MEMÒRIA D'ACTIVITATS , Març del 2021

MEMÒRIA anual Institut de Recerca Geomodels

!"#$%&'()*++$,#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#- ."#'/0*1#2+&$3$&2&#$%3/0&$42)('2#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#5 ! ! "#!"$%&'(')'*!$+!$"$+(!'!,-$+.'/0")'*!1+-.21')"!3$!##########################################################################!4 /56789:58:!;<=7>=7?!=7!@<5:A67B!@D5E8>!F:A>8G!6!5:H<>:!8:78=7?!676AI8=8!=7!>D:!:68>:57! ! JI5:7::8!#########################################################################################################################################################################################!KK (EF8=B:7L:!676AI8=8!<@!86A>!>:L><7=L8CB5=9:7!L65F<76>:!H=7=F68=78!MN<5>D:57!)6AL65:5=6Q!###########################################################################################################################################################################################!KR 3$!5:L<78>5EL>=<7!<@!8I7C>:L><7=L!8>56>6!B:O<8=>:B!BE5=7?!>D:!=79:58=<7!<@!86A>C5:A6>:B!8>5EL>E5:8G! ! A:657=7?8!@5D:!.A:5>!8I7LA=7:!M(DCL:7>56A!JI5:7::8Q!###################################################################################!K3 $=6O=5!S=7:H6>=L8!=7!6!HEA>=CA6I:5!86A>!8I8>:H!@5D:!:68>:57!J:58=67!1EA@!################################################!KT! U=@>!=7D:5=>67L:!L<7>5D:!8V=>LD!@5D=7C!>D=LSC8S=77:B!>D5E8>=7?!67B!F686A!BWL!5:C ! A=<7!6>!>D:!8EFBEL>=<7C>5678=>=<7!#################################################################################################!KY )5E8>6A!6LL5:>=<7!67B!LD6=7!FE=AB=7?!<@!67!=7D:5=>:B!O688=9:!H65?=7G!=78=?D>8!@5D:!Z:8>:57! ! (D:57!"AO8!###############################################################################################################################################################################!K[ (>EBI!<7!(6A>!(>5EL>E5:8!@5:57!15::L:!#############################################################################################################!K\! (>5EL>E56A!8:>>=7?!<@!>D:!@5<7>6A!N)"!E7=>8G!"B:5SA66C(>5688D<@@!J5<;:L>#!'7=8?D>8!@567B=7?!<@!>D:!N<5>D:57!)6AL65:5=6Q!####################################!K4! ^D5E8>!F:A>8!68!A=7S=7?!:A:H:7>8!F:>V::7!<5=<7!C!76>E5:P!H:?56>=9:!?68!DIB56>:8!?::!U=B?:!M)68L6B=6!6LL5:>=<765I!O5=8HP! ! -5:?<7Q!###########################################################################################################################################################################################!RK (6A>!>:L><7=L8!67B!L<7>5=LC8:aE:7L:!B:9:A!<@!67!:bO<8:B!B::OV6>:5!B=6O=5G!>D:!! c6S=6F5=67!c68=7P!JI5:7::8!#######################################################################################################!RR ^E5=7?!<@!5!>!B=6O=58############################################################################################R3! (>5EL>E5:!67B!S=7:H6>=L8!<@!>D:!8DCJI5:7:67!@5<7>!6>!>D:!"5>:86!B:!(:?5:CJ<7>8!65:6G!'HO6L>!<@! >D:!?:5I!<@!>D:!8D:57!O=7LDC!<@!>D:!)65B<76!^H#!(6A>!67B!>D:!B=8>5=FE>=<7!67B!:b>:7B!<@! 6AAE9=6A!@678!=7>:5F:BB:B!=7!>D:!?IO8EH!<@!>D:!c65F68>5DCL:7>56A!JI5:7::8Q!#########################!RT ! c#!,-$+.'/0")'*!"N".21')"!'!N&,dU')"!###################################################################################################!RY ^<5V65B!7EH:5=L6A!H56=7=7?!:79=5<7H:7>6A!O656H:>:58!M"O>=67!L65F<76>:!8I8>:HP!+! ! 'F:5=6Q!##############################################################################################################################################################################################!R\ (>5:>LD=7?!67B!L<7>56L>=<7!<@!:b>:78=<76A!F68=78!V=>D!O5:C5=@>!86A>G!6!7EH:5=L6A!H6=L!8:B=H:7>6>=<7!67B!=7>:576A!B:A>6!B:@<5H6>=<7!E8=7?!B=8L5:>:!:A:H:7>8#!#######################!R4! $=8L5:>:!+A:H:7>!,D:!=7>:56L>=<7!<@!6!H56>:P!O5:C?5D!8:B=H:7>65I!L<9:5! ! 67B!?5D!8>56>6 #######################################################################################################################################################################3_ (6A>!B:>6LD:B!O688=9:!H65?=78!>D5E8>!F:A>8G!=78=?D>8!@55EL>E5:!67B!S=7:H6>=L8!<@!86A>!V6AA8!67B!H:?6@A6O8!B5=9:7!FI!B=@@:5:7>=6A!A<6B=7?G!A:88<78!@55=6A!(@,C,f(!OD<>5I!@5OD<7:!8:78<58!#######################################################################!3Y! ^56L>E5:!LD656L>:5=X6>=<7!E8=7?!.'$"UP!1JUP!),$P!:A:L>5=L!>:LD7=aE:8! ! @<5!@A=B=8L=OA=765I!8>EB=:8!@<5!=79:8>=?6>=7?!>D:!D=8><5=L6A!A67B8A=B:!<@!JE=?L:5Lh8P!)6>6A67!JI5:7::8!##!34! J<=7>!)A6LS=7?G!"!Z<5S@A<5=7?!)6O6F=A=>=:8!&8=7?!/=H:C.6O8:!)6H:568 ! !############################################################################################################################################################################################################!T_ $:>:L>=<7!67B!LD656L>:5=X6>=<7!<@!A67B8A=B:8!67B!56G!(>5:7?>D8!67B! ! V:6S7:88:8!####################################################################################################################################################################################!TK U=9=>I!=B:7>=@=L6>=<7!FI!H:678!<@!/:55:8>5=6A!.68:5!(L677:5!67B!,6LD=7:!.:657=7?#!)68:!  ! 8>EB=:8!6>!,<7>8:556>!,688=@!67B!)68>:AA@!B:!A6!U6A<7=6P!(O6=7Q!####################################################!TR )A=H6>=L!67B!8>5EL>E56A!L<7>5: ?A6L=6A!67B!`:B!! 5D:!,<7>!cA67L!H688=@!MZ:8>:57!"AO8Q ##################################################################################################T3 +8>=H6>=<7!<@!"96A67LD:!$:9:A!67B!^5<7>6A!f:A=:8!c68:B!<7!>D:!(O:L>5D:! (:=8H=L!(=?76A8!1:7:56>:B!6>!>D:!f6AAW:!B:!A6!(=<77:!/:8>!(=>:!##############################################################################!TT /D:!"96A67LD:!<@!.:8!^<7>8!Bi"5=786A!M"7B<556QG!"7!+b6HOA:!<@!6!JE5:!JD:!)D!'F:5!#######################################################################!T]! ! +#!$'Ng,')"!'!)"U")/+U'/0")'*!$i"f'N1&$+(!'!'N&N$")'-N(!###############################################################!T4 ^A<!6!(S=!U:8<5>G!-9:5L6=7WP!+68>:57!JI5:7::8P!'F:5=67!J:7=78EA6Q!##########################################################################################################!YK ^A68DC@A<:5=X6>=<7!67B!H6OO=7?G!676AI8=8!<@!>D:!R_K4!67B!K44T! ! ^567L8#!#####################################################################################################################################################!Y3 ! 1

