A Novel Homozygous Truncating GNAT1 Mutation Implicated in Retinal Degeneration

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Homozygous Truncating GNAT1 Mutation Implicated in Retinal Degeneration BJO Online First, published on October 15, 2015 as 10.1136/bjophthalmol-2015-306939 Br J Ophthalmol: first published as 10.1136/bjophthalmol-2015-306939 on 15 October 2015. Downloaded from Clinical science A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration Matthew Carrigan,1 Emma Duignan,2 Pete Humphries,1 Arpad Palfi,1 Paul F Kenna,1,2 G Jane Farrar1 ▸ Additional material is ABSTRACT ‘Nougaret’ form of CSNB, which was hypothesised published online only. To view Background The GNAT1 gene encodes the α subunit to be a result of constitutive activation of transdu- please visit the journal online (http://dx.doi.org/10.1136/ of the rod transducin protein, a key element in the rod cin. A second example of a pathogenic GNAT1 bjophthalmol-2015-306939). phototransduction cascade. Variants in GNAT1 have variant (c.598C>G/p.Gln200Glu) was also been implicated in stationary night-blindness in the past, reported in a Danish dominant CSNB pedigree.4 1School of Genetics and Microbiology, Trinity College but unlike other proteins in the same pathway, it has GNAT1 variants have also been associated with Dublin, Dublin, Ireland not previously been implicated in retinitis pigmentosa. recessive forms of CSNB. A missense variant 2Research Foundation, Royal Methods A panel of 182 retinopathy-associated genes (c.386A>G/p.Asp129Gly) was reported to segre- Victoria Eye & Ear Hospital, was sequenced to locate disease-causing mutations in gate with recessive CSNB in a large, consanguin- Dublin, Ireland patients with inherited retinopathies. eous Pakistani family.5 The Asp129Gly variant Correspondence to Results Sequencing revealed a novel homozygous altered a conserved residue of the protein, and was Dr Matthew Carrigan, Smurfit truncating mutation in the GNAT1 gene in a patient with predicted to be deleterious to function, although Institute of Genetics, Trinity significant pigmentary disturbance and constriction of no functional studies on it were carried out. College Dublin, College Green, visual fields, a presentation consistent with retinitis We report here a patient with retinal degeneration Dublin 2, Ireland; fi [email protected] pigmentosa. This is the rst report of a patient homozygous for a premature stop codon in the homozygous for a complete loss-of-function GNAT1 GNAT1 gene (c.904C>T/p.Gln302*). The GNAT1 Received 27 March 2015 mutation. The clinical data from this patient provide mutation was identified during the course of a next- Revised 9 July 2015 definitive evidence of retinitis pigmentosa with late onset generation sequencing (NGS) study covering the Accepted 1 August 2015 in addition to the lifelong night-blindness that would be Irish patient population with retinal degeneration. expected from a lack of transducin function. This variant causes the elimination of 49 extremely Conclusion These data suggest that some truncating conserved amino acids from the C terminus of the GNAT1 variants can indeed cause a recessive, mild, late- transducin α subunit protein (figure 1), comprising onset retinal degeneration in human beings rather than just under one-sixth of the total protein sequence. just stationary night-blindness as reported previously, This is a much more radical alteration to protein with notable similarities to the phenotype of the Gnat1 structure than that caused by other GNAT1 variants – knockout mouse. previously associated with CSNB.3 5 We have performed an extensive search of the literature and relevant databases, and have not INTRODUCTION located any other record of a patient with two non- Transducin is a heterotrimeric G-protein found on sense GNAT1 alleles. Hence, it is our view that this http://bjo.bmj.com/ the membrane of photoreceptor cells in the retina, represents the first report of a homozygous non- and is a key component of the vertebrate photo- sense GNAT1 mutation in human beings, as well as transduction pathway. On exposure of rod photo- the first observation of retinal degeneration asso- receptor cells to light, the light-sensitive pigment ciated with GNAT1 mutations. rhodopsin is photoisomerised into its active form. This clinical presentation is of particular interest This form activates the G-protein transducin, which as it strongly resembles the phenotype observed in on September 23, 2021 by guest. Protected copyright. − − in turn stimulates cyclic guanosine monophosphate homozygous knockout (Gnat1 / ) mice. Mice with (cGMP)-phosphodiesterase (PDE). The degradation targeted deletions of the GNAT1 gene have few of cGMP causes cGMP-gated ion channels to close, visible changes in gross morphology, but present resulting in hyperpolarisation of the cell membrane with a mild retinal degeneration with age. These and causing the electrical light response.1 mice also show preservation of cone cells, a com- Transducin is composed of three polypeptide plete absence of electrical response from rods as chains, α, β and γ. The α subunit is the active