An Extensive Program of Periodic Alternative Splicing Linked to Cell Cycle

Total Page:16

File Type:pdf, Size:1020Kb

An Extensive Program of Periodic Alternative Splicing Linked to Cell Cycle 1 2 An Extensive Program of Periodic Alternative Splicing Linked to Cell Cycle 3 Progression 4 5 6 Authors: 7 Daniel Dominguez1,2, Yi-Hsuan Tsai1,3, Robert Weatheritt 4, Yang Wang1,2, 8 Benjamin J. Blencowe * 4, Zefeng Wang* 1,5 9 10 Affiliations: 11 12 1 Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 13 2 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel 14 Hill, NC 15 3 Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel 16 Hill, Chapel Hill, NC, 17 4 Donnelly Centre and Department of Molecular Genetics, University of Toronto, Canada 18 5 Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 19 Chinese Academy of Science, Shanghai, China 20 21 * Correspondence to: [email protected]; [email protected] 22 23 24 Abstract 25 Progression through the mitotic cell cycle requires periodic regulation of gene function at 26 the levels of transcription, translation, protein-protein interactions, post-translational 27 modification and degradation. However, the role of alternative splicing (AS) in the temporal 28 control of cell cycle is not well understood. By sequencing the human transcriptome through two 29 continuous cell cycles, we identify ~1,300 genes with cell cycle-dependent AS changes. These 30 genes are significantly enriched in functions linked to cell cycle control, yet they do not 31 significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of 32 the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level 33 undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 34 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is 35 associated with various cancers. These results thus reveal a large program of CLK1-regulated 36 periodic AS intimately associated with cell cycle control. 37 38 39 40 Impact statement 41 42 We reveal extensive periodic regulation of alternative splicing during the cell cycle in 43 genes linked to cell cycle functions, and involving an auto-inhibitory mechanism employing the 44 SR protein kinase CLK1. 2 45 Introduction 46 47 Alternative splicing (AS) is a critical step of gene regulation that greatly expands 48 proteomic diversity. Nearly all (>90%) human genes undergo AS and a substantial fraction of 49 the resulting isoforms are thought to have distinct functions (Pan et al., 2008; Wang et al., 2008). 50 AS is tightly controlled, and its mis-regulation is a common cause of human diseases (Wang and 51 Cooper, 2007). Generally, AS is regulated by cis-acting splicing regulatory elements that recruit 52 trans-acting splicing factors to promote or inhibit splicing (Matera and Wang, 2014; Wang and 53 Burge, 2008). Alterations in splicing factor expression have been observed in many cancers and 54 are thought to activate cancer-specific splicing programs that control cell cycle progression, 55 cellular proliferation and migration (David and Manley, 2010; Oltean and Bates, 2014). 56 Consistent with these findings, several splicing factors function as oncogenes or tumor 57 suppressors (Karni et al., 2007; Wang et al., 2014), and cancer-specific splicing alterations often 58 affect genes that function in cell cycle control (Tsai et al., 2015). 59 Progression through the mitotic cell cycle requires periodic regulation of gene function 60 that is primarily achieved through coordination of protein levels with specific cell cycle stages 61 (Harashima et al., 2013; Vermeulen et al., 2003). This temporal coordination enables timely 62 control of molecular events that ensure accurate chromatin duplication and daughter cell 63 segregation. Periodic gene function is conventionally thought to be achieved through stage- 64 dependent gene transcription (Bertoli et al., 2013), translation (Grabek et al., 2015), protein- 65 protein interactions (Satyanarayana and Kaldis, 2009), post-translational protein modifications, 66 and ubiquitin-dependent protein degradation (Mocciaro and Rape, 2012). Although AS is one of 67 the most widespread mechanisms involved in gene regulation, the relationship between the 68 global coordination of AS and the cell cycle has not been investigated. 3 69 Major families of splicing factors include the Serine-Arginine rich proteins (SR) proteins 70 and the heterogeneous nuclear ribonucleoproteins (hnRNPs), whose levels and activities vary 71 across cell types. SR proteins generally contain one or two RNA recognition motifs (RRMs) and 72 a domain rich in alternating Arg and Ser residues (RS domain). Generally, RRM domains confer 73 RNA binding specificity while the RS domain mediates protein-protein and protein-RNA 74 interactions to affect splicing (Long and Caceres, 2009; Zhou and Fu, 2013). Post-translational 75 modifications of SR proteins, most notably phosphorylation, modulate their splicing regulatory 76 capacity by altering protein localization, stability or activity (Gui et al., 1994; Lai et al., 2003; 77 Prasad et al., 1999; Shin and Manley, 2002). Dynamic changes in SR protein phosphorylation 78 have been detected after DNA damage (Edmond et al., 2011; Leva et al., 2012) and during the 79 cell cycle (Gui et al., 1994; Shin and Manley, 2002), suggesting that regulation of AS may have 80 important roles in cell cycle control. However, the functional consequences of SR protein 81 (de)phosphorylation during the cell cycle are largely unclear. 