(Raphanus Sativus L.) Based on Comparative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of the Potential for Biological Control of Wild Radish (Raphanus Raphanistrum) Based on Surveys in the Mediterranean Region
Thirteenth Australian Weeds Conference Review of the potential for biological control of wild radish (Raphanus raphanistrum) based on surveys in the Mediterranean region John K. Scott1,2,3, Janine Vitou2 and Mireille Jourdan2 1 Cooperative Research Centre for Australian Weed Management 2 CSIRO European Laboratory, Campus International de Baillarguet, 34980 Montferrier sur Lez, France 3 Present Address: CSIRO Entomology, Private Bag 5, PO Wembley, Western Australia 6913, Australia Summary Wild radish (Raphanus raphanistrum) BIOLOGICAL CONTROL STRATEGY (Brassicaceae) is one of southern Australia’s worst Classical biological control of wild radish is a diffi cult weeds of cropping. The potential for biological objective. In the sections below are summarised the control of this weed in Australia is being investigated main issues, which are mainly to do with the safety of in the weed’s original distribution, southern Europe biological control because of the shared evolution be- and the circum-Mediterranean region. Surveys for tween wild radish and some important crop species. insects and pathogens have been made throughout the Mediterranean region, concentrating on southern Genetics and evolution of Raphanus Wild radish Portugal, northern Tunisia, the Mediterranean coast relatives in the family Brassicaceae comprises about of France, and southern Greece. While many of 13 tribes, 375 genera and 3200 species (Hewson the organisms found are specialists on the family 1982, Schulz 1936). The genus Raphanus is included Brassicaceae, most of these are not suffi ciently host in the tribe Brassiceae, which is regarded as a natural specifi c to exclude the risk to canola (Brassica napus), grouping. Within the Brassiceae, most phylogenetic the most important crop related to wild radish. -
TERRESTRIAL VEGETATION and ENVIRONMENTS on HEARD ISLAND by D.M
Papers and Proceedings of the Royal Society of Tasmania, Volume 133(2), 2000 33 TERRESTRIAL VEGETATION AND ENVIRONMENTS ON HEARD ISLAND by D.M. Bergstrom and P.M. Selkirk (with three tables, one text-figure, one plate and an appendix) BERGSTROM, D.M. & SELKIRK, P.M., 2000 (30:vi): Terrestrial vegetation and environments on Heard Island. In Banks, M.R. & Brown, M.J. (Eds): HEARD ISLAND PAPERS. Pap. Proc. R. Soc. Tasm. 133(2): 33-46. https://doi.org/10.26749/rstpp.133.2.33 ISSN 0080-4703. Department ofBotany, The University of Queensland, Brisbane, Queensland, Australia 4072 (DMB); and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia 2019 (PMS). Significantly ice-covered and with a very small flora (11 vascular species and about 60 bryophyte taxa), Heard Island is still emerging from the effects of the last glacial maximum. This study presents the results of a general vegetation survey. A baseline framework of environmental conditions that affect vegetation on the island is described and a classification (TWINS PAN) analysis based on presence/ absence data of both vascular plant species and bryophyte taxa is provided. Distinct suites of taxa were identified on the island, some containing bryophytes only. Fifreen ecological groups were delineated. A discussion of ecological amplitude ofimportant bryophyte and vascular plant taxa on Heard Island is included. Key Words: Subantarctic, tundra, vegetation, bryophytes, cushion plants, Heard Island. INTRODUCTION during the Tertiary and included a variety of ferns and a podocarp (Quilty et al. 1983). Subantarctic Heard Island (53°06'S, 73°32'E) is approxi There have been few studies of terrestrial plant ecology mately 4850 km southeast of southern Africa, 4350 km on Heard Island. -
Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. -
Factors Influencing Sulforaphane Content in Broccoli Sprouts and Subsequent Sulforaphane Extraction