Resum activitats 2020

UE7<@@!965=6F=A=>I!<@!67!:b>5:H:!@A68D!@A<!<7!>D:!)6>6A67!)<68>6A!(I8>:HC+F5:5! B=9=B:!MN+!'F:5=67!J:7=78EA6Q!###############################################################################################################################################!YY ! ^#!"Ng.'('!'!'N)-UJ-U")'*!$+!$"$+(!1+-^k('%&+(!####################################################################################!Y\ /D5::CB=H:78=<76A!H6?7:><>:AAE5=L!LD656L>:5=X6>=<7!<@!>D:!/5696A:!?:<>D:5H6A!@=:AB!M'>6AIQ!################!Y4! '7>:?56>=<7!<@!?:DE5:8!8>EBI!@<5!>D:!f6AAl8!?:<>D:5H6A!8I8>:H! ! LD656L>:5=X6>=<7!MN+!(O6=7Q!###################################################################################################################################################![_ ! 1#!/+)/2N')"!")/'f"!########################################################################################################################################![K )<78>56=7>8!<7!?:=L!8A=O!O65>=>=<7=7?!F:>V::7!>D:!"AD6H6!B6!,E5L=6!67B!J6A8!=7!>D:! ! (+!c:>=L8P!(O6=7!############################################################################################################################################################################![3 ^6EA>!(I8>:HCc68:B!J5=L!(:=8H=L!`6X65B!"88:88H:7>!<@!6!,:!(:=8H=L=>I!U:?=<7G!/D:! ! +68>:57!c:>=L8!(D:65!0<7:!M(+!(O6=7Q################################################################################################################################[T ^6EA>R(`"!+68>:57!c:>=L8!A6F<56><5Im!VD:5:!65:!V:!>D5::!I:658!6@>:5n!############################################################![Y (67B!B:O<8=>8!5:9:6A!?5:6>!:65>DaE6S:8!67B!>8E76H=8!6>!,:b=L67!J6L=@=L!)<68>!###########################################![[! ^=58>!O6A:<8:=8H8!=7!>D:!:O=L:7>56A!65:6!<@!>D:!8=b>::7>D!L:7>E5I!"H:L6!:65>DaE6S:P! ! o6A=8L=8H!<7!86A>CB:>6LD:B!8I7B=6O=5=L!<9:5FE5B:7!5D:!N<5>D:57!H65?=7!<@!>D:! ! c68aE:C)67>6F5=67!:b>:78=<76A!c68=7!MN!(O6=7Q!##########################################################################################################!\K JA=D!<@!>D:!$6F6B!8I7LA=7:!=7!^5<7>6A!^658!65LG!^=<7!6L5<88!>D:! ! 06?5<8!^P!'567!################################################################################################################################################################!\R "?:!<@!8I7<58!67B!>=H=7?!<@!@P!(Z!06?5<8!^!#############!\3! /=H=7?!67B!H6?7=>EB:!<@!9:5>=L6AC6b=8!5<>6>=<78!=7!>D:!:68>V65B8C@A67S=7?!8I7<58!<@!>D:!(DCJI5:7:67!@D5E8>!F:A>#!q=7:H6>=L8!67B!<5=?=7!<@!>D:!86A=:7>!LE596>E5:# !############################################################################################################################################################################################################!\T ! '#!!(+$',+N/-.-1k"P!)U-N-+(/U"/'1U"^'"!'!"Ng.'('!$+!)-N%&+(!#######################################################!\Y ,6?7:><8>56>=?56OD=L!B6>=7?!<@!>D:!J6A:8!<@!>D:!N+!8:L><5!<@!>D:!+F55EL>=7?!>D:!+65AI!+!U=7?!(I8>:H!<@!>D:!8DC:68>:57!JI5:7::8#!##################!]_! -5=?=7!67B!O5=<7!<@!8:B=H:7>65I!8:aE:7L:8!>D5!>D:!+8L67=AA6!@AE9=6A!5=7?!8I8>:H! ! M(D!JI5:7:67!@<5:A67B!F68=7Q!#########################################################################################################################################!]R -5F=>6A!<5=?=7!<@!>D:!8>56>=?56OD=L!8:aE:7L:8!=7!(DCJI5:7:67!8I7CS=7:H6>=L!8:B=H:7>8#!###################!]3! N:b>C?:7:56>=<7!$::OV6>:5!)<5:!'H6?=7?!67B!"76AI8=8!<@!U:8:65LD!)<5:8!@5D:!"=786!67B! ! /6F:5768!c68=78P!(O6=7!#############################################################################################################################################################!]T (:B=H:7>65I!65LD=>:L>E5:!<@!>D:!,=BBA:!-5B<9=L=67!`6V6X!^<5H6>=<7!=7!>D:!,E5XEa!c68=7!M.=FI6Q!##!]Y! ):7:L><7<8>56>=?56OD=L!:9=<7!<@!>D:!8>5=S:C8A=O!)6E>:57!)EF6 #][! /D:!-A=?65567I6!@67!68!67!676A:B!H:?6@67! B:O<8=>8!<7!,658!#########################################################################################################################################################################!]\ `=?D!6LLE56LI!5:L<78>5EL>=<7!<@!8EFBE:B!8I78:B=H:7>65I!8>5EL>E5:8!##############################################################!]]! -"#6*78$+2+$(%0%E67>=@=:B!O6A:!BI76H=L8#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#############################################################################################################################9!!]4! ! ! ! &c.')")'-N(!+N!U+f'(/+(! 3#K J ()'!###############################################################################################################!43! 3#R!J&c.')")'-N(!+N!..'cU+(P!$+U'f"$+(!$+!)-N1U+(-(!N")'-N".(!-!'N/+UN")'-N".(P!-!+N! :"#62'&$+$62+$(%0#2#+(%U+f'(/+(!N-! 4'/00(0#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#99 ()'!##################################################################################################################################################!4\! ! ! -N1U+((-(!$+!)"Ug)/+U 'N/+UN")'-N". T#K ) ! !######################################################################################!K_K! ;"#6'("#&/0$0! "U/')'J")'*!+N!#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""U-o+)/+(!$ !",c! ,JU+(+(!' -! $,'N'(/U")'-N( #!!; Y#R J J i'r$ + u " !##############################!KKR! ! ! +('(!$+^+N("$+( [#K / !####################################################################################################################################!KK\! 5"#1/17'/0#$%0&$&*&#[#R!/+('(!+N!)&U(!############################################################################################################################################)/#'/+/'+2#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#!.!!KK] ! !

