Remedies for Urinary Diseases Comprising Lpa Receptor Controlling Agents

Total Page:16

File Type:pdf, Size:1020Kb

Remedies for Urinary Diseases Comprising Lpa Receptor Controlling Agents Europäisches Patentamt *EP001364659A1* (19) European Patent Office Office européen des brevets (11) EP 1 364 659 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 45/00, A61K 31/661, 26.11.2003 Bulletin 2003/48 A61K 31/42, A61K 31/425, A61K 31/16, A61K 31/136, (21) Application number: 02712288.6 A61K 31/216, A61K 31/445, (22) Date of filing: 07.02.2002 A61K 31/352, A61K 31/46, A61K 31/517, A61K 31/506, A61K 31/454, A61K 31/495, A61K 31/58, A61K 31/565, A61K 31/57, A61K 31/167, A61P 13/02, A61P 13/08 // (C07D261/14, 275:03) (86) International application number: PCT/JP02/01025 (87) International publication number: WO 02/062389 (15.08.2002 Gazette 2002/33) (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • NAKADE, Shinji, Ono Pharmaceutical Co., Ltd. MC NL PT SE TR Mishima-gun,Osaka 618-8585 (JP) Designated Extension States: • FUKUSHIMA, Daikichi, AL LT LV MK RO SI Ono Pharmaceutical Co., Ltd. Mishima-gun, Osaka 618-858 (JP) (30) Priority: 08.02.2001 JP 2001031827 (74) Representative: Schön, Christoph (71) Applicant: ONO PHARMACEUTICAL CO., LTD. Patentanwälte Osaka-shi, Osaka 541-8526 (JP) Henkel, Feiler, Hänzel & Partner Möhlstrasse 37 81675 München (DE) (54) REMEDIES FOR URINARY DISEASES COMPRISING LPA RECEPTOR CONTROLLING AGENTS (57) The present invention relates to a pharmaceu- etc.). For example, an LPA receptor agonist useful for tical composition for treatment and/or prevention for uri- treatment of urinary incontinence, while an LPA receptor nary diseases comprising a lysophosphatidic acid (LPA) antagonist is useful for treatment of dysuria, ischuria, receptor regulator. pollakiuria, nocturia, urodynia and benign prostatic hy- As LPA receptor regulators act on urethra and pros- perplasia. tate, compounds acting on this receptor are useful in treating urinary diseases (urinary incontinence, dysuria, EP 1 364 659 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 364 659 A1 Description Technical Field 5 [0001] The present invention relates to a pharmaceutical composition for treatment and/or prevention for urinary diseases comprising a lysophosphatidic acid (hereinafter abbreviated as LPA) receptor regulator. More specifically, the present invention relates to a pharmaceutical composition for contraction of urethra comprising an LPA receptor agonist, a pharmaceutical composition for relaxation of urethra and/or prostate comprising an LPA receptor antagonist and a pharmaceutical composition comprising them as the active ingredient. 10 Background Art [0002] It is known that various lipid mediators such as eicosanoid and platelet activating factor (PAF) are produced by the activity of phospholipase from cell membranes. 15 [0003] Lysophosphatidic acid represented by formula (I) 20 25 (wherein R is acyl, alkenyl or alkyl) is a lipid which is produced from cell membranes, acts as a mediator in the signal transduction system and delivers various signals into cells. LPA that exists naturally is L-α-LPA. [0004] Recently, the existence of three subtypes of the LPA receptor has been disclosed and it is gradually proved that their physiological activities are via the LPA receptor. Three subtypes of the LPA receptor are called EDG (En- 30 dothelial differentiation gene)-2, 4 and 7, respectively, and form a part of EDG receptor family as well as EDG-1, 3, 5, 6 and 8 that are sphingosine-1-phosphate receptor. EDG-2 is called LPA1 or VZG-1, too (Mol Pharmacol, Dec; 58(6): 1188-96 (2000)). The LPA receptor to which LPA binds delivers signals into cells via a G-protein coupled receptor. Gs, Gi, Gq are known as G-proteins that can bind to the LPA receptor, and the receptors are considered to relate to the response to the action of increase or, adversely, decrease of cell growth. Furthermore, since MAP-kinase systems 35 operate in the lower G-protein, it has been known that LPA receptors deliver various signals. [0005] Since LPA receptors exist locally by their subtypes although they exist widely in the organs, it is thought that the role of each receptor is different by the organ. [0006] On the other hand, LPAs which are ligand for LPA receptors have various variants, and three LPAs which are alkenyl type, acyl type or alkyl type, respectively, are known. Furthermore, it is confirmed that each LPA type has the 40 diversity of molecule by the difference of number of unsaturated bond in fatty acid. [0007] The increase of blood pressure in rats, and the contraction of colon in rats and ileum in guinea pigs have been known as the pharmacological activity caused by LPA (J. Pharm. Pharmacol., 43, 774 (1991), J. Pharm. Phar- macol., 34, 514 (1982)). 