well as a slow loss of rod cells with corresponding guanosine diphosphate (GDP)/guanosine diphos- thinning of the outer nuclear layer,6 features which phate (GTP)-binding component. On activation by closely parallel the clinical presentation in the rhodopsin, GTP/GDP exchange occurs and the α GNAT1 Gln302* patient. subunit dissociates from the βγ subunits; at which point, it becomes capable of binding PDE. The α MATERIALS AND METHODS subunit proteins in rod and cone cells are encoded Patient identification and recruitment To cite: Carrigan M, by the genes GNAT1 and GNAT2, respectively.2 The proband was recruited prospectively at the Duignan E, Humphries P, Variants in GNAT1 have been implicated in con- Research Foundation, The Royal Victoria Eye and et al. Br J Ophthalmol Published Online First: genital stationary night-blindness (CSNB) in the Ear Hospital, Dublin, as part of the Target 5000 [please include Day Month past, although never in retinal degenerations. Dryja study, an ongoing project to identify the molecular Year] doi:10.1136/ et al3 reported a missense variant (NM_000172.3: basis for inherited retinopathies in Irish patients bjophthalmol-2015-306939 c.113G>A/p.Gly38Asp) causing the dominant via NGS. Carrigan M, et al. Br J Ophthalmol 2015;0:1–6. doi:10.1136/bjophthalmol-2015-306939 1 Copyright Article author (or their employer) 2015. Produced by BMJ Publishing Group Ltd under licence. Clinical science Br J Ophthalmol: first published as 10.1136/bjophthalmol-2015-306939 on 15 October 2015. Downloaded from Figure 1 Multiple alignment of the amino acids removed by the Q302* variant against the homologous region in other species, showing extremely high levels of sequence conservation, which implies that it is important to protein function. Clinical assessment Data analysis Best-corrected visual acuity was assessed using revised 2000 Sequence data were demultiplexed and mapped to the human Early Treatment Diabetic Retinopathy Study charts (Precision genome (hg19) using BWAV.0.7.4.9 Duplicate reads were flagged Vision, La Salle, Illinois, USA). Colour vision was examined using Picard V.1.106,10 and downstream analysis and variant using the Lanthony desaturated panel D-157 under standardised calling were performed using the GATK V.2.811 according to the lighting conditions. Goldmann perimetry was used to assess the protocol specified in the GATK Best Practices Workflow.12 peripheral visual fields to the IV4e, I4e and 04e targets. The list of identified variants was annotated with snpEFF13 Following slit lamp biomicroscopy of the anterior segment of and dbNSFP.14 Synonymous and common variants were filtered the eye and Goldmann applanation tonometry, the patient’s out, and the remaining list of rare variants with the potential to pupils were dilated using tropicamide 1% and phenylephrine affect protein sequence was output for manual curation. 2.5%. The subject was dark-adapted for 30 min, and the dark-adapted threshold was then measured using a Goldmann– Weekers dark adaptometer. A full-field electroretinogram (ERG) was performed according to International Society for Clinical RESULTS fi Electrophysiology of Vision (ISCEV) standards8 using a Roland Clinical ndings Consult RETI-port RETIscan. Fundus photography was per- The proband presented at 80 years of age with a 6-month fi formed using a Topcon CRC50DX. Spectral domain optical history of dif culties with steps. He commented on a lifelong coherence tomography was performed using a Cirrus HD-optical history of night-blindness, which had remained unchanged coherence tomography (OCT) (Carl Zeiss Meditec, Germany). throughout his life. There was no family history of night- blindness or day vision problems affecting either his parents, three siblings, ranging in age from 73 to 75 years or his three children aged 38–51 years. There was no history of parental consanguinity. His general health was good. He suffered for 10 years prior to presentation with non-insulin dependent dia- DNA isolation and sequencing betes mellitus, which was well controlled. Following informed consent, blood samples were collected from On examination, the proband’s unaided visual acuity was http://bjo.bmj.com/ patients after clinical assessment. DNA was isolated from 2 mL 6/7.5 in the right eye, which improved to 6/6 with +0.5 ds/ of patient blood using the QIAamp DNA Blood Midi kit +0.5 cx at 165°, and 6/7.5 in the left, which improved to 6/6 (QIAGEN, Valencia, California, USA), according to manufac- with 0.0/+0.5 cx at 165°. Slit lamp examination revealed turer’s recommendations. healthy corneas, normal anterior segments and clear lenses DNA was fragmented for sequencing by ultrasonication in a apart from some peripheral cortical opacities. His vitreous was fi Diagenode Bioruptor (Diagenode, Belgium) for 35 cycles, each normal apart from the presence of a grade 1 cellular in ltrate. on September 23, 2021 by guest. Protected copyright. consisting 30 s of low-intensity sonication followed by a 30 s Intraocular pressures were normal at 14 mm Hg in the right eye pause. Water was replaced and crushed ice added regularly to and 14 mm Hg in the left.