2

MEMÒRIA anual Institut de Recerca Geomodels

1. INTRODUCCIÓ

Seguint les línies de recerca principals definides dins de l'Institut de Recerca Geomodels, i en funció de la recerca duta a terme pels seus membres desde finals del 2019 fins a finals del 2020, aquesta es pot agrupar en les següents activitats:

A. Adquisició de dades geològiques i modelització geològica 3D B. Modelització analògica i numèrica C. Models d'alta resolució i sensors remots D. Dinàmica i evolució de moviments de vessants: moviments de massa, caigudes de blocs i allaus de neu. E. Dinàmica i caracterització d'avingudes i inundacions F. Anàlisi i incorporació de dades geofísiques G. Tectònica activa H. Aplicació de les tècniques paleomagnètiques a la Geologia estructural I. Sedimentología, cronoestratigrafia i anàlisi de conques J. Carbonats, diagènesis i flux de fluids

En totes elles, s’ha realitzat un avanç positiu que segueix el pla de recerca plurianual dissenyat per les diferents les línies d’investigació incloses en l’Institut. Entre les fites assolides en aquest any 2020, es poden destacar les següents per cadascuna de les activitats citades anteriorment:

! Seguint amb els projectes vigents i els iniciats durant el 2020, s’ha proseguit amb la construcció de models 3D, ja sigui per obtenir models estructurals deterministes, com per a ser utilitzats com a base per a posteriors càlculs, com pot ser la migració de fluids. Cal destacar els projectes engegats i existents a Austria, Grècia i Catalunya. Concretament, s'han adquirit noves dades de camp als Alps calcaris d'Àustria, a les Bètiques orientals i als Pirineus amb l'objectiu de realitzar diversos talls geològics balancejats que il!lustrin la geometria 3D de sistemes contractius que involucren estructures salines prèvies, i permetin definir la cinemàtica de les mateixes. Aquest estudi té com a finalitat ajudar a reduir la incertesa estructural associada a estructures similars en el subsòl, únicament accessibles parcialment per mètodes indirectes com són la sísmica de reflexió o els sondejos. A Grècia, s'ha iniciat un projecte que inclou la realització de diferents talls geològics que involucraran varies campanyes de camp, que s’haurien de dur a terme en el proper any 2021. ! En relació a la modelització, s’ha continuat investigant i desenvolupant models cinemàtics i mecànics 2D i 3D, així com aplicant models numèrics de transport i sedimentació a exemples reals que involucren sedimentació carbonatada i terrígena. També s'han aplicat models de diferències finites a exemples sintètics que poden ser aplicats a exemples reals. Pel que fa als models cinemàtics i mecànics desenvolupats en aquest any, cal destacar-hi el codi CDEM desenvolupat a l'Institut (Dr. Stuart Hardy) amb col!laboració amb el Dr. Néstor Cardozo (University of Stavanger), i que pot ser consultat a la web https://thecdem.com/ ! L’activitat investigadora duta a terme al Laboratori de Modelització Analògica, ha continuat creixent en aquest passat 2020, tal como ha quedat palès en: les col!laboracions/experiments duts a terme amb centres de recerca estrangers i la continuada utilització de les dues taules de modelització disponibles al laboratori tant per

3

Resum activitats 2020

realitzar aquests experiments com per obrir noves línies de recerca mitjantçant treballs de recerca a nivell de màster i grau que han utilitzat aquesta infraestructura. A nivell tecnològic, durant el 2020 s'han realitzat diferents millores en les taules així com, s'ha actualitzat l'aire acondicionat de la sala petita que havia quedat obsolet. ! En el camp de la construcció de models del terreny d’alta resolució, per tal d'extreure la màxima informació dels generats mitjançant Laser Scaner LIDAR o altres eines més assequibles (fotografies a partir de càmeres convencionals o d'ús domèstic), l’activitat en aquest 2020 s'han centrat en la aplicació (i actualització) de les eines ja desenvolupades per l’Institut. En especial, s’ha treballat en millorar les eines informàtiques que utilitzen tècniques de Machine Learning per tal d'identificar i caracteritzar les caigudes de blocs. També s’ha continuat amb la tesi doctoral que s'enmarca dins del Doctorat Industrial i que permet una transferència del coneixement entre Universitat-Empresa. ! Dins dels estudis centrats en l'anàlisi i incorporació de dades geofísiques, s’ha d’emfatitzar la participació de l'Institut de Recerca en la plataforma tecnològica i d'innovació en geotèrmia GEOPLAT (https://www.geoplat.org/que-es-geoplat-premium/#miembros- premium). Aquesta participació ve fonamentada en la nova línia d'investigació centrada en l'energía geotèrmica que ha engegat el grup de recerca EXES-UB que forma part de l'Institut. És una activitat que s'enmarca dins dels projectes previs TERMOVOLCAN, GEO- URBAN i del recent projecte europeu PIXIL, que tenen la seva aplicació tant a les Illes Canàries com al Vallès (Catalunya). (https://www.geoplat.org/2020/12/15/geomodels- instituto-de-investigacion-de-la-universidad-de-barcelona-caracteriza-los-reservorios- geotermicos-profundos-con-tecnicas-geofisicas/) ! En relació a la tectònica activa, les tasques desenvolupades en l’any 2020 s’han encaminat principalment a caracteritzar la deformació actual a nivell d'escorça (utilitzant tècniques de sensors remots, magnetotelúrica i GPS), o els paràmetres sísmics en falles de desplaçament moderat a lent del SE de la Península Ibèrica, Pirineu i Cadenes Costeres Catalanes. Aquesta investigació, emmarcada dins del grup de treball europeu Fault2SHA (http://fault2sha.net/), ha estat dissenyada per extreure càlculs de perillositat sísmica (SE de la Península Ibèrica) i ha utilitzat metodologies punteres en aquest camp. De la mateixa manera, s'ha avançat en datar els event sísmics passats integrant noves tècniques i mètodes geocronològics. ! Si ens centrem en l’anàlisi de la dinàmica i evolució de moviments de massa, en aquest 2020 cal destacar el desenvolupament i aplicació d’una metodologia multidisciplinar mitjançant tècniques LIDAR aeri i terrestre, fotogrametría time-lapse, i monitorització sísmica i geodèsica. També s’han desenvolupat: nous mètodes analítics per detectar la caigudes de roques i caracteritzar la seva cinemàtica i dinàmica; nous mètodes i programes per detectar sísmicament allaus de neu, i caracteritzar les zones on s’alliberen; i tècniques per determinar la dinàmica i caracterització de les principals allaus de neu mixta i pols mitjançant observacions de camp i models numèrics. ! També en el camp dels riscos geològics, però centrat en el camp de les avingudes i indundacions, s'ha focalitzat en l'anàlisi geomorfològica multitemporal orientada a la caracterització d’inundacions, així com els canvis d’ús del territori, la resposta hidrològica i els llindars geomorfològics, per tal de caracteritzar i gestionar el risc d'inundació. En especial, s'ha seguit treballant en els efectes erosius d'avingudes amb l'objectiu de definir els marges fluvials susceptibles de retrocedir durant les avingudes, i en caracteritzar i identificar les zones d’alta energia i baixa energia que es generen durant les inundacions.