82 Through a global-scale analysis of the human transcriptome at single-nucleotide 83 resolution through two continuous cell cycles, we have identified widespread periodic changes in 84 AS that are coordinated with specific stages of the cell cycle. These periodic AS events belong to 85 a set of genes that is largely separate from the set of genes periodically regulated during the cell 86 cycle at the transcript level, yet the AS regulated set is significantly enriched in cell cycle- 87 associated functions. We further demonstrate that a significant fraction of the periodic AS events 88 is regulated by the SR protein kinase, CLK1, and that CLK itself is also subject to cell cycle- 89 dependent regulation. Moreover, inhibition or depletion of CLK1 causes pleiotropic defects in 90 mitosis that lead to cell death or G1/S arrest, suggesting that the temporal regulation of splicing 91 by CLK1 is critical for cell cycle progression. The discovery of periodic AS thus reveals a 4 92 widespread yet previously underappreciated mechanism for the regulation of gene function 93 during the cell cycle. 94 95 Results 96 Alternative splicing is coordinated with different cell cycle phases 97 To systematically investigate the regulation of AS during the cell cycle, we performed an 98 RNA-Seq analysis of synchronously dividing cells using a total of 2.3 billion reads generated 99 across all stages (G1, S, G2 and M) of two complete rounds of the cell cycle (Figure 1-figure 100 supplement 1A). To maximize the detection of regulated AS events, we used the complementary 101 analysis pipelines, MISO and VAST-TOOLS (Katz et al., 2010; Irimia et al., 2014). These 102 pipelines have different detection specificities and employ partially overlapping reference sets of 103 annotated AS events, and therefore afford a more comprehensive analysis when employed 104 together. Both pipelines were used to determine PSI (the percent of transcript with an exon 105 spliced in) and PIR (the percent of transcripts with an intron retained). Alternative exons 106 detected by both pipelines had highly correlated PSI values (Figure 1-figure supplement 1G; see 107 below). Consistent with previous results (Bar-Joseph et al., 2008; Whitfield et al., 2002), 108 transcripts from approximately 14.2% (1,182) of expressed genes displayed periodic differences 109 in steady-state levels between two or more cell cycle stages (see below). Remarkably, 15.6% 110 (1,293) of expressed genes also contained 1,747 periodically-regulated AS events, among a total 111 of ~40,000 detected splicing events (FDR < 2.5%; Figure 1A and Figure 1-figure supplement 112 1B, 1C, 1D). 113 Importantly, as has been observed previously for AS regulatory networks (Pan et al., 114 2004), the majority of genes with periodic AS events did not overlap those with periodic steady- 5 115 state changes in mRNA expression. This indicates that genes with periodic changes in AS and 116 transcript levels are largely independently regulated during the cell cycle (Figure 1B). Further 117 supporting this conclusion, we did not observe a significant correlation (positive or negative) 118 between exon PSI values and mRNA expression levels for genes with both periodic expression 119 and periodic exon skipping (data not shown). A gene ontology (GO) analysis reveals that genes 120 with periodic AS, like those with periodic transcript level changes (Bar-Joseph et al., 2008; 121 Whitfield et al., 2002), are significantly enriched in cell cycle-related functional categories, 122 including M-phase, nuclear division and DNA metabolic process (Figure 1C; adjusted P <0.05 123 for all listed categories, FDR <10%) (Supplementary Table1). Similar GO enrichment results 124 were observed when removing the relatively small fraction (10%) of periodically spliced genes 125 that also display significant mRNA expression changes across the cell cycle (Figure 1C). These 126 results thus reveal that numerous genes not previously linked to the cell cycle, as well as 127 previously defined cell cycle-associated genes thought to be constantly expressed across the cell 128 cycle, are in fact subject to periodic regulation at the level of AS (Supplementary File 1 for a full 129 list). 130 Among the different classes of AS analyzed (cassette exons, alternative 5´/3´ splice sites 131 and intron retention [IR]), periodically regulated IR events were over-represented (relative to the 132 background frequency of annotated IR events) by ~2.2 fold whereas periodically regulated 133 cassette exons, represent the next most frequent periodic class of AS (P = 2.2×10-16, Fisher’s 134 exact test, Figure 1-figure supplement 1E).
