Parity Check Schedules for Hyperbolic Surface Codes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Descartes, Euler, Poincaré, Pólya and Polyhedra Séminaire De Philosophie Et Mathématiques, 1982, Fascicule 8 « Descartes, Euler, Poincaré, Polya and Polyhedra », , P
Séminaire de philosophie et mathématiques PETER HILTON JEAN PEDERSEN Descartes, Euler, Poincaré, Pólya and Polyhedra Séminaire de Philosophie et Mathématiques, 1982, fascicule 8 « Descartes, Euler, Poincaré, Polya and Polyhedra », , p. 1-17 <http://www.numdam.org/item?id=SPHM_1982___8_A1_0> © École normale supérieure – IREM Paris Nord – École centrale des arts et manufactures, 1982, tous droits réservés. L’accès aux archives de la série « Séminaire de philosophie et mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ - 1 - DESCARTES, EULER, POINCARÉ, PÓLYA—AND POLYHEDRA by Peter H i l t o n and Jean P e d e rs e n 1. Introduction When geometers talk of polyhedra, they restrict themselves to configurations, made up of vertices. edqes and faces, embedded in three-dimensional Euclidean space. Indeed. their polyhedra are always homeomorphic to thè two- dimensional sphere S1. Here we adopt thè topologists* terminology, wherein dimension is a topological invariant, intrinsic to thè configuration. and not a property of thè ambient space in which thè configuration is located. Thus S 2 is thè surface of thè 3-dimensional ball; and so we find. among thè geometers' polyhedra. thè five Platonic “solids”, together with many other examples. However. we should emphasize that we do not here think of a Platonic “solid” as a solid : we have in mind thè bounding surface of thè solid. -
Polyhedral Surfaces, Discrete Curvatures, Shape Analysis, 3D Modelling, Segmentation
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 polyhedral surfaces, discrete curvatures, shape analysis, 3D modelling, segmentation. Alexandra BAC, Marc DANIEL, Jean-Louis MALTRET* 3D MODELLING AND SEGMENTATION WITH DISCRETE CURVATURES Recent concepts of discrete curvatures are very important for Medical and Computer Aided Geometric Design applications. A first reason is the opportunity to handle a discretisation of a continuous object, with a free choice of the discretisation. A second and most important reason is the possibility to define second-order estimators for discrete objects in order to estimate local shapes and manipulate discrete objects. There is an increasing need to handle polyhedral objects and clouds of points for which only a discrete approach makes sense. These sets of points, once structured (in general meshed with simplexes for surfaces or volumes), can be analysed using these second-order estimators. After a general presentation of the problem, a first approach based on angular defect, is studied. Then, a local approximation approach (mostly by quadrics) is presented. Different possible applications of these techniques are suggested, including the analysis of 2D or 3D images, decimation, segmentation... We finally emphasise different artefacts encountered in the discrete case. 1. INTRODUCTION This paper offers a review of work on discrete curvatures for Computer Aided Geometric Design applications and a discussion about some ideas for further studies. We consider the discrete curvatures computed on a set of points and their relevance to continuous curvatures when the density of the points increases. First of all, it is interesting to recall that curvatures are fundamental tools for studying curves and surfaces. -
Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166). -
Binding Regular Polyhedra
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Optimal packages: binding regular polyhedra F. Kovacs´ Department of Structural Mechanics Budapest University of Technology and Economics ABSTRACT: Strings on the surface of gift boxes can be modelled as a special kind of cable-and-joint struc- ture. This paper deals with systems composed of idealised (frictionless) closed loops of strings that provide stable binding to the underlying convex polyhedron (‘package’). Optima are searched in both the sense of topology and geometry in finding minimal number of closed loops as well as the minimal (total) length of cables to ensure such a stable binding for simple cases of polyhedra. 1 INTRODUCTION and concave otherwise (for example, ‘zigzag’ loops with alternating turns are concave). In these terms, the 1.1 Loops on a polyhedral surface loop on the left hand side of Fig. 1 is complex due to the self-intersection at the top and concave because of There are some practical occurrences of closed strings the two rectangular turns with different handedness on polyhedral surfaces. For example, mailed pack- at the bottom (such connections will be called self- ages are traditionally bound by some pieces of string. binding from now on); whereas the skew string to the Another example is from basketry, when a woven right is simple and convex (by having no turns within pattern over a polyhedral surface is also formed by the polyhedral surface at all). some (mainly closed) strings (Tarnai, Kov´acs, Fowler, & Guest 2012, Kov´acs 2014). -
Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear fields
Published in International Journal of Solids and Structures 85-86 (2016), 67-75 doi: http://dx.doi.org/10.1016/j.ijsolstr.2016.01.027 Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part I: Formulation and full-field solution F. Dal Corso, S. Shahzad and D. Bigoni DICAM, University of Trento, via Mesiano 77, I-38123 Trento, Italy Abstract An infinite class of nonuniform antiplane shear fields is considered for a linear elastic isotropic space and (non-intersecting) isotoxal star-shaped polygonal voids and rigid inclusions per- turbing these fields are solved. Through the use of the complex potential technique together with the generalized binomial and the multinomial theorems, full-field closed-form solutions are obtained in the conformal plane. The particular (and important) cases of star-shaped cracks and rigid-line inclusions (stiffeners) are also derived. Except for special cases (ad- dressed in Part II), the obtained solutions show singularities at the inclusion corners and at the crack and stiffener ends, where the stress blows-up to infinity, and is therefore detri- mental to strength. It is for this reason that the closed-form determination of the stress field near a sharp inclusion or void is crucial for the design of ultra-resistant composites. Keywords: v-notch, star-shaped crack, stress singularity, stress annihilation, invisibility, conformal mapping, complex variable method. 1 Introduction The investigation of the perturbation induced by an inclusion (a void, or a crack, or a stiff insert) in an ambient stress field loading a linear elastic infinite space is a fundamental problem in solid mechanics, whose importance need not be emphasized. -
Winter Break "Homework Zero"
\HOMEWORK 0" Last updated Friday 27th December, 2019 at 2:44am. (Not officially to be turned in) Try your best for the following. Using the first half of Shurman's text is a good start. I will possibly add some notes to supplement this. There are also some geometric puzzles below for you to think about. Suggested winter break homework - Learn the proof to Cauchy-Schwarz inequality. - Find out what open sets, closed sets, compact set (closed and bounded in Rn, as well as the definition with open covering cf. Heine-Borel theorem), and connected set means in Rn. - Find out what supremum (least upper bound) and infimum (greatest lower bound) of a subset of real numbers mean. - Find out what it means for a sequence and series to converge. - Find out what does it mean for a function f : Rn ! Rm to be continuous. There are three equivalent characterizations: (1) Limit preserving definition. (2) Inverse image of open sets are open. (3) −δ definition. - Find the statements to extreme value theorem, intermediate value theorem, and mean value theorem. - Find out what is the fundamental theorem of calculus. - Find out how to perform matrix multiplication, computation of matrix inverse, and matrix deter- minant. - Find out what is the geometric meaning of matrix determinantDecember, 2019 . - Find out how to solve a linear system of equation using row reduction. n m - Find out what a linear map from R to R is, and what is its relationth to matrix multiplication by an m × n matrix. How is matrix product related to composition of linear maps? - Find out what it means to be differentiable at a point a for a multivariate function, what is the derivative of such function at a, and how to compute it. -
Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series
Berkeley Math Circle Intermediate I, 1/23, 1/20, 2/6 Presenter: Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series Part 1 – Polygon Angle Formula Let’s start simple. How do we find the sum of the interior angles of a convex polygon? • Write down as many methods as you can. • Think about: how can you adapt your method to concave polygons? Formula for the interior angles of a polygon: _________________ . Q: There is an equality between the number of ways to triangulate an n+2-gon and the number of expressions containing n pairs of parentheses that are correctly matched. Prove that these numbers are the same. Can you find a closed formula? Part 2 – Platonic Solids and Angular Defect Definition: A platonic solid is a polyhedron which a. has only one kind of regular polygon for a face and b. has the same number of faces at each vertex. One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares. In Schläfli notation, this is {4, 3}: the regular polyhedron with 3 regular 4-gons at each vertex. • Can there be polyhedra with exactly one or two squares at each vertex? • Can there be polyhedra with exactly four squares at each vertex? For future reference, we’ll need the notion of the “angular defect” as well. Rather than focusing on what is present at the vertex, we focus on what is absent: the deviation from 360 degrees at the vertex, or “leftover” angle. In this case, it is 360−90×3=90 . -
Are Your Polyhedra the Same As My Polyhedra?
Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach. -
Chapter 2 Figures and Shapes 2.1 Polyhedron in N-Dimension in Linear
Chapter 2 Figures and Shapes 2.1 Polyhedron in n-dimension In linear programming we know about the simplex method which is so named because the feasible region can be decomposed into simplexes. A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a 2D simplex is a triangle, a 3D simplex is a tetrahedron. In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)- dimensional hyperplane. Therefore simplex is the simplest building block in the space it belongs. An n-dimensional polyhedron can be constructed from simplexes with only possible common face as their intersections. Such a definition is a bit vague and such a figure need not be connected. Connected polyhedron is the prototype of a closed manifold. We may use vertices, edges and faces (hyperplanes) to define a polyhedron. A polyhedron is convex if all convex linear combinations of the vertices Vi are inside itself, i.e. i Vi is contained inside for all i 0 and all _ i i 1. i If a polyhedron is not convex, then the smallest convex set which contains it is called the convex hull of the polyhedron. Separating hyperplane Theorem For any given point outside a convex set, there exists a hyperplane with this given point on one side of it and the entire convex set on the other. Proof: Because the given point will be outside one of the supporting hyperplanes of the convex set. 2.2 Platonic Solids Known to Plato (about 500 B.C.) and explained in the Elements (Book XIII) of Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the regular polygons of a single species and the corners (vertices) are all alike. -
Optimization Methods in Discrete Geometry
Optimization Methods in Discrete Geometry Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universität Berlin von Moritz Firsching Berlin 2015 Betreuer: Prof. Günter M. Ziegler, PhD Zweitgutachter: Prof. Dr. Dr.Jürgen Richter-Gebert Tag der Disputation: 28. Januar 2016 וראיתי תשוקתך לחכמות הלמודיות עצומה והנחתיך להתלמד בהם לדעתי מה אחריתך. 4 (דלאלה¨ אלחאירין) Umseitiges Zitat findet sich in den ersten Seiten des Führer der Unschlüssigen oder kurz RaMBaM רבי משה בן מיימון von Moses Maimonides (auch Rabbi Moshe ben Maimon des ,מורה נבוכים ,aus dem Jahre 1200. Wir zitieren aus der hebräischen Übersetzung (רמב״ם judäo-arabischen Originals von Samuel ben Jehuda ibn Tibbon aus dem Jahr 1204. Hier einige spätere Übersetzungen des Zitats: Tunc autem vidi vehementiam desiderii tui ad scientias disciplinales: et idcirco permisi ut exerceres anima tuam in illis secundum quod percepi de intellectu tuo perfecto. —Agostino Giustiniani, Rabbi Mossei Aegyptii Dux seu Director dubitantium aut perplexorum, 1520 Und bemerkte ich auch, daß Dein Eifer für das mathematische Studium etwas zu weit ging, so ließ ich Dich dennoch fortfahren, weil ich wohl wußte, nach welchem Ziele Du strebtest. — Raphael I. Fürstenthal, Doctor Perplexorum von Rabbi Moses Maimonides, 1839 et, voyant que tu avais un grand amour pour les mathématiques, je te laissais libre de t’y exercer, sachant quel devait être ton avenir. —Salomon Munk, Moise ben Maimoun, Dalalat al hairin, Les guide des égarés, 1856 Observing your great fondness for mathematics, I let you study them more deeply, for I felt sure of your ultimate success. -
Morphogenesis of Curved Structural Envelopes Under Fabrication Constraints
École doctorale Science, Ingénierie et Environnement Manuscrit préparé pour l’obtention du grade de docteur de l’Université Paris-Est Spécialité: Structures et Matériaux Morphogenesis of curved structural envelopes under fabrication constraints Xavier Tellier Soutenue le 26 mai 2020 Devant le jury composé de : Rapporteurs Helmut Pottmann TU Viennes / KAUST Christopher Williams Bath / Chalmers Universities Présidente du jury Florence Bertails-Descoubes INRIA Directeurs de thèse Olivier Baverel École des Ponts ParisTech Laurent Hauswirth UGE, LAMA laboratory Co-encadrant Cyril Douthe UGE, Navier laboratory 2 Abstract Curved structural envelopes combine mechanical efficiency, architectural potential and a wide design space to fulfill functional and environment goals. The main barrier to their use is that curvature complicates manufacturing, assembly and design, such that cost and construction time are usually significantly higher than for parallelepipedic structures. Significant progress has been made recently in the field of architectural geometry to tackle this issue, but many challenges remain. In particular, the following problem is recurrent in a designer’s perspective: Given a constructive system, what are the possible curved shapes, and how to create them in an intuitive fashion? This thesis presents a panorama of morphogenesis (namely, shape creation) methods for architectural envelopes. It then introduces four new methods to generate the geometry of curved surfaces for which the manufacturing can be simplified in multiple ways. Most common structural typologies are considered: gridshells, plated shells, membranes and funicular vaults. A particular attention is devoted to how the shape is controlled, such that the methods can be used intuitively by architects and engineers. Two of the proposed methods also allow to design novel structural systems, while the two others combine fabrication properties with inherent mechanical efficiency. -
6.5 X 11 Threelines.P65
Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Table of Contents More information Contents Preface page xi Acknowledgments xv 1 Flexagons – A beginning thread 1 1.1 Four scientists at play 1 1.2 What are flexagons? 3 1.3 Hexaflexagons 4 1.4 Octaflexagons 11 2 Another thread – 1-period paper-folding 17 2.1 Should you always follow instructions? 17 2.2 Some ancient threads 20 2.3 Folding triangles and hexagons 21 2.4 Does this idea generalize? 24 2.5 Some bonuses 37 3 More paper-folding threads – 2-period paper-folding 39 3.1 Some basic ideas about polygons 39 3.2 Why does the FAT algorithm work? 39 3.3 Constructing a 7-gon 43 ∗3.4 Some general proofs of convergence 47 4 A number-theory thread – Folding numbers, a number trick, and some tidbits 52 4.1 Folding numbers 52 ∗ ta −1 4.2 Recognizing rational numbers of the form tb−1 58 ∗4.3 Numerical examples and why 3 × 7 = 21 is a very special number fact 63 4.4 A number trick and two mathematical tidbits 66 5 The polyhedron thread – Building some polyhedra and defining a regular polyhedron 71 vii © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Table of Contents More information viii Contents 5.1 An intuitive approach to polyhedra 71 5.2 Constructing polyhedra from nets 72 5.3 What is a regular polyhedron? 80 6 Constructing