4

MEMÒRIA anual Institut de Recerca Geomodels

L'activitat investigadora del grup durant el període dec. 2019 - dec. 2020 s’ha traduit en 58 contribucions a congressos (54 de caràcter internacional) i 58 publicacions segons la relació següent: 11 Publicacions en llibres; derivades de congressos nacionals i internacionals; o en revistes no SCI. 47 publicacions en revistes SCI, de les que: més de la meitat (28) son de quartil Q1 16 de Q2 2 de Q3 i 1 de Q4 Com es pot deduïr de la participació a Congressos així com al número d'articles publicats, hi ha hagut una disminució en relació a anualitats anteriors, sobretot en la participació a congressos. Això és degut, principalment, a l'efecte de la pandèmia (degut al COVID-19) i a les mesures de seguretat establertes per les autoritats pertinents que van decretar el confinament total i la limitació de mobilitat tant a nivell nacional com internacional. Aquest fet va provocar que un gran nombre de congressos es suspenguessin o posposéssin al 2021. Entre ells, per exemple, hi ha el Congreso Geológico de España (que es fa cada 4 anys), el GeoMod2020 (que es fa cada 2 anys), o la EGU (anual), que son grans esdeveniments on bona part dels membres de l'Institut hi presenten els seus avenços científics. L’anulació d’aquests grans esdeveniments ha comportat una disminució del nombre d’articlkes científics totals realitzades en aquest 2020, ja que han quedat suprimits o postposats números especials de revistes de SCI on solen publicar- se els resultats que es presenten aquests esdeveniments.

Pel que fa a les tesis doctorals, durant el 2020, s'han defensat 2 tesis doctorals amb una qualificació d’ Excel!lent Cum Laude, a aquestes, s'han d'afegir 4 tesis més defensades el 2019 i no incloses en la memòria pertinent ja que no es va realitzar en substitució de l'avaluació de l'Institut de Recerca. El 2020, es van iniciar dues tesis doctorals en el sí de l'Institut, que es sumen a 29 en curs i que, per tant, fan un total de 31 tesis doctorals en actiu.

Pel que fa a la part econòmica, en resum, les fonts de finançament principal de l’Institut de recerca provenen bàsicament de projectes. En relació al número de projectes actius durant l'any 2018 (que va ser de 34), el número de projectes ha augmentat fins els 43 projectes actius aquesta anualitat. D'aquests, 29 projectes son finançats per fons públics i 14 per fons privats. D'aquests 43 projectes, n'hi ha 30 liderats per membres de l'Institut, i 13 on hi participen membres de l'Institut. L’aportació econòmica aproximada d’aquests 30 projectes liderats per membres de l'Institut per a l’anualitat 2020 ha estat d'uns 1,17 M d'!, aproximadament similar a anualitats anteriors. I si hi sumem els projectes participats per membres de l'Institut, la suma puja a prop dels 1,6 M d'!.

També cal destacar l'increment de la visualització i presència de l'Institut de Recerca a les xarxes socials per tal de seguir publicitant la recerca realitzada, gràcies als nous perfils oberts a Instagram, Twitter i LinkedIn, que es sumen al perfil de Facebook ja existent. Per finalitzar, destacar també que l’Institut de Recerca Geomodels, continua amb els acords de col!laboració signats amb diferents companyies de software d’interpretació i modelat 3D geològic comercial dins dels quals es cedeix gratuïtament o a un cost molt reduït programari valorat en més de 3,5 milions d’euros, i que s’utilitza tant en investigació com en la docència del Grau de Geologia i en les classes de màster. A aquests s'ha de sumar la nova adquisició del programari FracMan cedit per FracMan Technology Group, i que ja ha estat incorporat per dos dels grups de recerca integrats dins de l'Institut.

5

Resum activitats 2020

6

MEMÒRIA anual Institut de Recerca Geomodels

2. RESUM ACTIVITAT INVESTIGADORA Summary of the scientific activity

7

Resum activitats 2020

8

MEMÒRIA anual Institut de Recerca Geomodels

A. Adquisició de dades i Modelització geològica 3D Data acquisition and 3D geological modelling

Main research topics in this research line during this year:

- Understanding of salt-influenced fold-and-thrust belts, including geological mapping and cross-section construction subsidence analysis in the Northern Calcareous Alps, Pyrenees, Hellenides and Zagros-Oman. - Static and dynamic reservoir modelling of clastic and carbonate reservoirs and analogues - Petroleum system modeling applied to predict gas hydrate distribution and evolution through time

9

Resum activitats 2020

10

MEMÒRIA anual Institut de Recerca Geomodels

Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees

1StefanoTavani, 2Pablo Granado, 3Amerigo Corradetti, 3Thomas Seers, 4Josep Maria Casas, 2Josep Anton Muñoz

1 DISTAR, Università degli Studi di Napoli “Federico II”, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy 2 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 3 Department of Petroleum Engineering, Texas A&M University at Qatar, Qatar 4 Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain

Abstract

Joint systems in the eastern portion of the Ebro Basin of the eastern Pyrenees enjoy near continuous exposure from the frontal portion of the belt up to the external portion of its associated foredeep. Utilizing orthophoto mosaics of these world-class exposures, we have manually digitized over 30"000 joints within a 16"km#50"km study area. The mapped traces exhibit orientations that are dominantly perpendicular to the trend of the belt (transverse) and, subordinately, parallel to the belt (longitudinal). In particular, joints systematically orient perpendicular to the trend of the belt both in the frontal folds and in the inner and central portion of the foredeep basin. Longitudinal joints occur rarely with a disordered spatial distribution, exhibiting null difference in abundance between the belt and the foredeep. Joint orientations in the external portion of the foredeep become less clustered, with adjacent areas dominated by either transverse or oblique joints. Our data indicate that joints in the studied area formed in the foredeep in response to a foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep. There, the minimum stress direction becomes more variable, providing evidence of the poor contribution of the forebulge- perpendicular stretching on stress organization. This work has been published in the journal Solid Earth, 11, 1643–1651, 2020. https://doi.org/10.5194/se-11-1643-2020 IF: 2.921.

Figure. B) Detailed geological map of the study area with digitized joints (C). D) Orthophoto (https://pnoa.ign.es/, last access: 1 July 2020) of the study area with digitized joints (E). F) Frequency distribution of joint traces trends and their respective lengths.

11

Resum activitats 2020

Subsidence analysis of salt tectonics-driven carbonate minibasins (Northern Calcareous Alps, Austria)

1,2Philipp Strauss, 1Pablo Granado, 1Josep Anton Muñoz

1 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 2 OMV Austria, Exploration and Production GmnH, Vienna Austria.

Abstract

Subsidence analysis study for several Triassic carbonate platforms from the eastern Northern Calcareous Alps shows that salt expulsion allowed for the growth of thick isolated depocentres (>1.5 km) at rates faster than those tectonic subsidence alone can provide. Our results, in addition to independent regional geological evidence, argue against previous models of thick- skinned extension controlling accommodation space. Differential sedimentary loading and stretching of the salt layer can explain the development of the Triassic isolated carbonate platforms in the Northern Calcareous Alps, with salt expulsion being proportional to the growth potential of the carbonate producers. Aside of topographic loads, early diageneses of carbonates allow for the density inversion between sediment and salt, with differential loading by carbonate aggradation leading to a self-sustained feedback cycle of density-driven and gradient load subsidence; stretching of the salt layer and extensional deformation of its overburden, as constrained by cross-section restoration, also contributed to diapir initiation and salt expulsion. Our model can: (a) explain the occurrence of isolated Middle Triassic carbonate platforms in the eastern Northern Calcareous Alps, and (b) differentiate between accommodation space controlled by (local) salt expulsion and by (regional) tectonic subsidence. The Triassic Neo-Tethys shelf of the studied area constituted therefore a salt wall and minibasin province. This contribution and methods herein can also be applied to other carbonate platform systems developed on salt basins, especially where the transition from rift to drift remains unclear. This contribution has been published in the journa Basin Research 1– 23. https://doi.org/10.1111/bre.12500 IF: 3.304.