foods Article Factors Influencing Sulforaphane Content in Broccoli Sprouts and Subsequent Sulforaphane Extraction Jan Tˇríska 1, Josef Balík 2, Milan Houška 3, Pavla Novotná 3, Martin Magner 4,5, NadˇeždaVrchotová 1, Pavel Híc 2, Ladislav Jílek 6, KateˇrinaThorová 7, Petr Šnurkoviˇc 2 and Ivo Soural 2,* 1 Global Change Research Institute CAS, 603 00 Brno, Czech Republic; [email protected] (J.T.); [email protected] (N.V.) 2 Faculty of Horticulture, Mendel University in Brno, 691 44 Lednice, Czech Republic; [email protected] (J.B.); [email protected] (P.H.); [email protected] (P.Š.) 3 Food Research Institute Prague (FRIP), 102 00 Prague 10, Czech Republic; [email protected] (M.H.); [email protected] (P.N.) 4 Department of Pediatrics, University Thomayer Hospital, First Faculty of Medicine, Charles University, 140 59 Prague 4, Czech Republic; [email protected] or [email protected] 5 Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, 128 08 Prague 2, Czech Republic 6 Pure Food Norway, 1400 Ski, Norway; [email protected] 7 National Institute for Autism, 182 00 Prague 8, Czech Republic; [email protected] * Correspondence: [email protected] Abstract: Broccoli sprouts contain 10–100 times higher levels of sulforaphane than mature plants, something that has been well known since 1997. Sulforaphane has a whole range of unique biological Citation: Tˇríska,J.; Balík, J.; Houška, properties, and it is especially an inducer of phase 2 detoxication enzymes. Therefore, its use has M.; Novotná, P.; Magner, M.; been intensively studied in the field of health and nutrition. -
The Impacts of Non- Native Species on the Invertebrates of Southern Ocean Islands
Houghton, M., Terauds, A., Merritt, D., Driessen, M., Shaw, J. (2019). The impacts of non- native species on the invertebrates of Southern Ocean Islands. Journal of Insect Conservation Vol. 23, 435–452. The final publication is available at Springer via https://doi.org/10.1007/s10841-019-00147- 9 THE IMPACTS OF NON-NATIVE SPECIES ON THE INVERTEBRATES OF SOUTHERN OCEAN ISLANDS Melissa Houghton, Aleks Terauds, David Merritt, Michael Driessen & Justine Shaw. ABSTRACT Isolation and climate have protected Southern Ocean Islands from non-native species. Relatively recent introductions have had wide-ranging, sometimes devastating, impacts across a range of species and ecosystems, including invertebrates, which are the main terrestrial fauna. In our comprehensive review, we found that despite the high abundance of non-native plants across the region, their impacts on native invertebrates are not well-studied and remain largely unknown. We highlight that non-native invertebrates are numerous and continue to arrive. Their impacts are multi-directional, including changing nutrient cycling regimes, establishing new functional guilds, out-competing native species, and mutually assisting spread of other non-native species. Non-native herbivorous and omnivorous vertebrates have caused declines in invertebrate habitat, but data that quantifies implications for invertebrates are rare. Predatory mammals not only indirectly effect invertebrates through predation of ecosystem engineers such as seabirds, but also directly shape community assemblages through invertebrate diet preferences and size-selective feeding. We found that research bias is not only skewed towards investigating impacts of mice, but is also focused more intensely on some islands, such as Marion Island, and towards some taxa, such as beetles and moths. -
Toxicity of Glucosinolates and Their Enzymatic Decomposition Products to Caenorhabditis Elegans
Journal of Nematology 27(3):258-262. 1995. © The Society of Nematologists 1995. Toxicity of Glucosinolates and Their Enzymatic Decomposition Products to Caenorhabditis elegans STEVEN G. DONKIN, 1 MARK A. EITEMAN, 2 AND PHILLIP L. WILLIAMS 1'3 Abstract: An aquatic 24-hour lethality test using Caenorhabditis elegans was used to assess toxicity of glucosinolates and their enzymatic breakdown products. In the absence of the enzyme thioglucosi- dase (myrosinase), allyl glucosinolate (sinigrin) was found to be nontoxic at all concentrations tested, while a freeze-dried, dialyzed water extract of Crambe abyssinica containing 26% 2-hydroxyl 3-butenyl glucosinolate (epi-progoitrin) had a 50% lethal concentration (LC50) of 18.5 g/liter. Addition of the enzyme increased the toxicity (LCs0 value) of sinigrin to 0.5 g/liter, but the enzyme