The Mesozoic and Paleocene Vertebrates of Bolivia and Their Stratigraphic Context : a Review

Total Page:16

File Type:pdf, Size:1020Kb

The Mesozoic and Paleocene Vertebrates of Bolivia and Their Stratigraphic Context : a Review TIIE MESOZQIC AND PALEOCENE VERTEBRATES OF BOLIVIA AND THEIR STB2ATIGRAPHIC CONTEXT : A REVIEJN MIREILLE GAYET", LARRY G. MARSHALL** & THIERRY SEMPERE*** *URA 11 du CNRS, Centre des Sciences de la Terre, Lyon I,2743 boulevard du 11 novernbre. 69622 Villeurbanne, Fraice ** Itistitute of IIunian Origins, 2453 Ridge Road, Berkeley, California 94709, USA ***Convenio YPFB-Orstom (UR IH), Sanh Cruz de la Sierra, Bolivia. Present addiess: Centre de GCologie GCnérale et Minière, Ecole des Mines, 35 rue Saint-HonorC,77305 Fontninebleau, France ~ INTRODUCTION Brazil, eastern Paraguay, northern Uruguay aiid northeastern Argentinn. In contrast, the latest Jurcissic-I'nlcocenc clcpositioiial arca Dolivia lias a rich nnd diverse record of fossil verkbratcs for the was mainly restricted to tile Andean doniairi aiid bcloiigctl to thc al., Mcso7.oic aiid early Ceno7,oic. The majority of he 56 knowii fossil back-atc basin of the Pacific margin (Sctnpcre et 1988), localities for this time interval occur in the soutlierri Altiplano and in although soine late Cretaceous-Paleocene uiiits are also known in thc soutlicrii piut d the Cordillera 01ieiitnl (Figs. 1-4). parts of the iioitlicrn and cciifrril Suhnndcnii bclt (Figs. 1, 2). In Illis pnpcr we review thc iniddlc Triassic llirougli 1)nlcocciic The "Coiido cvcnt" thnt scpnriilcs tlicsc two intcrvnls ciiii be fossil vertebrote record of Bolivia in its strntigrnphic and iiiterpretcd as tlic capturc of tlic Bolivian Andean doinaiil, which palcociiviroririicntal context aiid attempt to correlate tliese rocks aid until Uien liad belonged to die crotoriic area, by tlie Pacific back-wc. faunas with those in, adjaccrit Argeiitina, Brazil, Chile arid Pcru. As This event, acconipanied by iiiiinerous synscdimentary tectonic documented below, tlie highlights of the Bolivian vertcbrale rccord manifestations (Sempere, ¡ri press), correlates with the include: the taxonomically ricliest aiid best studied faunas of late Kirnnieridgian age Araucaii event in wesicentral Argentina aiid age al., Cretaceous (from tlie marine anti continental El Molino adjacent Chile (Seinpere et 1988). Formation) aiid the spectacularly rich and only well known land maminal fauna of edy, but not earliest. Paleocene age (from the A. WfIDDLE TRIASSIC TO MIDDI,& JURASSIC Santa Luch Forination al Tiupninpa) ¡ti all of South Atiierica. We (Serere supersequetice) show that many or tlie late Cretaceous taxa (especially selachians) are of clironostratigrapliic value within the Andean basin. The The rich Phanerozoic rccord of Bolivia was traditionally thought problem of tlie K/?; bouiidary in the Andean basin of Bolivia is to lack Jurassic deposits. However, recent studies have shown that critically evaluated and based on this siudy is believed to occur certain stratigraphic units from the Subaiidean belt and from the within the upper part of tIie middle mcinber of the EI Molino Andean domain should be corTelalcd and assigned a middle Triassic Formation. and Jurassic age (Fig. 1) (Oller & Sempre, 1990; Senipere, 1990). The following abbreviations are used: km, kilometers; 111, nieters; The Serere supersequcnce consists of these units, and includes the Mil, nicgnniitiuin or tiiillioiis of years ngo, n point in hic; Myr, Eiitrc IUos Ilnsnlt, Ipngiirv..d. Tnpecun, Cnskll6ii, lclion nnil Y nntirtri inillioiis of ycrus, a durntioii of tiine. foriiintions, as well ns lhe pnrtly cquivnlciit ßeu, Tiquina, Seynri nnd Ravelo fonnations (Fig. 1). The Tacurú Group of the central arid southern Subandcau belt is distinct froin the Scicrc supersequence bccnusc it includes tlic Intcst Crctaccous Ciijoncs Fortuntion but not Tlic "Mesozoic" s1r:itigr:ipIiy of Nolivia cornprises two distinct tlic Ipagunzú Forination (Scinpcrc, 1990). In gcnctal, scdiincntary tirne intervals (Sciiipcrc, 1990): tlie lirst spis tlie middle Triassic - continuity charactcl izcs tlic Sererc superscquciice (Oller & Senipere, most of Jurassic, and the secoiid latest Jurassic-l'aleoceiie (Fig. 1). 