Figure. A new conceptual model derived from this work for the Neo-Tethys Triassic shelf to slope transition in the Northern Calcareous Alps organized as minibasins flanked by large (i.e. km-wide) salt structures.

12

MEMÒRIA anual Institut de Recerca Geomodels

3D reconstruction of syn-tectonic strata deposited during the inversion of salt-related structures: learnings from the Llert syncline (South-central Pyrenees)

1Adrià Ramos, 1Berta López-Mir, 2Elizabeth P. Wilson, 2Pablo Granado, 2Josep Anton Muñoz

1 IGME, Instituto Geológico y Minero de España, Madrid 2 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain

Abstract

The Llert syncline is located in the South-central Pyrenees, between the eastern termination of the E-W trending Cotiella Basin, and the north-western limb of the N-S trending Turbón-Serrado fold system. The Cotiella Basin is an inverted upper Coniacian-lower Santonian salt-floored post-rift extensional basin developed along the northern Iberian rift system. The Turbón-Serrado fold system consists of upper Santonian-Maastrichtian contractional salt-cored anticlines developed above an inverted transfer zone of the Pyrenean rift system. Based on field observations, we have conducted a 3D reconstruction of the Llert syncline in order to further constrain the transition between these oblique salt-related structures. Our results suggest that the evolution of the Llert syncline was mainly controlled by tectonic shortening related to the positive inversion of the Cotiella Basin, synchronously to the growth of the Turbón-Serrado detachment anticline. This structure was also conditioned by the pre-compressional structural framework of the Pyrenean rift system. Our contribution provides new insight into the geometric and kinematic relationships of structures developed during the inversion of passive margins involving salt. This work has been published in the open access journal Geologica Acta https://doi.org/10.1344/GeologicaActa2020.18.20 IF 1.370.

Figure. 3D synoptic model of the Llert syncline, the Turbón anticline and the inverted Cotiella Basin.

13

Resum activitats 2020

Diapir kinematics in a multi-layer salt system from the eastern Persian Gulf

1Marco Snidero, 1Núria Carrera, 2Berta Lopez-Mir, 1Joana Mencos, 1Pablo Granado, 1Mireia Butillé, 3Stefano Tavani, 1Francesc Sàbat, 1Josep Anton Muñoz

1 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 2 IGME, Instituto Geológico y Minero de España, Madrid

Abstract

The eastern Persian Gulf host several salt structures sources from two different evaporite layers, the Neoproterozoic Cambrian Hormuz Salt and the Oligocene-Miocene Fars Salt. Based on seismic interpretation, we discuss the kinematics and dynamics of this autochthonous multi-layer salt system for three case studies: the Tunb and Hengam diapirs, and the Taftan salt anticline. Halokinetic sequences related to Hormuz salt evacuation suggest three main stages of evolution: i) onset of Hormuz Salt diapirism (Paleozoic), ii) diapir squeezing, and emplacement of allochthonous Hormuz Salt (Late Cretaceous to Oligocene-Miocene), and iii) development of secondary and tertiary salt welds (Upper Miocene). Since Fars Salt structures are absent in areas devoid of allochthonous Hormuz Salt, our structural model interprets that the driving mechanism for Fars Salt diapirism is directly related to the emplacement of allochthonous Hormuz Salt during the Zagros-Oman contractional event. The related halokinetic sequences suggest that the Fars Salt diapir kinematic style depends on to the timing of Hormuz Salt extrusion with regards to Fars Salt deposition. Our results provide new insight into the interaction between salt structures sourced from two distinct autochthonous salt layers. This work has been published in the journal Marine and Petroleum Geology Volume 117, July 2020, 104402. IF: 3.79

Figure. Schematic restoration of the Tumb salt structures.

14

MEMÒRIA anual Institut de Recerca Geomodels

Rift inheritance controls the switch from thin- to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition

1,2StefanoTavani, 3Pablo Granado, 4Amerigo Corradetti, 2Giovani Camanni, 5Gianluca Vignaroli, 6Gianreto Manatschal, 7Stefano Mazzoli, 3Josep Anton Muñoz, 4Mariano Parente

1 DISTAR, Università degli Studi di Napoli “Federico II”, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy 2 Sapienza University of Rome, Italy 3 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 4 Department of Petroleum Engineering, Texas A&M University at Qatar, Qatar 5 Department of Biological, Geological, and Environmental Sciences, Università de Bologna, Italy 6 École et Observatoiredes Sciences de la Terre - EOSTdes sciences de la Terre- EOST del'Université de Strasbourg 7 School of Science and Technology, Geology division, University of Camerino, Italy

Abstract

In accretionary convergent margins, the subduction interface is formed by a lower platendécollement above which sediments are scraped off and incorporated into the accretionary wedge. During subduction, the basal décollement is typically located within or at the base of the sedimentary pile. However, the transition to collision implies the accretion of the lower plate continental crust and deformation of its inherited rifted margin architecture. During this stage, the basal décollement may remain confined to shallow structural levels as during subduction, or relocalize into the lower plate middle-lower crust. Modes and timing of such re-localization are still poorly understood. We 28 present cases from the Zagros, Apennines, Oman, and Taiwan belts, all of them involving a former rifted margin and pointing to a marked influence of inherited rift-related structures on the décollement re-localization. A deep décollement level occurs in the outer sectors of all of these belts, i.e. in the zone involving the proximal domain of pre- orogenic rift systems. Older  and shallower  décollement levels are preserved in the upper and inner zones of the tectonic pile, which include the base of the sedimentary cover of the distal portions of the former rifted margins. We propose that thinning of the ductile middle crust in the necking domains during rifting, and its complete removal in the hyperextended domains, hampered the development of deep- seated décollements during the inception of shortening. Progressive orogenic involvement of the proximal rift domains, where the ductile middle crust was preserved upon rifting, favors its reactivation as a décollement in the frontal portion of the thrust system. Such décollement eventually links to the main subduction interface, favoring underplating and the upward motion of internal metamorphic units, leading to their final emplacement onto the previously developed tectonic stack. This contribution has been accepted for publication in the journal GSA Bull IF: 3.558.

Figure. A rifted continental margin becomes involved in the deformation above a foreland-propagating, branching basal décollement.

15

Resum activitats 2020

Crustal accretion and chain building of an inherited passive margin: insights from the Western Southern Alps

1Emanuele Scaramuzzo, 1Franz A. Livio, 2Pablo Granado, 1,3Raffaele Bitonte, 1,4Andrea Di Capua

1 Università degli Studi dell’Insubria, via Valleggio 11, 22100, Como, Italy 2 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Marti i Franques s/n, 08028 Barcelona, Spain 3 Edison Exploration & Production Spa Foro Buonaparte 31, 20121 Milan – Italy 4 CNR - Institute of Environmental Geology and Geoengineering, Via Mario Bianco 9, 20131, Milan, Italy

Abstract

An increasing interest has been recently focused on investigating the the role of lithospheric extension and inheritance in affecting later orogeny. We make use of own geological mapping, interpretations of seismic reflection profiles and deep geophysical data to build an area-balanced cross-section across a key area of the Western Southern Alps (WSA) and to model a series of structural restorations from the end of Mesozoic rifting to present-day. The interpreted ramp-dominated and basement- involved style results during retro-wedge accretion through reactivation of long-lived inherited structures. Early phases of Alpine orogeny resulted in north-verging reactivation of Lower Permian strike-slip structures and Triassic-Jurassic extensional basins, whereas later phases led to the internal deformation of the orogenic retro- wedge. Our results also suggest that, during the collisional and post-collisional tectonics, lithosphere dynamics drove diachronically the onset of tectonic phases (i.e., wedging and slab retreat), from east to west, across the WSA. This work has been submitted to the journal Geology, IF: 4.768.