Recommended publications
  • Mutations in CDK5RAP2 Cause Seckel Syndrome Go¨ Khan Yigit1,2,3,A, Karen E
    ORIGINAL ARTICLE Mutations in CDK5RAP2 cause Seckel syndrome Go¨ khan Yigit1,2,3,a, Karen E. Brown4,a,Hu¨ lya Kayserili5, Esther Pohl1,2,3, Almuth Caliebe6, Diana Zahnleiter7, Elisabeth Rosser8, Nina Bo¨ gershausen1,2,3, Zehra Oya Uyguner5, Umut Altunoglu5, Gudrun Nu¨ rnberg2,3,9, Peter Nu¨ rnberg2,3,9, Anita Rauch10, Yun Li1,2,3, Christian Thomas Thiel7 & Bernd Wollnik1,2,3 1Institute of Human Genetics, University of Cologne, Cologne, Germany 2Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany 3Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany 4Chromosome Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, W12 0NN, UK 5Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey 6Institute of Human Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany 7Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany 8Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, WC1N 3EH, UK 9Cologne Center for Genomics, University of Cologne, Cologne, Germany 10Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland Keywords Abstract CDK5RAP2, CEP215, microcephaly, primordial dwarfism, Seckel syndrome Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by pre- natal proportionate short stature, severe microcephaly, intellectual disability, and Correspondence characteristic facial features. Here, we describe the novel homozygous splice-site Bernd Wollnik, Center for Molecular mutations c.383+1G>C and c.4005-9A>GinCDK5RAP2 in two consanguineous Medicine Cologne (CMMC) and Institute of families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal pro- Human Genetics, University of Cologne, tein which is known to be essential for centrosomal cohesion and proper spindle Kerpener Str.
    [Show full text]
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • Chromatin Dysregulation and DNA Methylation at Transcription Start Sites Associated with Transcriptional Repression in Cancers
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-019-09937-w OPEN Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers Mizuo Ando 1,2, Yuki Saito1,2, Guorong Xu3, Nam Q. Bui 4,5, Kate Medetgul-Ernar1, Minya Pu1, Kathleen Fisch 3, Shuling Ren1, Akihiro Sakai1, Takahito Fukusumi1, Chao Liu1, Sunny Haft1, John Pang1, Adam Mark3, Daria A. Gaykalova6, Theresa Guo6, Alexander V. Favorov 7,8, Srinivasan Yegnasubramanian7, Elana J. Fertig7, Patrick Ha 9, Pablo Tamayo 1, Tatsuya Yamasoba 2, Trey Ideker4, Karen Messer1 & Joseph A. Califano1,10 1234567890():,; Although promoter-associated CpG islands have been established as targets of DNA methylation changes in cancer, previous studies suggest that epigenetic dysregulation out- side the promoter region may be more closely associated with transcriptional changes. Here we examine DNA methylation, chromatin marks, and transcriptional alterations to define the relationship between transcriptional modulation and spatial changes in chromatin structure. Using human papillomavirus-related oropharyngeal carcinoma as a model, we show aberrant enrichment of repressive H3K9me3 at the transcriptional start site (TSS) with methylation- associated, tumor-specific gene silencing. Further analysis identifies a hypermethylated subtype which shows a functional convergence on MYC targets and association with CREBBP/EP300 mutation. The tumor-specific shift to transcriptional repression associated with DNA methylation at TSSs was confirmed in multiple tumor types. Our data may show a common underlying epigenetic dysregulation in cancer associated with broad enrichment of repressive chromatin marks and aberrant DNA hypermethylation at TSSs in combination with MYC network activation. 1 Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92093, USA.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis
    cells Article Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis Han-Yu Wang 1,2, Chun-Hsiang Lin 1, Yi-Ru Shen 1, Ting-Yu Chen 2,3, Chia-Yih Wang 2,3,* and Pao-Lin Kuo 1,2,4,* 1 Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; [email protected] (H.-Y.W.); [email protected] (C.-H.L.); [email protected] (Y.-R.S.) 2 Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; [email protected] 3 Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan 4 Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan 704, Taiwan * Correspondence: [email protected] (C.-Y.W.); [email protected] (P.-L.K.); Tel.: +886-6-2353535 (ext. 5338); (C.-Y.W.)+886-6-2353535 (ext. 5262) (P.-L.K.) Abstract: Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7-SEPT7 interaction, but did not affect SEPT7-SEPT6-SEPT2 or SEPT4 interaction.