1990). As will be docuinented below, its deposits to date are sparsely The fluvio-eolian middle Triassic-Jurassic scdinietitary rocks wcre rossiliferous. dcpositcd in wh:it is now tlic castcrn liolf of tlie Andean doinairi, the The Cnstcll6ii Fortiiatioti is probably of late Triassic-cnrly Jurassic age 2% Subandcari belt and a Iargc p:ut of tlic noliviali 1owl;iiids (Ollcr & (Scinpcrc & Ollcr, 1987; Ollcr Sernpcrc, 1990), althougli it Seinpere, 1990); their litliologies arid depositional enviroiitneiits lias been tentatively assigned io the early Crelaceous based on four show similarities with coeval rocks in tlie Pnranri basin of southeni new species of ostracods (Pinto & Sanguiilctti, 1987). It is correlated Y 11: SUAREZ-SORUCO, JI.(Ed.) FUSILISS FACIES DE DO1,IVIA - VOL. I VEICTEURADOS ~. - . .... 303 I v with the PirainboiQ Formation of Brazil and tlie lower part of accoinpanied by synscdinientnry tcnsioniil tectonic nnd mngiiiolic Tacuarembd Forination of Uruguay (Seinpere & Oller, 1987). rnnnifestations (Sempere et al., 1988; Seinpere, is press) and is The lower boundary of the Serere superscquemce is a diachronous termed the "Vilcapujio event" in Bolivia (Ctihvcz, 1987) or k3 in tile unconformity except in the southern Subandean belt where,tlie oldest central Aniles (Jaillard & Sempere, unpublished). Thus, the and elsewhere unknown Ipaguazú Formation overlies the late Miraflores Formation stands as a specific "hinge" unit in the Permian-early Triassic Vitiacua Formation with only a slight, non- Bolivian latest Jurassic-Paleocene stratigraphic sequence. erosional, lithologic discontinuity (Sempere et al., 1990, 1992). In Mainly red mudstones with minor sandstones and evaporites other areas of the basin, younger units of the Serere supersequence (gypsum, anhydrite, halite) were deposited between discontinuities unconformably overlie Permian or older strata, reflecting onlapping k3 and k4 in fluvial and lacustrine environments [Aroifilla .deposition on an altered, eroded and/or deformed substratum. The Formation and most of Chaunaca Formation (Sempere, in press); the upper boundary of the Serere supersequence is the surface that marks stratigraphically equivalent Torotoro Formation consists mainly of the "Condo event" (see above). This unconformity shows different red sandstones of fluvial origin]. Two greenish levels, which consist characteristics which relate to its location and position in the Iahst of very fine sandy, green to black mark, black to grey laminated Jurassic-Paleocene basin. limestones and yellow dolomites, occur in the Chaunaca Fonnation. In suinmary, tlie middle Triassic-Jurassic geologic evolution of The foriner is more conspicuous, traditionally marks the base of the Bolivia involves: 1) an initial rifting process with deposition of red unit, and is krmed the "basal limestone" of the Chaunaca Formation. beds in narrow troughs, locally with gypsum and halite (middle to This 30 m-thick sub-unit commonly yields abundant bivalves Iate Triassic); 2) termination of rifting and onlapping fluvio-eolian (Mytilidae, Brochidontes sp.) which have been interpreted to scdinicntntion (late Triassic to earliest Jurnssic'?); and 3) extensive indicate an intertidal cnvironnient (Briutisn ct al., 19GG). However, II erg development (early and middle Jurassic'?) (Oller & Sempre, restricted mnrine origin for the "basal limcstonc" is now questioncd 1990). (G.Camoin, personal coinunication). Identical Bracltidoort/es sp. are recorded from a limestonc level in the Loinas Negras Formntion of U II. I,h'l'lSS'l' J It ASS IC 'IO l'A I,EO CICN IC nortlicrn Chile (Mnrinovic & Litlisen, 1984). The "bnsitl linlcstonc" (I'ucu supersequence) of the Chaunaca Formation yielded a palynological