Recommended publications
  • Identification of Residues of the H-Ras Protein Critical for Functional Interaction with Guanine Nucleotide Exchange Factors RAYMOND D
    MOLECULAR AND CELLULAR BIOLOGY, Feb. 1994, p. 1104-1112 Vol. 14, No. 2 0270-7306/94/$04.00+0 Copyright © 1994, American Society for Microbiology Identification of Residues of the H-Ras Protein Critical for Functional Interaction with Guanine Nucleotide Exchange Factors RAYMOND D. MOSTELLER, JAEWON HAN, AND DANIEL BROEK* Department ofBiochemistry and Molecular Biology, Kenneth Norris Jr. Cancer Hospital and Research Center, University of Southern California School ofMedicine, Los Angeles, California 90033 Received 10 September 1993/Returned for modification 21 October 1993/Accepted 29 October 1993 Ras proteins are activated in vivo by guanine nucleotide exchange factors encoded by genes homologous to the CDC25 gene ofSaccharomyces cerevisiae. We have taken a combined genetic and biochemical approach to probe the sites on Ras proteins important for interaction with such exchange factors and to further probe the mechanism ofCDC25-catalyzed GDP-GTP exchange. Random mutagenesis coupled with genetic selection in S. cerevisiae was used to generate second-site mutations within human H-ras-alalS which could suppress the ability of the Ala-15 substitution to block CDC25 function. We transferred these second-site suppressor mutations to normal H-ras and oncogenic H-rasva1l2 to test whether they induced a general loss of function or whether they selectively affected CDC25 interaction. Four highly selective mutations were discovered, and they affected the surface-located amino acid residues 62, 63, 67, and 69. Two lines of evidence suggested that these residues may be involved in binding to CDC25: (i) using the yeast two-hybrid system, we demonstrated that these mutants cannot bind CDC25 under conditions where the wild-type H-Ras protein can; (ii) we demonstrated that the binding to H-Ras of monoclonal antibody Y13-259, whose epitope has been mapped to residues 63, 65, 66, 67, 70, and 73, is blocked by the mouse sosl and yeast CDC25 gene products.
    [Show full text]
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision
    The Journal of Neuroscience, June 1, 2011 • 31(22):8067–8077 • 8067 Cellular/Molecular G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision Alexander V. Kolesnikov,1 Loryn Rikimaru,2 Anne K. Hennig,1 Peter D. Lukasiewicz,1 Steven J. Fliesler,4,5,6,7 Victor I. Govardovskii,8 Vladimir J. Kefalov,1 and Oleg G. Kisselev2,3 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Ophthalmology and 3Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, 4Research Service, Veterans Administration Western New York Healthcare System, and Departments of 5Ophthalmology (Ross Eye Institute) and 6Biochemistry, University at Buffalo/The State University of New York (SUNY), and 7SUNY Eye Institute, Buffalo, New York 14215, and 8Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the ␣-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary ␤␥-complex in this process remains a mystery. Here, we show that elimination of the transducin ␥-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin ␤␥-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
    [Show full text]
  • G Protein Alpha Inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA335036 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-GNAI1 antibody: synthetic peptide directed towards the middle region of human GNAI1. Synthetic peptide located within the following region: YQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKTTGIVETHFTFKDLH Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 40 kDa Gene Name: G protein subunit alpha i1 Database Link: NP_002060 Entrez Gene 14677 MouseEntrez Gene 25686 RatEntrez Gene 2770 Human P63096 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody – TA335036 Background: Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules.
