Generating and Rendering Four-Dimensional Polytopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 3 1 Geometry of Linear Programs
ORIE 6300 Mathematical Programming I September 2, 2014 Lecture 3 Lecturer: David P. Williamson Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will talk about the geometry of linear programs. 1 Geometry of Linear Programs First we need some definitions. Definition 1 A set S ⊆ <n is convex if 8x; y 2 S, λx + (1 − λ)y 2 S, 8λ 2 [0; 1]. Figure 1: Examples of convex and non convex sets Given a set of inequalities we define the feasible region as P = fx 2 <n : Ax ≤ bg. We say that P is a polyhedron. Which points on this figure can have the optimal value? Our intuition from last time is that Figure 2: Example of a polyhedron. \Circled" corners are feasible and \squared" are non feasible optimal solutions to linear programming problems occur at \corners" of the feasible region. What we'd like to do now is to consider formal definitions of the \corners" of the feasible region. 3-1 One idea is that a point in the polyhedron is a corner if there is some objective function that is minimized there uniquely. Definition 2 x 2 P is a vertex of P if 9c 2 <n with cT x < cT y; 8y 6= x; y 2 P . Another idea is that a point x 2 P is a corner if there are no small perturbations of x that are in P . Definition 3 Let P be a convex set in <n. Then x 2 P is an extreme point of P if x cannot be written as λy + (1 − λ)z for y; z 2 P , y; z 6= x, 0 ≤ λ ≤ 1. -
A New Calculable Orbital-Model of the Atomic Nucleus Based on a Platonic-Solid Framework
A new calculable Orbital-Model of the Atomic Nucleus based on a Platonic-Solid framework and based on constant Phi by Dipl. Ing. (FH) Harry Harry K. K.Hahn Hahn / Germany ------------------------------ 12. December 2020 Abstract : Crystallography indicates that the structure of the atomic nucleus must follow a crystal -like order. Quasicrystals and Atomic Clusters with a precise Icosahedral - and Dodecahedral structure indi cate that the five Platonic Solids are the theoretical framework behind the design of the atomic nucleus. With my study I advance the hypothesis that the reference for the shell -structure of the atomic nucleus are the Platonic Solids. In my new model of the atomic nucleus I consider the central space diagonals of the Platonic Solids as the long axes of Proton - or Neutron Orbitals, which are similar to electron orbitals. Ten such Proton- or Neutron Orbitals form a complete dodecahedral orbital-stru cture (shell), which is the shell -type with the maximum number of protons or neutrons. An atomic nucleus therefore mainly consists of dodecahedral shaped shells. But stable Icosahedral- and Hexagonal-(cubic) shells also appear in certain elements. Consta nt PhI which directly appears in the geometry of the Dodecahedron and Icosahedron seems to be the fundamental constant that defines the structure of the atomic nucleus and the structure of the wave systems (orbitals) which form the atomic nucelus. Albert Einstein wrote in a letter that the true constants of an Universal Theory must be mathematical constants like Pi (π) or e. My mathematical discovery described in chapter 5 shows that all irrational square roots of the natural numbers and even constant Pi (π) can be expressed with algebraic terms that only contain constant Phi (ϕ) and 1 Therefore it is logical to assume that constant Phi, which also defines the structure of the Platonic Solids must be the fundamental constant that defines the structure of the atomic nucleus. -
Abstract Regular Polytopes
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Abstract Regular Polytopes PETER MMULLEN University College London EGON SCHULTE Northeastern University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org c Peter McMullen and Egon Schulte 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United States of America Typeface Times New Roman 10/12.5 pt. System LATEX2ε [] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data McMullen, Peter, 1955– Abstract regular polytopes / Peter McMullen, Egon Schulte. p. cm. – (Encyclopedia of mathematics and its applications) Includes bibliographical references and index. ISBN 0-521-81496-0 1. Polytopes. I. Schulte, Egon, 1955– II. Title. III. Series. QA691 .M395 2002 516.35 – dc21 2002017391 ISBN 0 521 81496 0 hardback Contents Preface page xiii 1 Classical Regular Polytopes 1 1A The Historical Background 1 1B Regular Convex Polytopes 7 1C Extensions -
1 Lifts of Polytopes
Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
Digital Geometry Processing Mesh Basics
Digital Geometry Processing Basics Mesh Basics: Definitions, Topology & Data Structures 1 © Alla Sheffer Standard Graph Definitions G = <V,E> V = vertices = {A,B,C,D,E,F,G,H,I,J,K,L} E = edges = {(A,B),(B,C),(C,D),(D,E),(E,F),(F,G), (G,H),(H,A),(A,J),(A,G),(B,J),(K,F), (C,L),(C,I),(D,I),(D,F),(F,I),(G,K), (J,L),(J,K),(K,L),(L,I)} Vertex degree (valence) = number of edges incident on vertex deg(J) = 4, deg(H) = 2 k-regular graph = graph whose vertices all have degree k Face: cycle of vertices/edges which cannot be shortened F = faces = {(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I), (D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)} © Alla Sheffer Page 1 Digital Geometry Processing Basics Connectivity Graph is connected if there is a path of edges connecting every two vertices Graph is k-connected if between every two vertices there are k edge-disjoint paths Graph G’=<V’,E’> is a subgraph of graph G=<V,E> if V’ is a subset of V and E’ is the subset of E incident on V’ Connected component of a graph: maximal connected subgraph Subset V’ of V is an independent set in G if the subgraph it induces does not contain any edges of E © Alla Sheffer Graph Embedding Graph is embedded in Rd if each vertex is assigned a position in Rd Embedding in R2 Embedding in R3 © Alla Sheffer Page 2 Digital Geometry Processing Basics Planar Graphs Planar Graph Plane Graph Planar graph: graph whose vertices and edges can Straight Line Plane Graph be embedded in R2 such that its edges do not intersect Every planar graph can be drawn as a straight-line plane graph © -
Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166). -
Can Every Face of a Polyhedron Have Many Sides ?
Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1. -
Petrie Schemes
Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes. -
Four-Dimensional Regular Polytopes
faculty of science mathematics and applied and engineering mathematics Four-dimensional regular polytopes Bachelor’s Project Mathematics November 2020 Student: S.H.E. Kamps First supervisor: Prof.dr. J. Top Second assessor: P. Kiliçer, PhD Abstract Since Ancient times, Mathematicians have been interested in the study of convex, regular poly- hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids. In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe- matically, adding one regular polytope to the collection with no analogue regular polyhedron. This thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry groups of the polytopes are touched upon. To better understand the notions of regularity and sym- metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex, regular polyhedra in three-dimensional space. Keywords: Regular convex 4-polytopes, Platonic solids, symmetry groups Acknowledgements I would like to thank prof. dr. J. Top for supervising this thesis online and adapting to the cir- cumstances of Covid-19. I also want to thank him for his patience, and all his useful comments in and outside my LATEX-file. Also many thanks to my second supervisor, dr. P. Kılıçer. Furthermore, I would like to thank Jeanne for all her hospitality and kindness to welcome me in her home during the process of writing this thesis. -
Regular Polyhedra Through Time
Fields Institute I. Hubard Polytopes, Maps and their Symmetries September 2011 Regular polyhedra through time The greeks were the first to study the symmetries of polyhedra. Euclid, in his Elements showed that there are only five regular solids (that can be seen in Figure 1). In this context, a polyhe- dron is regular if all its polygons are regular and equal, and you can find the same number of them at each vertex. Figure 1: Platonic Solids. It is until 1619 that Kepler finds other two regular polyhedra: the great dodecahedron and the great icosahedron (on Figure 2. To do so, he allows \false" vertices and intersection of the (convex) faces of the polyhedra at points that are not vertices of the polyhedron, just as the I. Hubard Polytopes, Maps and their Symmetries Page 1 Figure 2: Kepler polyhedra. 1619. pentagram allows intersection of edges at points that are not vertices of the polygon. In this way, the vertex-figure of these two polyhedra are pentagrams (see Figure 3). Figure 3: A regular convex pentagon and a pentagram, also regular! In 1809 Poinsot re-discover Kepler's polyhedra, and discovers its duals: the small stellated dodecahedron and the great stellated dodecahedron (that are shown in Figure 4). The faces of such duals are pentagrams, and are organized on a \convex" way around each vertex. Figure 4: The other two Kepler-Poinsot polyhedra. 1809. A couple of years later Cauchy showed that these are the only four regular \star" polyhedra. We note that the convex hull of the great dodecahedron, great icosahedron and small stellated dodecahedron is the icosahedron, while the convex hull of the great stellated dodecahedron is the dodecahedron. -
Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear fields
Published in International Journal of Solids and Structures 85-86 (2016), 67-75 doi: http://dx.doi.org/10.1016/j.ijsolstr.2016.01.027 Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part I: Formulation and full-field solution F. Dal Corso, S. Shahzad and D. Bigoni DICAM, University of Trento, via Mesiano 77, I-38123 Trento, Italy Abstract An infinite class of nonuniform antiplane shear fields is considered for a linear elastic isotropic space and (non-intersecting) isotoxal star-shaped polygonal voids and rigid inclusions per- turbing these fields are solved. Through the use of the complex potential technique together with the generalized binomial and the multinomial theorems, full-field closed-form solutions are obtained in the conformal plane. The particular (and important) cases of star-shaped cracks and rigid-line inclusions (stiffeners) are also derived. Except for special cases (ad- dressed in Part II), the obtained solutions show singularities at the inclusion corners and at the crack and stiffener ends, where the stress blows-up to infinity, and is therefore detri- mental to strength. It is for this reason that the closed-form determination of the stress field near a sharp inclusion or void is crucial for the design of ultra-resistant composites. Keywords: v-notch, star-shaped crack, stress singularity, stress annihilation, invisibility, conformal mapping, complex variable method. 1 Introduction The investigation of the perturbation induced by an inclusion (a void, or a crack, or a stiff insert) in an ambient stress field loading a linear elastic infinite space is a fundamental problem in solid mechanics, whose importance need not be emphasized.