assemblage of Santonian to earliest Campanian age (Pérez, 1987), and may be Classic works on the Bolivian "Cretaceous" Puca Group are by partly equivalent to the Snntonian age shallow-marine limestones Lohmann & Branisa (1962). Russo & Rodrigo (1965), Kriz & known from the Querque and Omoye formations of southern Peru Clierroni (1966). Lohmann (1970), Reyes (1972) and Cherroni (Jaillard & Sempere, 1989). The Aroifilla and Chaunaca formations (1977). are equivalent, respectively, to the lower and middle Vilquechico The "Cretaceous" sequence stratigraphy of Bolivia and Peru is Formation of southeast Peru (Jaillard et al., in press) (Fig. 1). The currently being re-evaluated and synthesized (Jaillard & Seinpere, upper greenish level of tlie Chaunaca Formation is equivalent to the 1989; Seinpere, in press). The Puca supersequence (Scmpere, 1990) uppennost green level of the middle Vilquechico (Jailllard et al., in is bound below by the kO discontinuity (;.e, the Kimmeridgian press; Sempere, in press), which has yielded the selachian Araucan-"Condo" event at about 144 Ma; Cowie & Bassett, 1989). Schizorhiza slronieri. Thus, its age is not older than níiddle and above by tlie k5 discontinuity which records the functional onset Campanian (Jaillard el al., in press). of western Bolivia as a continental external foreland basin of the The EI Molino, Santa Lucía and Impora formations occur between paleo-Andes (Sempere et al., 1989). The age of W is close to the discontinuities k4 and k5 in Bolivia (Fig. 1). The EI Molino Paleocene-Eocene boundary (53 Ma; Cowie & Bassett, 1989) and Fonnation is equivalent to the Lecho, Yacoraite, Tunal and Olmedo could be as young as 50-51 Ma (Senipere, 1990; Marshall & formations of northwestcrn Argentina (Fig. 1); to the Areniscas de Senipere, 1991). Azúcar, Vivinn and Cnchiyacu fornialions
Recommended publications
  • Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
    Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.).
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
    STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl­ vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity.
    [Show full text]
  • Hadley Circulation Shrinkage in the Mid-Cretaceous
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 7, 119–151, 2011 www.clim-past-discuss.net/7/119/2011/ Climate of the Past CPD doi:10.5194/cpd-7-119-2011 Discussions 7, 119–151, 2011 © Author(s) 2011. CC Attribution 3.0 License. Hadley circulation This discussion paper is/has been under review for the journal Climate of the Past (CP). shrinkage in the Please refer to the corresponding final paper in CP if available. mid-Cretaceous Drastic shrinking of the Hadley circulation H. Hasegawa et al. during the mid-Cretaceous supergreenhouse Title Page Abstract Introduction H. Hasegawa1,*, R. Tada1, X. Jiang2, Y. Suganuma1,3, S. Imsamut4, P. Charusiri5, Conclusions References N. Ichinnorov6, and Y. Khand6 Tables Figures 1Department of Earth and Planetary Science, the University of Tokyo, Tokyo, Japan 2 Chengdu Institute of Geology and Mineral Resources, Chengdu, China J I 3National Institute of Polar Research, Tokyo, Japan 4Department of Mineral Resources, Bureau of Geological Survey, Bangkok, Thailand J I 5Department of Geology, Chulalongkorn University, Bangkok, Thailand Back Close 6Paleontological Center, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia * now at: Department of Natural History Science, Hokkaido University, Full Screen / Esc Sapporo 060-0810, Japan Received: 14 September 2010 – Accepted: 7 December 2010 – Published: 13 January 2011 Printer-friendly Version Correspondence to: H. Hasegawa (hito [email protected]) Interactive Discussion Published by Copernicus Publications on behalf of the European Geosciences Union. 119 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD Understanding the behaviour of the global climate system during extremely warm pe- riods is one of the major themes of paleoclimatology.