    [Show full text]
  • GNAT1 (NM 144499) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221246 GNAT1 (NM_144499) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: GNAT1 (NM_144499) Human Tagged ORF Clone Tag: Myc-DDK Symbol: GNAT1 Synonyms: CSNB1G; CSNBAD3; GBT1; GNATR Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221246 representing NM_144499 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGGGCTGGGGCCAGTGCTGAGGAGAAGCACTCCAGGGAGCTGGAAAAGAAGCTGAAAGAGGACGCTG AGAAGGATGCTCGAACCGTGAAGCTGCTGCTTCTGGGTGCCGGTGAGTCCGGGAAGAGCACCATCGTCAA GCAGATGAAGATTATCCACCAGGACGGGTACTCGCTGGAAGAGTGCCTCGAGTTTATCGCCATCATCTAC GGCAACACGTTGCAGTCCATCCTGGCCATCGTACGCGCCATGACCACACTCAACATCCAGTACGGAGACT CTGCACGCCAGGACGACGCCCGGAAGCTGATGCACATGGCAGACACTATCGAGGAGGGCACGATGCCCAA GGAGATGTCGGACATCATCCAGCGGCTGTGGAAGGACTCCGGTATCCAGGCCTGTTTTGAGCGCGCCTCG GAGTACCAGCTCAACGACTCGGCGGGCTACTACCTCTCCGACCTGGAGCGCCTGGTAACCCCGGGCTACG TGCCCACCGAGCAGGACGTGCTGCGCTCGCGAGTCAAGACCACTGGCATCATCGAGACGCAGTTCTCCTT CAAGGATCTCAACTTCCGGATGTTCGATGTGGGCGGGCAGCGCTCGGAGCGCAAGAAGTGGATCCACTGC TTCGAGGGCGTGACCTGCATCATCTTCATCGCGGCGCTGAGCGCCTACGACATGGTGCTAGTGGAGGACG ACGAAGTGAACCGCATGCACGAGAGCCTGCACCTGTTCAACAGCATCTGCAACCACCGCTACTTCGCCAC GACGTCCATCGTGCTCTTCCTTAACAAGAAGGACGTCTTCTTCGAGAAGATCAAGAAGGCGCACCTCAGC ATCTGTTTCCCGGACTACGATGGACCCAACACCTACGAGGACGCCGGCAACTACATCAAGGTGCAGTTCC
    [Show full text]
  • G Protein-Coupled Receptors
    G PROTEIN-COUPLED RECEPTORS Overview:- The completion of the Human Genome Project allowed the identification of a large family of proteins with a common motif of seven groups of 20-24 hydrophobic amino acids arranged as α-helices. Approximately 800 of these seven transmembrane (7TM) receptors have been identified of which over 300 are non-olfactory receptors (see Frederikson et al., 2003; Lagerstrom and Schioth, 2008). Subdivision on the basis of sequence homology allows the definition of rhodopsin, secretin, adhesion, glutamate and Frizzled receptor families. NC-IUPHAR recognizes Classes A, B, and C, which equate to the rhodopsin, secretin, and glutamate receptor families. The nomenclature of 7TM receptors is commonly used interchangeably with G protein-coupled receptors (GPCR), although the former nomenclature recognises signalling of 7TM receptors through pathways not involving G proteins. For example, adiponectin and membrane progestin receptors have some sequence homology to 7TM receptors but signal independently of G-proteins and appear to reside in membranes in an inverted fashion compared to conventional GPCR. Additionally, the NPR-C natriuretic peptide receptor has a single transmembrane domain structure, but appears to couple to G proteins to generate cellular responses. The 300+ non-olfactory GPCR are the targets for the majority of drugs in clinical usage (Overington et al., 2006), although only a minority of these receptors are exploited therapeutically. Signalling through GPCR is enacted by the activation of heterotrimeric GTP-binding proteins (G proteins), made up of α, β and γ subunits, where the α and βγ subunits are responsible for signalling. The α subunit (tabulated below) allows definition of one series of signalling cascades and allows grouping of GPCRs to suggest common cellular, tissue and behavioural responses.
    [Show full text]
  • ANALYSIS Doi:10.1038/Nature14663
    ANALYSIS doi:10.1038/nature14663 Universal allosteric mechanism for Ga activation by GPCRs Tilman Flock1, Charles N. J. Ravarani1*, Dawei Sun2,3*, A. J. Venkatakrishnan1{, Melis Kayikci1, Christopher G. Tate1, Dmitry B. Veprintsev2,3 & M. Madan Babu1 G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. proteins bind guanine nucleotides and act as molecular switches almost 30 A˚ away from the GDP binding region5 and allosterically trig- in a number of signalling pathways by interconverting between ger GDP release to activate them. 1,2 G a GDP-bound inactive and a GTP-bound active state . They The high-resolution structure of the Gas-bound b2-adrenergic recep- 3 5 consist of two major classes: monomeric small G proteins and hetero- tor (b2AR) provided crucial insights into the receptor–G protein inter- trimeric G proteins4. While small G proteins and the a-subunit (Ga)of face and conformational changes in Ga upon receptor binding6,7. Recent 6 8 heterotrimeric G proteins both contain a GTPase domain (G-domain), studies described dynamic regions in Gas and Gai , the importance of ˚ Ga contains an additional helical domain (H-domain) and also forms a displacement of helix 5 (H5) of Gas and Gat by up to 6 A into the complex with the Gb and Gc subunits.