had no effect on the toxicity of the C. abyssinica extract. Allyl isothiocyanate and allyl cyanide, two possible breakdown products of sinigrin, had an LC50 value of 0.04 g/liter and approximately 3 g/liter, respectively. Liquid chromatographic studies showed that a portion of the sinigrin decomposed into allyl isothio- cyanate. The resuhs indicated that allyl isothiocyanate is nearly three orders of magnitude more toxic to C. elegans than the corresponding glncosinolate, suggesting isothiocyanate formation would im- prove nematode control from application of glucosinolates. Key words: Caenorhabditis elegans, Crambe abyssinica, enzyme, epi-progoitrin, glucosinolate, myrosi- nase, physiology, sinigrin, thioglucosidase. Glucosinolates are naturally occurring position products or between decomposi- compounds found primarily in plants of tion products. the family Cruciferae, where they are An objective of this work was to quantify thought to serve as repellents to potential the toxicity to the free-living nematode pests (5,10). -
Part 4 Appendices
Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri -
The Effect of Peeling on Antioxidant Capacity of Black Radish Root
PAPER THE EFFECT OF PEELING ON ANTIOXIDANT CAPACITY OF BLACK RADISH ROOT E. ENKHTUYA* and M. TSEND Department of Food Engineering, Mongolian University of Science and Technology, Baga toiruu 34, Ulaanbaatar, Mongolia *Corresponding author: [email protected] ABSTRACT In this study, freeze-dried peeled and unpeeled root, as well as the juice from peeled and unpeeled root of black radish (Raphanus sativus L. var niger) cultivated in Mongolia were characterized for their DPPH• and ABTS•+ scavenging activity, reducing power, total phenolics, and flavonoids in order to evaluate the effect of the peel. The juice from the peeled root showed strong antioxidant potential may due to its high phenolic content. However, the ability of the dried unpeeled root extract to quench free radicals and reduce Fe3+ was higher than that of the dried peeled root extract. Keywords: antioxidant capacity, black radish, peel, phenolic compounds, root Ital. J. Food Sci., vol. 32, 2020 - 701 1. INTRODUCTION Fruits and vegetables play a vital role in the prevention of degenerative diseases caused by oxidative stress and the improvement of general health as these contain vitamins, minerals, amino acids, dietary fibers, and phenolic compounds. For instance, the prevention of cancer and cardiovascular diseases has been strongly related to the intake of fresh fruits and vegetables rich in natural antioxidants. This suggests that a higher intake of such compounds will lower the risk of mortality from these diseases (WILLCOX et al., 2004). Radish (Raphanus sativus Linn.) is an edible root vegetable of the Brassicaceae (Cruciferae) family with some other popular vegetables including white and red cabbage, broccoli, brussel sprouts, cauliflower, kohlrabi, rape, and mustard. -
Hydrolization of Raphanus Sativus L. White Hot Radish Starch to Receive Active Elements and Nutritional Components
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 1, January - 2014 Hydrolization of Raphanus Sativus L. White Hot Radish Starch to Receive Active Elements and Nutritional Components Pham Huu Quynh Nhu, Nguyen Phuoc Minh, Dong Thi Anh Dao Vietnam National Uni. HCMC University of Technology, Vietnam ABSTRACT Raphanus sativus L. contains many active elements and nutritional components benefit for human health including essential amino acids, vitamins, mineral ingredients and especially flavonoids. In the scope of this research, the nutritional components of Raphanus sativus L. and parameters influencing to production process of Raphanus sativus L. powder have been conducted based on such key processes as blanching, enzyme treatment and drying to improve ratio of active elements and nutritional components. Result of experiments shows that first blanching raw material at 80oC for 2 minutes, next having them ground with adding enzyme of 0.2% w/w, keeping at 80oC for 120 minutes, filtering, condensing to the concentration of 9~10% of dry matter, adding maltodextrin to increase concentration of dry matter to 25%, and finally spray drying to get Raphanus sativus L. powder with 5.6% of moisture, there is not big change of protein and quercetine, decreasing of antioxidant quantity is 52% vs raw material, 3.5% of ash. Keywords: Raphanus sativus L., blanching, enzyme treatment, drying, active element, nutritional component 1. INTRODUCTION The radish (Raphanus sativus) is an edible root vegetable of the Brassicaceae family that was domesticated in Europe in pre-Romantimes. They are grown and consumed throughout the world. Radishes have numerous varieties, varying in size, color and duration of required cultivation time. -