1-Linolenoyl lysophosphatidic acid ((18:3)-LPA; in formula (I), the compound in which R is CH3(CH2CH=CH)3(CH2)7CO) has the most potent activity for the contraction of colon and ileum in rats by LPA. It is 45 confirmed that 1-linoleoyl lysophosphatidic acid ((18:2)-LPA ; in formula (I), the compound in which R is CH3 (CH2CH=CH)2(CH2)7CO) and 1-palmitoyl lysophosphatidic acid ((16:0)-LPA ; in formula (I), the compound in which R is CH3 (CH2)14CO) also have the activity. However, the contraction caused by phosphatidic acid represented by formula (II): 50 55 2 EP 1 364 659 A1 (wherein R is acyl, alkenyl or alkyl) has been also reported and it has not been examined whether the contraction is occurred by the activity via receptor or not. Furthermore, it has not been examined whether LPA has the pharmacological activity in vivo. [0008] It has been reported that LPA has the contractile activity in the isolated bladder smooth muscle cell (J. Urol., 5 162, 1779 (1999)), however, it has never been known that LPA relates to the contraction of urethra. [0009] As the relationship between LPA and prostate function, it has been known that LPA increases growth of the epithelial cell derived from prostate (J. Urol., 163, 1027 (2000)). However, it has never been known LPA relates to the contraction of prostate. [0010] The physiologically active substance such as noradrenaline and endothelin are known as substances which 10 cause the contraction of urethra and prostate, and it is known that they active via the each receptor. Therefore, agonists or antagonists of their receptors are used to various diseases which relate to the contraction of urethra. For example, in case of noradrenaline, since α1 receptors are found in urethra, tamsulosin and prazosin which are α1 antagonists decrease the pressure of urethra and are used for the treatment of dysuria according to benign prostatic hyperplasia. On the other hand, since α1 agonists increase the contraction of urethra, they are used for the treatment of urinary 15 incontinence. [0011] Under these background, the contractile activity of urethra and prostate by LPA has never been reported. [0012] In the specification of WO01/60819, it is described that a compound with antagonistic activity for LPA receptor inhibits the activation of cell caused by LPA and is used for the prevention and treatment of diseases such as restenosis after percutaneous transluminal coronary angioplasty (PTCA), arterial sclerosis, malignant and benign proliferative 20 disease, various inflammatory diseases, renal disease, the suppression of growth tumor cell, the invasion and metas- tasis of cancer, the cerebral or neuropathy. However, it has never been described that it relates to urinary diseases. Disclosure of the Invention 25 [0013] The inventors of the present invention have made various studies as the physiological action for LPA receptor regulators with a view to resolving a role of LPA receptors. As a result, they have found that the LPA receptor regulators affect urethra and prostate, and relate to urinary diseases, unexpectedly. This is unexpected and the first time that it was found by the experiment that the inventors of the present invention made. [0014] Thus, the present invention relates to a pharmaceutical composition for treatment and/or prevention for urinary 30 diseases comprising an LPA receptor regulator. More specifically, the present invention relates to (1) a pharmaceutical composition for contraction of urethra, comprising an LPA receptor agonist, (2) a pharmaceutical composition for relaxation of urethra and/or the prostate comprising an LPA receptor antag- onist, 35 (3) a pharmaceutical composition for treatment of urinary incontinence comprising, as an active ingredient, an LPA receptor agonist, (4) a pharmaceutical composition for treatment of dysuria, ischuria, pollakiuria, nocturia, urodynia and benign prostatic hyperplasia comprising, as an active ingredient, an LPA receptor antagonist, (5) a pharmaceutical composition for treatment and/or prevention for urinary diseases comprising a combination 40 of LPA agonist(s) and other agent(s) for treatment of urinary diseases, and (6) a pharmaceutical composition for treatment and/or prevention for urinary diseases comprising a combination of LPA antagonist(s) and other agent(s) for treatment of urinary diseases. Detailed Description 45 [0015] In the present invention, LPA means lysophosphatidic acid represented by formula (I) and it is a generic name of compounds in which one of two hydroxyl groups of glycerol in glycerophosphoric acid is substituted fatty acid. [0016] In the present invention, an LPA receptor regulator means an LPA receptor agonist (activator) and/or an LPA receptor antagonist (inhibitor). 50 [0017] As the LPA receptor agonist, whatever activates an LPA receptor is allowed, preferably LPA derivatives, more preferably 18 : 3-LPA (in formula (I), the compound in which R is 1-linoleoyl) and 18 : 1-LPA (in formula (I), the compound in which R is 1-oleoyl). Specifically, 18 : 3-LPA is preferable. [0018] Furthermore, L-α-LPA which exists naturally is preferable in LPA represented by formula (I).