    [Show full text]
  • Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors
    New Research Sensory and Motor Systems Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors Paige M. Dexter,1 Ekaterina S. Lobanova,2 Stella Finkelstein,2 William J. Spencer,1 Nikolai P. Skiba,2 and Vadim Y. Arshavsky1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0144-18.2018 1Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710 and 2Albert Eye Research Institute, Duke University, Durham, North Carolina 27710 Visual Overview The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is ␥ ␥ the knockout of its rod-specific -subunit (G 1). Two stud- ies using independently generated mice documented that this knockout results in a considerable Ͼ60-fold reduction in the light sensitivity of affected rods, but provided dif- ␣ ␣ ferent interpretations of how the remaining -subunit (G t) ␤ ␥ mediates phototransduction without its cognate G 1 1- subunit partner. One study found that the light sensitivity ␣ reduction matched a corresponding reduction in G t con- tent in the light-sensing rod outer segments and proposed ␣ ␤ that G t activation is supported by remaining G 1 asso- ciating with other G␥ subunits naturally expressed in pho- toreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approx- ␣ imately sixfold, reduction of G t and proposed that the light responses of these rods do not require G␤␥ at all. To resolve this controversy and elucidate the mechanism ␥ driving visual signaling in G 1 knock-out rods, we analyzed both mouse lines side by side.
    [Show full text]
  • Clinical and Genetic Investigation of a Large Tunisian Family with Complete Achromatopsia: Identification of a New Nonsense Mutation in GNAT2 Gene
    Journal of Human Genetics (2011) 56, 22–28 & 2011 The Japan Society of Human Genetics All rights reserved 1434-5161/11 $32.00 www.nature.com/jhg ORIGINAL ARTICLE Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene Farah Ouechtati1,2,7, Ahlem Merdassi2,7, Yosra Bouyacoub1,2, Leila Largueche2, Kaouther Derouiche2, Houyem Ouragini1, Sonia Nouira1, Leila Tiab3,4, Karim Baklouti2, Ahmed Rebai5, Daniel F Schorderet3,4,6, Francis L Munier3,4,6, Leonidas Zografos4,6, Sonia Abdelhak1 and Leila El Matri2 Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119À69G4C, c.161+66A4T and c.875À31G4C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation.
    [Show full text]
  • Constitutively Active Mutant of Rod A-Transducin in Autosomal Dominant
    HUMAN MUTATION Mutation in Brief #970 (2007) Online MUTATION IN BRIEF p.Gln200Glu, a Putative Constitutively Active Mutant of Rod α-Transducin (GNAT1) in Autosomal Dominant Congenital Stationary Night Blindness Viktoria Szabo1,2†, Hans-Jürgen Kreienkamp1†, Thomas Rosenberg3, and Andreas Gal1* 1Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; 3Gordon Norrie Centre for Genetic Eye Diseases, The National Eye Clinic for the Visually Impaired, Hellerup, Denmark; 2Permanent address: Department of Ophthalmology, Semmelweis University, Budapest, Hungary *Correspondence to: A. Gal, Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Tel.: 49-40-42803-2120; Fax: 49-40-42803-5138; E-mail: [email protected] Grant sponsor: Recognition Award of the Alcon Research Institute (Fort Worth, TX, to A.G.) and the German Academic Exchange Service (to V.S.). †Viktoria Szabo and Hans-Jürgen Kreienkamp contributed equally to this work. Communicated by Mark H. Paalman Congenital stationary night blindness (CSNB) is a non-progressive Mendelian condition resulting from a functional defect in rod photoreceptors. A small number of unique missense mutations in the genes encoding various members of the rod phototransduction cascade, e.g. rhodopsin (RHO), cGMP phosphodiesterase β-subunit (PDE6B), and transducin α-subunit (GNAT1) have been reported to cause autosomal dominant (ad) CSNB. While the RHO and PDE6B mutations result in constitutively active proteins, the only known adCSNB-associa- ted GNAT1 change (p.Gly38Asp) produces an α-transducin that is unable to activate its downstream effector molecule in vitro. In a multigeneration Danish family with adCSNB, we identified a novel heterozygous C to G transversion (c.598C>G) in exon 6 of GNAT1 that should result in a p.Gln200Glu substitution in the evolutionarily highly conserved Switch 2 region of α-transducin, a domain that has an important role in binding and hydrolyzing GTP.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]