Figure. Section across the Western Southern Alps including surface geology, seismic refraction profile from NFP20 project, and location of earthquake foci.

16

MEMÒRIA anual Institut de Recerca Geomodels

Study on Salt Structures from Western Greece

1Josep Anton Muñoz, 1Marco Snidero, 1Pablo Santolaria, 1Pablo Granado

1Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona 08028 Barcelona.

Abstract

The Hellenides of Western Greece is a salt detached fold-and-thrust belt which resulted from the inversion of the previous southern Tethys margin. Before the Paleogene and Neogene contractional deformation, the Ionian basin was formed during the Triassic to early Jurassic rifting, preceding the opening of the Tethys Ocean.The external structural units of the Hellenides (Ionian Zone) as well as its foreland (Apulian platform) is a well-proven oil and gas province, with several discoveries of oil and gas fields in reservoirs like the Mesozoic fractured carbonates and the Upper Miocene sandstones. Recent discoveries in the structural equivalent areas to Western Greece, such as the recent Shpirag discovery in southern Albania, have documented the petroleum systems, reinforce the exploration potentiality of the study area and bring new play concepts related with salt structures and subthrust (subsalt) plays. Structural style of Western Greece is largely controlled by the presence of Triassic evaporites in the sedimentary succession as well as the existence of extensional faults affecting the Triassic to Jurassic sediments. Understanding the present contractional structure mainly depends on unravelling the distribution of the salt horizon, the geometry of the Mesozoic extensional system and the presence and geometry of salt structures preceding the contractional deformation. Inversion tectonics and reactivation of salt structures are common features in many salt- detached fold-and-thrust belts in the Alpine system, such as the Pyrenees, Alps and Zagros. In these structural settings the poor quality of the seismic data has traditionally been a major drawback in trap definition. Interpretation of these data and their integration with surface and well data requires the application of the proper structural templates and, most importantly, needs the application of fundamental structural concepts to avoid wrong interpretations.

Figure. Geological map of the Hellenides fold-and-thrust belt (Western Greece).

17

Resum activitats 2020

Structural setting of the frontal NCA units: Aderklaa-Strasshoff Project. Inisghts from Pyrenean Analogues

1Pablo Granado, 1Elizabeth P. Wilson, 1Josep Anton Muñoz

1Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona 08028 Barcelona.

Analysis of the Turbón and Santo Domingo anticlines in the Isábena and Riglos areas of the Spanish Pyrenees provide key insights into the geometry and kinematics of detachment folds, as well as insight into the stratigraphic and tectonic relationship between the mechanical stratigraphy of the folds and the overlying syn-tectonic strata, all of which can be used to better understand the structures intersected by wellbores in Strasshoff Tief. Based on this work, we propose that the Strasshof structure is a detachment fold detached on the Carnian Opponitz Fm., although allochthonous Permian salt may have contributed to the detachment level. The fold amplification to an isoclinal geometry was only possible due to the deposition of syn-tectonic Lower Cretaceous to Paleogene sediments. The mechanical stratigraphy (Plattenkalk - Hauptdolomit) of the structure is deformed by internal thrust imbricates caused by the positive inversion of Rhaetian-Jurassic extensional fault during continued deformation of the thrust system; out-of-the syncline thrusts seem also kinematically possible structures contributing the the tight folding of the structure.

Figure. NW-SE general cross-section along wells REY2-STR5-GäUT3 (i.e. Strasshof and Schönkirchen Übertief fields, and the Göller nappe). The section also includes the main geological elements of the area, including: the Flysch nappes, the Middle-Late Miocene Vienna Basin, the Early Miocene Molasse Basin, the Alpine Basal Thrust, and the underlying Autochthonous Molasse Basin, the base of the Jurassic post- rift (blue is Höflein Fm.), and the Top of the European crystalline basement, and the Dogger syn-rift Gresten Gp. in between.

18

MEMÒRIA anual Institut de Recerca Geomodels

Towards a new modern understanding of the Northern Calcareous Alps (Austria)

1Pablo Granado, 1Josep Anton Muñoz, 1,2Philipp Strauss, 1Eduard Roca, 1Pablo Santolaria, 1Elizabeth P Wilson, 2Klaus Pelz, 2Michael König

1Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona 08028 Barcelona. 2OMV Austria Exploration and Production, GmbH, Vienna, Austria

Abstract

The NCA of Austria constitute a 700 km long E-W striking salt-detached fold-and-thrust belt characterized by the diachronous growth of Triassic and Jurassic carbonate platforms. Complex structural styles such as multiple structural orientations, strong plunges, large panels of overturned stratigraphy, mechanical contacts omitting or repeating stratigraphy are archetypal features of this fold-and-thrust belt, and are sistematically associated with a Permian-Triassic layered evaporitic sequence. Since Alpine shortening completely sheared off the NCA along the Permian-Triassic evaporites from their pre-salt rifted basement, the original relationships between the post-salt stratigraphy and the basement structures responsible for crustal thinning cannot be directly observed. For these reasons, the NCA have been explained in the past by invoking several deformation phases, strike-slip tectonics, or even the gravitational emplacement of thrust sheets. Considerations on regional geological evidence -including facies distribution, subsidence analysis, and modern salt tectonics concepts- in the construction of regional balanced cross-sections, and comparison to analogue models and modern passive margins indicate a dominating post-rift setting for the NCA carbonates, where accommodation space was provided by thermal subsidence assisted by salt evacuation and thin-skinned extension.

Figure. NS cross-section along the eastern Northern Calcareous Alps.

19

Resum activitats 2020

Fold-thrust belts as linking elements between orogen and foreland deformation - nature, models, processes

1Christoph von Hagke, 2Pablo Granado, 3Matthias Rosenau, 4Stefano Tavani

1Geologisches Institut, RWTH, Aachen University 2 GZF, Postdam, Germany 3Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona 08028 Barcelona. 4DISTAR, Università degli Studi di Napoli “Federico II”, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy

Abstract

TS7.2 Session Organizers at vEGU 2020 General Assembly, 3rd–8th May 2020, Vienna (Austria).

Foreland basins archive the evolution of mountain belts, and fold-thrust belts are the linking elements between orogens and their forelands. One of the major challenges for understanding the dynamics of mountain belts is untangling the different driving mechanisms that can be responsible for exhumation of mountain belts and foreland basin deformation. In particular, the signals of plate convergence (i.e. tectonic processes), deep seated (mantle-related) processes, or climate differ with respect to their timing and spatial extent. Ensuing foreland deformation is also influenced by heterogeneity of the deforming material. For instance, stratigraphic variations of the foreland basin fill or its substrate or inherited structures add complexity to the system.