Recommended publications
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Updatirg the Beers Criteria for Potentially Inappropriate Medication Use in Older Adults
    Updatirg the BeersCriteria for Potentially InappropriateMedication Use in Older Adults Resultsof a US ConsensusPanel of Experts DonnaM.Fich,PhD,RN;lamesW.Cooper,PhD,RPh;WilliamE.Wade,PhannD,FASHP,FCCP; JenniJerL. Waller, PhD;J, RossMaclean, MD; Marh H. Beers,MD Bcckground: Medication toxic effectsand drug- Reruhr: This study identified 48 individual medica- relatedproblems can have profound medical and safety tions or classeso[ medicationsto avoid in older adults consequencesfor older adults and economically affect the and their potential concernsand 20 diseases/conditions health caresystem. The purpose of this initiative was to and medicationsto be avoidedin older adultswith these reviseand update the Beerscriteria for potentially inap- conditions.Of thesepotentially inappropriate drugs, 66 propriate medicationuse in adults 65 yearsand older in wereconsidered by the panelto haveadverse outcomes the United States. of high severity. lYlcthcdr: This study used a modified Delphi method, a Concludonr: This study is an importantupdate of pre- setof proceduresand methodsfor formulating a groupjudg- viously establishedcriteria that have been widely used ment for a subject matter in which precise information is and cited. The application of the Beerscriteria and other Iacking. The criteria reviewed covered 2 types of state- tools for identifying potentially inapproprlate medica- ments: (l) medicationsor medicationclasses that should tion use will continue to enableproviders to plan inter- grnerally be avoidedin persons 65 years or older because
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • The Effects of Osaterone Acetate on Clinical Signs and Prostate Volume in Dogs with Benign Prostatic Hyperplasia
    Polish Journal of Veterinary Sciences Vol. 21, No. 4 (2018), 797–802 DOI 10.24425/pjvs.2018.125601 Original article The effects of osaterone acetate on clinical signs and prostate volume in dogs with benign prostatic hyperplasia P. Socha, S. Zduńczyk, D. Tobolski, T. Janowski Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland Abstract A clinical trial was performed to evaluate the therapeutic efficacy of osaterone acetate (OSA) in the treatment of benign prostatic hyperplasia (BPH) in dogs. Osaterone acetate (Ypozane, Virbac) was administered orally at a dose of 0.25 mg/kg body weight once a day for seven days to 23 dogs with BPH. During the 28-day trial, the dogs were monitored five times for their clinical signs and prostate volume. The OSA treatment promoted rapid reduction of clinical scores to 73.2% on day 7 and to 5.9% on day 28 (p<0.05). Osaterone acetate induced the complete clinical remission in approximately 83.0% of the dogs on day 28. The prostate volume regressed to 64.3% of the pretreatment volume after two weeks of the treatment (p<0.05) and to 54.7% at the end of the trial (p<0.05). In conclusion, OSA quickly reduced clinical signs and volume of the prostate glands in dogs with BPH. Key words: dogs, benign prostatic hyperplasia, osaterone acetate, prostate volume Introduction hyperplasia and subsequently transforms to cystic hyperplasia with the formation of multiple small cysts Benign prostatic hyperplasia (BPH) is the most within the prostatic parenchyma.