    [Show full text]
  • Autosomal Recessive Primary Microcephaly
    Mahmood et al. Orphanet Journal of Rare Diseases 2011, 6:39 http://www.ojrd.com/content/6/1/39 REVIEW Open Access Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum Saqib Mahmood1, Wasim Ahmad2 and Muhammad J Hassan3* Abstract Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage- response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity.
    [Show full text]
  • An Extensive Program of Periodic Alternative Splicing Linked to Cell
    RESEARCH ARTICLE An extensive program of periodic alternative splicing linked to cell cycle progression Daniel Dominguez1,2, Yi-Hsuan Tsai1,3, Robert Weatheritt4, Yang Wang1,2, Benjamin J Blencowe4*, Zefeng Wang1,5* 1Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States; 2Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States; 3Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States; 4Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada; 5Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Science, Shanghai, China Abstract Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~ 1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle- dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various *For correspondence: cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately [email protected] (BJB); associated with cell cycle control.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Anti-CLK2 Antibody (ARG66787)
    Product datasheet [email protected] ARG66787 Package: 100 μg anti-CLK2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes CLK2 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name CLK2 Antigen Species Human Immunogen Synthetic peptide between aa. 1-50 of Human CLK2. Conjugation Un-conjugated Alternate Names CDC-like kinase 2; Dual specificity protein kinase CLK2; EC 2.7.12.1 Application Instructions Application table Application Dilution IHC-P 1:100 - 1:300 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control COLO205 and A549 Calculated Mw 60 kDa Observed Size ~ 60 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS, 0.02% Sodium azide, 50% Glycerol and 0.5% BSA. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol and 0.5% BSA Concentration 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol CLK2 Gene Full Name CDC-like kinase 2 Background This gene encodes a dual specificity protein kinase that phosphorylates serine/threonine and tyrosine- containing substrates.
    [Show full text]
  • Identification of Fusion Genes in Breast Cancer by Paired-End RNA
    Edgren et al. Genome Biology 2011, 12:R6 http://genomebiology.com/2011/12/1/R6 RESEARCH Open Access Identification of fusion genes in breast cancer by paired-end RNA-sequencing Henrik Edgren1†, Astrid Murumagi1†, Sara Kangaspeska1†, Daniel Nicorici1, Vesa Hongisto2, Kristine Kleivi2,3, Inga H Rye3, Sandra Nyberg2, Maija Wolf1, Anne-Lise Borresen-Dale1,4, Olli Kallioniemi1* Abstract Background: Until recently, chromosomal translocations and fusion genes have been an underappreciated class of mutations in solid tumors. Next-generation sequencing technologies provide an opportunity for systematic characterization of cancer cell transcriptomes, including the discovery of expressed fusion genes resulting from underlying genomic rearrangements. Results: We applied paired-end RNA-seq to identify 24 novel and 3 previously known fusion genes in breast cancer cells. Supported by an improved bioinformatic approach, we had a 95% success rate of validating gene fusions initially detected by RNA-seq. Fusion partner genes were found to contribute promoters (5’ UTR), coding sequences and 3’ UTRs. Most fusion genes were associated with copy number transitions and were particularly common in high-level DNA amplifications. This suggests that fusion events may contribute to the selective advantage provided by DNA amplifications and deletions. Some of the fusion partner genes, such as GSDMB in the TATDN1-GSDMB fusion and IKZF3 in the VAPB-IKZF3 fusion, were only detected as a fusion transcript, indicating activation of a dormant gene by the fusion event. A number of fusion gene partners have either been previously observed in oncogenic gene fusions, mostly in leukemias, or otherwise reported to be oncogenic. RNA interference-mediated knock-down of the VAPB-IKZF3 fusion gene indicated that it may be necessary for cancer cell growth and survival.
    [Show full text]
  • S41467-019-10037-Y.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-10037-y OPEN Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system Laura Rinaldi1, Rossella Delle Donne1, Bruno Catalanotti 2, Omar Torres-Quesada3, Florian Enzler3, Federica Moraca 4, Robert Nisticò5, Francesco Chiuso1, Sonia Piccinin5, Verena Bachmann3, Herbert H Lindner6, Corrado Garbi1, Antonella Scorziello7, Nicola Antonino Russo8, Matthis Synofzik9, Ulrich Stelzl 10, Lucio Annunziato11, Eduard Stefan 3 & Antonio Feliciello1 1234567890():,; Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone- bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities. 1 Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131 Naples, Italy. 2 Department of Pharmacy, University Federico II, 80131 Naples, Italy. 3 Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
    [Show full text]