfect package. Audion, Groenburgwal 31, Amsterdam Established 1947 |||| FOOD MARKETS |||| |||| |||| |||| |||| E-FULFILLMENT |||| MEDICAL / PHARMA / HIGH-TECH |||| PARTS MARKETS |||| |||| |||| |||| FOOD MAGNETA 300 GPS If we speak about a machine which Hygienic stainless steel machine made for has proven itself! The Magneta is a user the food/retail industry. friendly and low maintenance impulse The GPS range consists of versatile systems sealer. The Magneta range consists of a to pack and present your deli products in SEALING complete range with different sized mo- the best possible way.
    [Show full text]
  • Radiation Processing for Safe, Shelf-Stable and Ready-To-Eat Food
    IAEA-TECDOC-1337 Radiation processing for safe, shelf-stable and ready-to-eat food Proceedings of a final Research Co-ordination Meeting held in Montreal, Canada, 10–14 july 2000 January 2003 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria RADIATION PROCESSING FOR SAFE, SHELF-STABLE AND READY-TO-EAT FOOD IAEA, VIENNA, 2003 IAEA-TECDOC-1337 ISBN 92–0–100703–5 ISSN 1011–4289 © IAEA, 2003 Printed by the IAEA in Austria January 2003 FOREWORD The increasingly busy lifestyles of populations in many countries have driven the demand for safe, convenient and ready-to-eat food. Traditional food processes such as drying, canning or refrigeration offer a partial solution to this demand as the sensory quality of such food may be significantly affected or the products may be contaminated by pathogenic bacteria during preparation. For developing countries, safe shelf-stable food without the need for refrigeration would offer advantages. In addition, the increasing number of immuno-compromised populations in many countries requires a new approach to food safety to meet their needs. Irradiation offers a potential to enhance microbiological safety and quality of food through shelf-life extension. The benefits of irradiation as a sanitary treatment of many types of food are well known, some of which are applied commercially in several countries. Little data were available, however, on the effect of irradiation on minimally processed food and composite food including prepared meals. A Co-ordinated Research Project (CRP) on the Development of Safe, Shelf-Stable and Ready-to-Eat Food through Radiation Processing therefore was implemented by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in 1996 to evaluate the role of irradiation for such food.
    [Show full text]
  • Amcor/Bemis: Flexible Medical Packaging Overlaps Draw DOJ Scrutiny
    Vol. 6 No. 400 November 9, 2018 Amcor/Bemis: Flexible Medical Packaging Overlaps Draw DOJ Scrutiny Deal Update DOJ staff attorneys investigating Amcor’s proposed $5.2 billion purchase of packaging rival Bemis (BMS) have keyed in on two healthcare product lines in which the merging parties overlap, sources familiar with the matter said. The deal would combine two of the three dominant producers of coated TyVek, a breathable medical packaging film that can be sterilized. The tie-up would also join two significant U.S. converters of vented medical bags. DOJ staff has interviewed industry participants about these overlaps as recently as two weeks ago, the sources said. Given market shares and competitive dynamics, the merging firms’ overlap in coated TyVek raises a more significant antitrust issue than the vented medical bag overlap, industry sources said. Reflecting this dynamic, sources said that over time, DOJ interviews have become more focused on coated TyVek, to the exclusion of vented medical bags. The merging parties also overlap in food packaging, but these markets are generally fragmented and characterized by a more robust competitive environment than their medical counterparts. Amcor and Bemis, who announced their deal on August 6, have not disclosed the receipt of a DOJ second request. Spokespeople for Amcor and the DOJ declined to comment. Bemis did not respond to requests for comment. Coated flexible medical packaging. Amcor and Bemis both produce various types of sterile flexible medical packaging, which is sold to medical device manufacturers to protect medical equipment and devices ultimately sold to hospital groups and doctors.
    [Show full text]
  • Food Packaging Made from Recycled Paper and Board
    Page 1 of 3 Food Packaging made from Recycled Paper and Board Monitoring in Europe of packaging and foods has identified mineral oil contamination in a range of packaged foods. Mineral oils are widely used, and end up in foodstuffs by various routes. Since then, almost all sectors of the food industry as well as laboratories and supply industry have been concerned with the presence of mineral hydrocarbons and investigated into their origin. As a result, industry has gained a comprehensive understanding of the different sources of mineral oil contaminations.1 Many measures for the reduction of the transfer and occurrence of undesired mineral oils that have already been taken show objectively measurable success. There are many different routes by which contamination of foodstuffs with mineral oils can occur. Food packaging has been identified as one of these sources. EuPIA members have long offered mineral oil-free inks to be applied to the non-food side of packaging, and recommend that only these inks are used for these applications. Mineral oils can, however, migrate from recycled paper and board used for food packaging. In several EU member states the food packaging chain was called to take measures such that levels of mineral oil in foodstuffs are reduced. The European Commission has issued a recommendation2 on the monitoring of mineral oil hydrocarbons in food and in materials and articles intended to come into contact with food in 2017. In Germany the BMEL has drafted a legislation aimed at restricting mineral oil in food contact materials made from recycled paper and board.
