The Plant Journal (2017) 91, 3–21 doi: 10.1111/tpj.13553 Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention Terezie Mandakov a1, Zheng Li2, Michael S. Barker2 and Martin A. Lysak1,* 1Plant Cytogenomics Research Group, CEITEC–Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic, and 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA Received 30 December 2016; revised 17 March 2017; accepted 23 March 2017; published online 31 March 2017. *For correspondence (e-mail
[email protected]). SUMMARY Hybridization and polyploidy followed by genome-wide diploidization had a significant impact on the diver- sification of land plants. The ancient At-a whole-genome duplication (WGD) preceded the diversification of crucifers (Brassicaceae). Some genera and tribes also experienced younger, mesopolyploid WGDs concealed by subsequent genome diploidization. Here we tested if multiple base chromosome numbers originated due to genome diploidization after independent mesopolyploid WGDs and how diploidization affected post- polyploid gene retention. Sixteen species representing 10 Brassicaceae tribes were analyzed by comparative chromosome painting and/or whole-transcriptome analysis of gene age distributions and phylogenetic anal- yses of gene duplications. Overall, we found evidence for at least 13 independent mesopolyploidies fol- lowed by different degrees of diploidization across