    [Show full text]
  • Wipf Group І University of Pittsburgh
    Wipf Group І University of Pittsburgh Serene Tai Research Topic Seminar 1st April 2017 Serene Tai @ Wipf Group Page 1 of 44 4/15/2017 v Prostate - compound tubuloalveolar exocrine gland of the male reproductive system - about the size of a walnut v Prostate cancer - uncontrolled growth of cells in the prostate gland - prostate adenocarcinoma is the major cancer type - 1 in 7 men will be diagnosed with prostate cancer in their lifetime - average age 66; rare before 40 v Symptoms - no symptoms in the early stage - pain and blood in urination, frequent urination, pain in bones and other areas occur in advanced stages American Cancer Society, Cancer Facts & Figures 2017 2 Serene Tai @ Wipf Group Page 2 of 44 4/15/2017 3 Serene Tai @ Wipf Group Page 3 of 44 4/15/2017 v AR is a ligand-dependent nuclear transcription factor that belongs to the steroid hormone receptor superfamily v AR gene encodes a protein of 919 amino acids (110 kDa) v Consists of 4 major functional domains: - N-terminal domain (NTD) - DNA binding domain (DBD) - Hinge region - Ligand binding domain (LBD) v Structure of full length AR has not been solved Acta Pharmacologica Sinica. 2015, 36, 3-23 J. Carcinog. 2011, 10, 20 ACS Chem. Biol. 2016, 11, 2499−2505 4 Serene Tai @ Wipf Group Page 4 of 44 4/15/2017 v Accounts for more than half the size of AR v Contains transactivation function (AF1) v The polyglutamine (polyQ - CAG) and polyglycine (polyG - GGC) tracts affect AR transactivation activity v A combination of experimental and computational analysis suggest that the NTD exists as partially folded protein intermediate (neither full random coil nor stable globular comformation) v Flexible for binding with multiple structurally diverse protein partners Biochem.
    [Show full text]
  • 207/2015 3 Lääkeluettelon Aineet, Liite 1. Ämnena I Läkemedelsförteckningen, Bilaga 1
    207/2015 3 LÄÄKELUETTELON AINEET, LIITE 1. ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, Latinskt namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy- (N)-Hydroksietyyli- (N)-Hydroxietyl- (N)-Hydroxyethyl- aethylprometazinum prometatsiini prometazin promethazine 2,4-Dichlorbenzyl- 2,4-Diklooribentsyyli- 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcoholum alkoholi alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- ami- 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol nophenolum Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini
    [Show full text]
  • Pharmacological and Ionic Characterizations of the Muscarinic Receptors Modulating [3H]Acetylcholine Release from Rat Cortical Synaptosomes’
    0270.6474/85/0505-1202$02.00/O The Journal of Neuroscience CopyrIght 0 Society for Neuroscrence Vol. 5, No. 5, pp. 1202-1207 Printed in U.S.A. May 1985 Pharmacological and Ionic Characterizations of the Muscarinic Receptors Modulating [3H]Acetylcholine Release from Rat Cortical Synaptosomes’ EDWIN M. MEYER* AND DEBORAH H. OTERO Department of Pharmacology and Therapeutics, University of Florida School of Medicine, Gainesville, Florida 32610 Abstract brain (Gonzales and Crews, 1984). M,-receptors, however, appear pre- and postsynaptically in brain, are regulated by an intrinsic The muscarinic receptors that modulate acetylcholine membrane protein that binds to GTP (g-protein), and may not be release from rat cortical synaptosomes were characterized coupled to changes in phosphatidylinositol turnover. with respect to sensitivity to drugs that act selectively at M, The present studies were designed to determine whether M,- or or Ma receptor subtypes, as well as to changes in ionic Mp-receptors mediate the presynaptic modulation of ACh release. strength and membrane potential. The modulatory receptors These studies involve dose-response curves for the release of appear to be of the M2 type, since they are activated by synaptosomal [3H]ACh in the presence of selected muscarinic ago- carbachol, acetylcholine, methacholine, oxotremorine, and nists and antagonists, as well as treatments that selectively alter MI- bethanechol, but not by pilocarpine, and are blocked by or M,-receptor activity. Our results indicate that the presynaptic atropine, scopolamine, and gallamine (at high concentra- modulation of [3H]ACh release is mediated by MP- but not MI- tions), but not by pirenzepine or dicyclomine.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Supplemental Table 1: Patient Characteristics, Interventions and Definitions/Variables of Persistence, Adherence and Discontinuation Reported in the Studies