Biogeography and Diversification of Brassicales
Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0). -
Isothiocyanates from Cruciferous Vegetables
Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Promotoren Prof. dr. Peter J. van Bladeren Hoogleraar Toxicokinetiek en Biotransformatie, leerstoelgroep Toxicologie, Wageningen Universiteit Prof. dr. ir. Ivonne M.C.M. Rietjens Hoogleraar Toxicologie, Wageningen Universiteit Copromotor Dr. Wouter H.J. Vaes Productmanager Nutriënten en Biomarker analyse, TNO Kwaliteit van Leven, Zeist Promotiecommissie Prof. dr. Aalt Bast Universiteit Maastricht Prof. dr. ir. M.A.J.S. (Tiny) van Boekel Wageningen Universiteit Prof. dr. Renger Witkamp Wageningen Universiteit Prof. dr. Ruud A. Woutersen Wageningen Universiteit / TNO, Zeist Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelen- technologie, Agrobiotechnologie en Gezondheid) Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 13 februari 2009 des namiddags te half twee in de Aula. Title Isothiocyanates from cruciferous vegetables: kinetics, biomarkers and effects Author Martijn Vermeulen Thesis Wageningen University, Wageningen, The Netherlands (2009) with abstract-with references-with summary in Dutch ISBN 978-90-8585-312-1 ABSTRACT Cruciferous vegetables like cabbages, broccoli, mustard and cress, have been reported to be beneficial for human health. They contain glucosinolates, which are hydrolysed into isothiocyanates that have shown anticarcinogenic properties in animal experiments. To study the bioavailability, kinetics and effects of isothiocyanates from cruciferous vegetables, biomarkers of exposure and for selected beneficial effects were developed and validated. As a biomarker for intake and bioavailability, isothiocyanate mercapturic acids were chemically synthesised as reference compounds and a method for their quantification in urine was developed. -
Crop Profiles
Crop Profile for Kohlrabi in Arizona Prepared: November, 2001 Family: Brassicaceae (syn: Cruciferae) Scientific name: Brassica oleracea var. gongylodes L. Edible portions: bulbous stem, young leaves, consumed raw or cooked. Use: fresh vegetable Alternate names: stem turnip, colinabo, cabbage turnip. General Production Information The Crop Profile/PMSP database, including this document, is supported by USDA NIFA. An average of 310 acres/year of kohlrabi was harvested between the growing seasons of 1994/5 and 1998/92. An average of 5600 cartons of kohlrabi was harvested between the growing seasons of 1994/5 and 1998/92. The approximate yearly value of kohlrabi production between 1994/5 and 1998/9 was 31 thousand dollars. Kohlrabi is produced in Maricopa County. Land preparation and growing expenses for kohlrabi are approximately $1.60/carton4. Harvest and post harvest expenses for kohlrabi are approximately $3.60/carton4. Cultural Practices General Information6, 9, 28: In Arizona, kohlrabi is grown during the fall and winter. Planting of kohlrabi begins the middle of September and is completed by the beginning of November. Temperatures during the months of kohlrabi production range from 30°F to 90°F. Prolonged temperatures below 50 °F can induce flowering and temperatures below freezing can stunt or even kill the crop. In Arizona, kohlrabi is grown on soils that range from a sandy loam to clay loam with a pH of 7.5-8.0. Cultivars/Varieties5: In Arizona, the most commonly grown variety of kohlrabi is ‘Grand Duke’. This is a hybrid variety that has been grown for a long time. The variety is desirable because it is fast growing, develops uniformity and it’s bulb has an excellent light-green color.