    [Show full text]
  • Food Packaging Technology
    FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Oxygen-Reducing Enzymes in Coatings and Films for Active Packaging |
    Kristin Johansson | Oxygen-reducing enzymes in coatings and films for active packaging | | Oxygen-reducing enzymes in coatings and films for active packaging Kristin Johansson Oxygen-reducing enzymes in coatings and films for active packaging Oxygen-reducing enzymes This work focused on investigating the possibility to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food- in coatings and films for packaging board using conventional laboratory coating techniques. The oxygen- reducing enzymes investigated included a glucose oxidase, an oxalate oxidase active packaging and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation after drying was possible not only Kristin Johansson by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively. Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating 2013:38 an open structure through addition of clay to the coating formulation at a level above the critical pigment volume concentration. For laccase-catalysed reduction of oxygen gas, it was possible to use lignin derivatives as substrates for the enzymatic reaction. At 7°C all three laccases retained more than 20% of the activity they
    [Show full text]
  • Food Packaging: a Guide to Best Practice for Sheetfed Offset Print
    Food Packaging: A Guide to Best Practice for Sheetfed Offset Print Version: October 2018 CONTENT The aim of this guide 2 1 Interaction between food and printed packaging: the danger areas 3 2 Legislation and control systems 5 3 Practical recommendations for printers and converters to minimise migration risk 7 4 Frequently asked questions 10 FLINT GROUP – COMMITTED TO PROVIDING EXCEPTIONAL PRODUCTS AND EXPERTISE TO PACKAGING AND LABEL CONVERTERS WORLDWIDE ... The aim of this guide Flint Group is a dedicated supplier of printing inks for the packaging and label industry. Based on our expertise in this field of application we designed this guide as an overview of the macro issues related to food packaging regulations; providing printers and packaging converters with a sound understanding of the issues that can arise through the interaction of foods with their packaging. It highlights the most relevant legislation, and provides recommendations that can help promote best practices in the choice of inks for food packaging and other topics that need to be taken care of when printing packaging and labels for food applications. Food packaging – naturally sensitive Food packaging is a sensitive area, and manufacturers in this segment must focus on the highest levels of manufacturing controls in line with the imperative of protecting the consumer. This is naturally the subject of extensive legislation, which applies to all the packaging components of a packaged food – including the label. All suppliers in the food packaging value chain have to ensure that their contributions do not in any way endanger consumer health – for example through the migration of undesirable substances into the foodstuffs.
    [Show full text]
  • Single-Use Plastic Take-Away Food Packaging and Its Alternatives
    hosted by Single-use plastic take-away food packaging and its alternatives Recommendations from Life Cycle Assessments Copyright © United Nations Environment Programme, 2020 Credit © Photos: www.shutterstock.com This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. The United Nations Environment Programme would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the stated policy of the United Nations Environment Programme, nor does citing of trade names or commercial processes constitute endorsement. Suggested Citation: (UNEP 2020). United Nations Environment Programme (2020). Single-use plastic take-away food packaging and its alternatives - Recommendations from Life Cycle Assessments. Single-use plastic take-away food packaging and its alternatives
    [Show full text]
  • PLASTIC Food Packaging
    PLASTIC food packaging PROPERTIES AND APPLICATIONS Plastic is light-weight, versatile, and inexpen- Since the 1950s, plastic has found countless Plastic is often used in combination with other sive. Most types of plastics are made with applications in food packaging items, such as materials such as paper & board, metals, fossil carbon, but renewable carbon sources bottles, trays, bags, and films. glass, printing inks, adhesives, and coatings. are increasingly used as raw material. COMPOSITION OF PLASTIC CHEMICAL SAFETY PACKAGING Plastics can transfer chemicals into packaged Plastics consist of polymers forming the food or beverages. This process is called structure of the material, and various additives chemical migration. In most cases, some of further customize the technical properties. A the migrating chemicals are known, while large variety of different chemicals can be used many others are identified only partially or not to produce plastic food packaging. Many of at all. Chemical migration depends on factors them have hazardous properties, and others such as food type, temperature, and storage lack publicly available toxicity data. In addition, time. Its impact on human health is still not well plastics contain so-called non-intentionally understood. added substances, including degradation prod- ucts, contaminants, and reaction by-products. Polymers Food Plastic Additives MICROPLASTICS END-OF-LIFE Plastic packaging can also End-of-life options for plastic release microplastic particles packaging include landfill, incin- during production, use, and at the eration, and recycling. However, end-of-life. Therefore, it is a source incorrect disposal and leaching of of human and environmental plastic packaging into the environ- exposure to microplastics that can ment leads to severe pollution.
    [Show full text]