In this session we invite contributions focusing on linking mantle and crustal tectonic processes with foreland basin dynamics. This includes addressing the interplay between plate boundary forces and of inherited structures, sediment production, transport and deposition (source to sink studies), and studies constraining timing of orogen processes at different scales (ranging from short term deformation rates to longer term rates based on cosmogenic nuclides or thermochronometry). We particularly invite contributions linking geophysical with geological data including 3-D models and addressing their respective uncertainties. We encourage the presentation of field-based studies as well as analog and numerical models highlighting the link between foreland basin deformation and mountain building processes including deformation of fold-thrust belts. https://meetingorganizer.copernicus.org/EGU2020/session/36289

20

MEMÒRIA anual Institut de Recerca Geomodels

3D Integrative gas hydrates geological modeling. Hydrate Ridge (Cascadia accretionary prism, Oregon)

P. Cabello1,2, C. Berndt3, M. A. Marin2,4, O. Falivene5, y M. Marzo1,2

1Dept. de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 2Geomodels Research Institute, Universitat de Barcelona, Barcelona, Spain 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. 4Schlumberger, Aachen Technology Center, Ritterstrasse 23, 52072 Aachen, Germany

Abstract !

Predicting the spatial distribution of gas hydrates is challenging due to the complex geological and geochemical processes controlling their formation and stabilization. We present a research project aiming to improve the understanding of how these factors interact to control gas hydrates by using three-dimensional numerical models. The main objective is to forecast the 3D distribution of gas hydrates and their evolution throughout geological time by applying a workflow including two phases. Phase I focuses on building 3D geological models that capture the structural and sedimentary heterogeneity of the subsurface. In Phase II, these models are used as inputs to construct petroleum systems models that simulate pressure-temperature evolution and gas hydrate distribution and concentration. The models are built in Petrel E&P and PetroMod® (Schlumberger). We selected the study area of Hydrate Ridge, located in the Cascadia accretionary complex (offshore Oregon), in which gas hydrates occur. The project will try to answer questions such as: To what extent the sedimentary heterogeneity affects the distribution and stability of gas hydrates, and could control the presence of the bottom- simulating reflector (BSR) and variations in its amplitude? How long does it take for gas hydrates to form and dissociate throughout the geological history of a basin?

Figure. 3D reconstruction in time domain of the stratigraphic horizons and faults across the South Hydrate Ridge. The Bottom simulating reflector (BSR) is also represented. Well data is in depth domain.

21

Resum activitats 2020

Salt tectonics and controls on halokinetic-sequence development of an exposed deepwater diapir: the Bakio Diapir, Basque-Cantabrian Basin, Pyrenees

1Eduard Roca, 1Oriol Ferrer, 2Mark G. Rowan, 1Josep Anton Muñoz, 1Mireia Butillé, 3Katherine A. Giles, 1Pau Arbués, 1Marco de Matteis

1 Institut de Recerca GEOMODELS, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona (UB), Barcelona, Spain 2 Rowan Consulting, Inc., Boulder, CO, USA 3 Institute of Tectonic Studies, Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA

Abstract

This work has evaluated growth strata adjacent to the Bakio Diapir (Basque Pyrenees), discussing the application of halokinetic-sequence concepts to deepwater depositional settings. This is one of the few exposed passive diapirs developed in deepwater environments, with both synkinematic carbonate and siliciclastic strata. Thus, considering that large hydrocarbon producing areas are located in salt provinces developed in deepwater environments, this study is of interest not only to researchers in salt tectonics, but also to industry geoscientists focusing on hydrocarbon exploration and production. The study consists of a 3D analysis of this outstanding salt structure by integrating detailed geological cartography, high-resolution bathymetry, seismic and well data. The resulting reconstruction enables to decipher the diapir evolution from its formation as a salt wall developed above the overlap of two basement- involved faults until its squeezing during the Pyrenean compression. But more significantly, it allows us to discern the roles played by bathymetry, subsidence, and sedimentation type in the configuration of halokinetic sequences developed in deepwater environments. Thus, our study shows that: 1) the geometry of halokinetic sequences is defined by the thickness of the roof edges and the onlap angle of the synkinematic sediments over the salt; 2) the roof thickness is controlled not only by the ratio between salt-rise and regional sediment-accumulation rate, but also by the water depth of the diapir roof and the depositional environment that can promote vertical aggradation of a supra-diapir carbonate buildup; and 3) high surface slopes and consequent debrites are not exclusive to hook halokinetic sequences and tabular composite halokinetic sequences. This work has been published in the journal Marine and Petroleum Geology, 123, 104770, 2021. https://doi.org/10.1016/j.marpetgeo.2020.104770 IF: 3.79.

Figure. Halokinetic-sequence architecture of passive diapirs developed in a carbonate environment characterized by the deposition of platform limestones on the diapir roof and marlstones in the adjacent minibasins. A) Model with diapir uplift rate higher than the subsidence rate of the underlying substratum (subsalt subsidence). B) Model with diapir uplift rate lower than the subsalt subsidence rate.

22

MEMÒRIA anual Institut de Recerca Geomodels

Folding and fracturing of rocks adjacent to salt diapirs

1Mark G. Rowan, 2Josep Anton Muñoz, 3Katherine A. Giles, 2Eduard Roca, 4Thomas E. Hearon IV, 5J. Carl Fiduk, 2Oriol Ferrer, 6Mark P. Fischer

1 Rowan Consulting, Inc., 850 8th St, Boulder, CO, 0302, USA 2 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Barcelona, Spain 3Institute of Tectonic Studies, Department of Geological Sciences, The University of Texas at El Paso, 500 W. University, El Paso, TX, 79902, USA 4 EOG Resources, 600 17th St., Suite 1000N, Denver, CO, 80202, USA e Fiduk Consulting LLC, 9593 Doliver Dr., Houston, TX, 77063, USA 5 Department of Geology and Environmental Geosciences, Northern Illinois University, 1425 W. Lincoln Hwy., De Kalb, IL, 60115, USA

Abstract

This has been a review analysis that has examined deformation adjacent to salt stocks and walls and beneath salt sheets, with a focus on passive salt rise or emplacement and structures ranging from large-scale folds and faults to small-scale folds, fractures, and shear zones. The analysis began with a summary of the existing literature on physical and numerical modeling and empirical subsurface and outcrop data, which offer conflicting interpretations and models. The emphasis here, however, has been on exposed diapirs and sheets in a variety of basins. These demonstrate that near-salt deformation during passive diapirism is less common and less pronounced than is typically thought. In most cases, diapir rise and sheet emplacement do not directly shear and fracture adjacent strata. Instead, salt movement leads to drape folding of a thin roof, which in turn may cause associated fracturing, just as with folding of any origin. There can be exceptions, with the most common being regional extensional, contractional, or strike- slip deformation that is coeval with or postdates diapirism. This is the case if the salt becomes welded and there is ongoing weld-parallel slip or if fault damage zones formed away from diapirs subsequently become juxtaposed against the salt by ongoing slip. This study has been published in the Journal of Structural Geology 141, 104187. https://doi.org/10.1016/j.jsg.2020.104187 IF: 2.836.

Figure. Examples of small-scale ductile deformation adjacent to diapirs: a) isoclinal fold pair in mass- transport deposit flanking Bakio diapir; b) short-wavelength folds in overturned limestone truncated by a halokinetic-sequence unconformity (La Popa weld); c) 1-3 cm wide zone of sheared marls (black) at contact with igneous stringer within Bakio diapir (upper left); d) cataclastic shear zone along halokinetic unconformity at El Papalote diapir; e) diapir-parallel shear accommodating flexural slip during drape folding of mudstones at La Popa weld; f) boundary between Keuper salt sheet and underlying breccia and marls in the Prebetics, SE Spain.