    Adherence and persistence to OAB medication Supplemental Table 1: Patient characteristics, interventions and definitions/variables of persistence, adherence and discontinuation reported in the studies. Author (year) and Definition of persistence/adherence/discontinuation and Length of country (database) Participants Drug/intervention* independent variables on persistence follow-up Brostrøm and Hallas n=2477 Any prescription of OAB Patients who continued taking a particular drug for up to 7 years with Up to 7 (2009)1 Male: n=836 (33.8%) medication: no more than 120-day gaps were regarded as experiencing single- years Odense University Female: n=1641 (66.2%) flavoxate (n=21) treatment episodes Pharmacoepidemio- Mean age: 68.3 yearsa oxybutynin TD (n=48) logical Database tolterodine (n=1478) Variables: age, gender, prior use of OAB agents and use of (OPED); Denmark) solifenacin (n=774) anti-diabetic drugs (1999–2006) trospium (n=271) darifenacin (n=52) Chancellor et al (2013)2 n=103 250 First (new) prescription of OAB To be considered a discontinuation, patients were required to have a 2 years IMS Lifelink Database, Male: n≈25 916a (25.1%) medication in adults ≥18 years: gap of at least 45 days in therapy based on fill dates and days’ Connecticut; USA Female: n≈77 334a (74.9%) tolterodine ER (n=43 881)a supply (2005–2008) Mean (SD) age: 58.7 (15.7) solifenacin (n=15 488)a years oxybutynin (n=15 075)a Adherence rate was defined as the proportion of patients filling more darifenacin (n=10 532)a than one prescription with an MPR of ≥80% oxybutynin
    [Show full text]
  • Effects of Anti-Androgen, Tzp-4238 and Chlormadinone Acetate on the Adrenal Cortex -Histo- Pathological and Immunocyto- Chemical Studies
    ACTA HISTOCHEM. CYTOCHEM. Vol. 27, No. 4, pp. 365-372, 1994 EFFECTS OF ANTI-ANDROGEN, TZP-4238 AND CHLORMADINONE ACETATE ON THE ADRENAL CORTEX -HISTO- PATHOLOGICAL AND IMMUNOCYTO- CHEMICAL STUDIES- MASANORI MURAKOSHI, RIE INADA, MASASHI TAGAWA, KAZUHIRO IIZUKA, SHUUJI MASUDA, MINORU SUZUKI, ATSUSHI MIZOKAMI* AND KEIICHI WATANABE ** Safety Research Department, Teikoku Hormone Mfg. Co. Ltd., 1604 Shimosakunobe, Takatsu-ku, Kawasaki 213, *Department of Molecular Cell Biology, University of Occupational and Environmental Health, Kitakyushu 806 and **Department of Pathology, Tokai University School of Medicine, Bohseidai, Isehara-city, Kanagawa 259-11 Received for publication May 12, 1994, in revised form July 22, 1994 and re-revised form August 24, 1994 The atrophic effects of two synthetic steroidal anti-androgens, chlormadinone acetate (CMA) and TZP-4238, on the adrenal gland of rats were investigated by histopathological and immunocytochemical procedures. Male Sprague-Dawley rats were divided into four experimental groups. Group 1 consisted of intact controls. Groups 2 and 3 received TZP-423810 mg/kg/day and CMA 50 mg/kg/day p.o., respective- ly, for 3 weeks. Group 4 received distilled water containing 2% Tween 80 instead of TZP-4238 or CMA. CMA caused marked atrophy of the adrenal gland. Histopathologically, the remarkable atrophy was observed in the adrenal cortical cells of zonae fasciculata and reticularis. Intracellular localization of glutathione-peroxidase (GSH-PO) which effectively reduces the lipid peroxides, was mainly observed in the cytoplasmic matrix (cytosol GSH-PO) near the mitochondria or lipid droplets. In ddition, immunoreactivi- ty of intramitochondrial GSH-PO (mitochondrial GSH-PO) was less than that in the controls.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]