    [Show full text]
  • Ambush Predator’ Guild – Are There Developmental Rules Underlying Body Shape Evolution in Ray-Finned Fishes? Erin E Maxwell1* and Laura AB Wilson2
    Maxwell and Wilson BMC Evolutionary Biology 2013, 13:265 http://www.biomedcentral.com/1471-2148/13/265 RESEARCH ARTICLE Open Access Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? Erin E Maxwell1* and Laura AB Wilson2 Abstract Background: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.
    [Show full text]
  • Apa 1068.Qxd
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (3): 475-484. Buenos Aires, 30-09-2004 ISSN 0002-7014 A new South American mioclaenid (Mammalia: Ungulatomorpha) from the Tertiary of Patagonia, Argentina Javier N. GELFO1 Resumen. UN NUEVO MIOCLAENIDO SUDAMERICANO (MAMMALIA: UNGULATOMORPHA) DEL TERCIARIO DE PATAGONIA, ARGENTINA. Se describe un nuevo “condilartro” Mioclaenidae, proveniente de la Edad Mamífero Casamayorense, Subedad Barranquense, de Paso de Indios, Provincia del Chubut. El nuevo ta- xón Pascualodus patagoniensis gen. et sp. nov., representado por un molar superior izquierdo, es compara- do con otros Mioclaenidae, con los Didolodontidae y los más primitivos Litopterna. Una hipótesis filoge- nética provisoria es expresada a través de un cladograma de consenso estricto y uno de compromiso de mayoría. Si bien el análisis confirma la agrupación de los taxa sudamericanos en un grupo monofilético, existen numerosos puntos sin resolver. Pascualodus patagoniensis se ubica como un taxón terminal, en una politomía que reúne por un lado a los Mioclaenidae sudamericanos y por el otro, a los Didolodontidae y Litopterna. Por otra parte la consideración de caracteres dentales superiores de Escribania chubutensis, pre- viamente el único Mioclaenidae patagónico conocido, modifica sus relaciones filogenéticas vinculándolo al Didolodontidae Didolodus sp. La asignación de Pascualodus patagoniensis a los Mioclaenidae constituye el registro más moderno y el más austral de la familia. Abstract. A new Mioclaenidae “condylarth” of the Casamayoran Land Mammal Age, Barrancan subage, from Paso de Indios, Chubut Province is described. The new taxon Pascualodus patagoniensis gen. et sp. nov., represented by a left upper first molar, is compared with other Mioclaenidae; the Didolodontidae and some primitive litopterns.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Upper Cretaceous of Patagonia, Argentina
    Cretaceous Research 32 (2011) 223e235 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes First record of a clupeomorph fish in the Neuquén Group (Portezuelo Formation), Upper Cretaceous of Patagonia, Argentina Valéria Gallo a,*, Jorge O. Calvo b, Alexander W.A. Kellner c a Laboratório de Sistemática e Biogeografia, Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil b Centro Paleontológico Lago Barreales, Universidad Nacional del Comahue, Proyecto Dino, Ruta Prov. 51, km 65, Neuquén 8300, Argentina c Setor de Paleovertebrados, Departamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil article info abstract Article history: A new genus and species of clupeomorph fish, Leufuichthys minimus, is described from the fluvial Received 8 March 2010 deposits of the Portezuelo Formation, Upper Cretaceous (TuronianeConiacian) of the Neuquén Group, Accepted in revised form 3 December 2010 Patagonia, Argentina. It is a small-sized fish with an estimated body length up to 46 mm. Among other Available online 13 December 2010 characters, the new species shows the following: abdominal scutes; abdomen moderately convex; anal fin elongate-based; three uroneurals; two epurals; caudal fin bearing very elongate rays; and cycloid Keywords: scales. Leufuichthys minimus gen. et sp. nov. shows a greater similarity with Kwangoclupea dartevellei, Clupeomorpha a clupeomorph described from a marine Cenomanian deposit of the Democratic Republic of Congo Systematics fi fi Upper Cretaceous (Africa), mainly due to the presence of an elongate-based anal n, bearing more than 20 n-rays, Patagonia differing from it by the presence of a not hypertrophied abdomen.
    [Show full text]
  • Sedimentology and Stratigraphy of the Upper Cretaceous-Paleocene El
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2002 Sedimentology and stratigraphy of the Upper Cretaceous-Paleocene El Molino Formation, Eastern Cordillera and Altiplano, Central Andes, Bolivia: implications for the tectonic development of the Central Andes Richard John Fink Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Fink, Richard John, "Sedimentology and stratigraphy of the Upper Cretaceous-Paleocene El Molino Formation, Eastern Cordillera and Altiplano, Central Andes, Bolivia: implications for the tectonic development of the Central Andes" (2002). LSU Master's Theses. 3925. https://digitalcommons.lsu.edu/gradschool_theses/3925 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SEDIMENTOLOGY AND STRATIGRAPHY OF THE UPPER CRETACEOUS- PALEOCENE EL MOLINO FORMATION, EASTERN CORDILLERA AND ALTIPLANO, CENTRAL ANDES, BOLIVIA: IMPLICATIONS FOR THE TECTONIC DEVELOPMENT OF THE CENTRAL ANDES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Richard John Fink B.S., Montana State University, 1999 August 2002 ACKNOWLEDGEMENTS I would like to thank Drs. Bouma, Ellwood and Byerly for allowing me to present and defend my M.S. thesis in the absence of my original advisor.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3954, 29 pp. June 16, 2020 A new genus of Late Cretaceous angel shark (Elasmobranchii; Squatinidae), with comments on squatinid phylogeny JOHN G. MAISEY,1 DANA J. EHRET,2 AND JOHN S.S. DENTON3 ABSTRACT Three-dimensional Late Cretaceous elasmobranch endoskeletal elements (including palato- quadrates, ceratohyals, braincase fragments, and a series of anterior vertebrae) are described from the Late Cretaceous University of Alabama Harrell Station Paleontological Site (HSPS), Dallas County, Alabama. The material is referred to the extant elasmobranch Family Squatinidae on the basis of several distinctive morphological features. It also exhibits features not shared by any modern or fossil Squatina species or the extinct Late Jurassic squatinid Pseudorhina. A new genus and species is erected, despite there being some uncertainty regarding potential synonymy with existing nominal species previously founded on isolated fossil teeth (curiously, no squatinid teeth have been docu- mented from the HSPS). A preliminary phylogenetic analysis suggests that the new genus falls on the squatinid stem, phylogenetically closer to Squatina than Pseudorhina. The craniovertebral articu- lation in the new genus exhibits features considered convergent with modern batomorphs (skates and rays), including absence of contact between the posterior basicranium and first vertebral cen- trum, and a notochordal canal which fails to reach the parachordal basicranium. Supporting evi- dence that similarities in the craniovertebral articulation of squatinoids and batomorphs are convergent rather than synapomorphic (as “hypnosqualeans”) is presented by an undescribed Early Jurassic batomorph, in which an occipital hemicentrum articulates with the first vertebral centrum as in all modern sharklike (selachimorph) elasmobranchs. The fossil suggests instead that the bato- 1 Department of Vertebrate Paleontology, American Museum of Natural History, NY.
    [Show full text]