23

Resum activitats 2020

Structure and kinematics of the south-Pyrenean front at the Artesa de Segre-Ponts area: Impact of the geometry of the southern pinch-out of the Cardona Fm. Salt and the distribution and extend of alluvial fans interbedded in the gypsum of the Barbastro Fm. (South-central Pyrenees)

1Eduard Roca, 1Oriol Pla,1Oriol Ferrer, 1Oscar Gratacós, 1Josep Anton Muñoz

1 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain

Abstract

The E-trending Sanaüja anticline represents the western segment of the Cardona frontal thrust wedge. It is formed by two anticlines separated by a syncline (Serra Llarga syncline) and its northern boundary corresponds to a major backthrust that deforms the frontal thrust sheets of the South Pyrenean Unit. A new 1:5.000 scale geological map done in the area combined with seismic data, dron images and field measures estructural data, reveals that the structure and kinematics of this structure is highly controlled both by: a) the geometry of the southern pinch- out of the Cardona Fm. Salt; and b) the distribution and extend of alluvial fans interbedded that are interbedded in the 600-880 m thick sequence of the gypsums of the Barbastro Fm. Also observed growth strata geometries denote that, in a first stage, as the basal detachment propagates towards the foreland, the Barbastro and Cardona Fms deformed into folds of small wavelength and a generalized southwestern vergence. The ramping of the basal thrust favored the flow of the Cardona salt from the NE syncline into the anticline in front of the ramp. Blocking of the basal thrust to the SW due to the reduction in thickness of the salt layer led to a later the development of a NE-directed backsthrust; and, as shortening increase, hinterland-directed duplexes developed in the SW limb of the anticline. All these observations provide a new insight into the knowledge of the geometric and kinematic relationships of structures developed at the front of fold-and-thrust belts involving salt.

Figure. Oblique aerial view of the growth strata developed in the Priabonian alluvial/fluvial sequences at the eastern margin of the Montsonís thrust sheet.

24

MEMÒRIA anual Institut de Recerca Geomodels

B. Modelització Analògica i Numèrica Analogue and Numerical Modelling

Main research topics in this research line during this year:

- Analogue modelling of passive margins involving salt basin: testing downbuilding, gliding and shortening processes in 2D - Numerical modelling of rift basins with pre-rift salt: extension and convergence - Numerical simulation of rock microstructures during crystal-plastic deformation and recrystallization - Numerical 2D/3D modelling of kinematic and mechanical structural models considering syn-sedimentary deposition - Numerical modelling of clastic transport and sedimentation with its interaction with carbonate producing organisms

25

Resum activitats 2020

26

MEMÒRIA anual Institut de Recerca Geomodels

Forward numerical modelling constraining environmental parameters (Aptian carbonate system, E Iberia)

1Gratacós, O., 2 Bover-Arnal, T., 3Clavera-Gispert, R., 4Carmona, A., 1JGarcía-Sellés, D.

1Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de L’Oceà, Universitat de Barcelona (UB), Spain. 2Institut de Recerca Geomodels, Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona (UB), Spain 3GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Geodynamik, Wischhofstrasse 1-3, 24148 Kiel 4External Consultant, Institut de Recerca Geomodels, Facultat de Ciències de la Terra (UB), Spain

The facies distribution in time and space of sedimentary successions is controlled by a complex interplay between physical, chemical and biological processes, which are nowadays difficult to construe from the geological record. Numerical models constitute a valuable tool to identify and quantify such controlling factors permitting a reliable 3D extrapolation and prediction of stratigraphic and facies architectures beyond outcropping rock strata. This study assesses the roles of three controlling parameters being carbonate production rate, relative sea-level changes and terrigenous clastic sediment supply, on the evolution of an Aptian carbonate system. The SIMSAFADIM-CLASTIC, a 3D process-based sedimentary-stratigraphic forward model, was used for this evaluation. The carbonate succession modelled crops out in the western Maestrat Basin (E Iberia), and corresponded to a platform-to-basin transition comprising three depositional environment-related facies assemblages: platform top, slope and basin. Testing of geological parameters in forward modelling results in a wide range of possible 3D geological scenarios. The documented distribution of facies and sequence-stratigraphic framework combined with a virtual outcrop model were used as a reference to perform geometric (quantitative) and architectural and stacking pattern (qualitative) research by model- data comparison. The time interval modelled spans 1450 ky. The best-fit simulation run characterizes and quantifies (1) relative sea-level fluctuations recording five different genetic types of deposit (systems tracts) belonging to two depositional sequences as expected from field-data analysis, (2) a rate of terrigenous clastic sediment input ranging between 0.5 and 2.5 gr/s, and (3) a mean autochthonous carbonate production maximum rate of 0.08 m/ky. Furthermore, the quantitative and qualitative sensitivity tests carried out highlight that the fluctuation of relative sea level exerted the main control on the resulting stratigraphic and facies architectures, whereas the effect of inflowing terrigenous clastic sediment is less pronounced. Facies assemblages show different sensitivities to each parameter, being the slope carbonates more sensitive than the platform top facies to inflowing fine terrigenous sediments. On slope depositional settings, siliciclastic input also controls stratal stacking patterns and the dimensions of the carbonate bodies formed. The final 3D model allows to spot architectural features such as stacking patterns that can be misinterpreted by looking at the resulting record in the outcrop or by using other 2D approaches, and facilitates the comprehension of reservoir connectivity highlighting the occurrence of initial disconnected regressive platforms, which were later connected during a transgressive stage.

Fence diagram displaying the facies distribution and the sequen ce-stratigraphic interpretation. Two close-up views (A.1 and A.2) for the cross-sections X and Y have been also included (note the vertical exaggeration 2x). Time lines allow identifying the stacking patterns of the distinct sedimentary bodies generated. Parts of both views are compared with the facies identified in the field through the DOM (see enlarged images)

27

Resum activitats 2020

Stretching and contraction of extensional basins with pre-rift salt: a numerical modelling approach

1Pablo Granado, 2Jonas B. Ruh, 1Pablo Santolaria, 1Philipp Strauss, 1Josep Anton Muñoz

1Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de L’Oceà, Universitat de Barcelona (UB), Spain. 2Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zurich, Switzerland.

Abstract

We present a series of 2D thermo-mechanical numerical experiments of thick-skinned crustal extension including a pre-rift salt horizon and subsequent thin-, thick-skinned, or mixed styles of convergence accompanied by surface processes. Extension localization along steep basement faults produces half-graben structures and leads to variations in the original distribution of pre- rift salt. Thick-skinned extension rate and salt rheology control hanging wall accommodation space as well as the locus and timing of minibasin grounding. Upon shortening, extension- related basement steps hinder forward propagation of evolving shallow thrust systems; conversely, if full basin inversion takes place along every individual fault, the regional salt layer is placed back to its pre-extensional configuration, constituting a regionally continuous décollement. Continued shortening and basement involvement deform the shallow fold-thrust structures and locally breaches the shallow décollement. We aim at obtaining a series of structural, stratigraphic and kinematic templates of fold-and-thrust belts involving rift basins with an intervening pre-rift salt horizon. Numerical results are compared to natural cases of salt- related inversion tectonics to better understand their structural evolution.This work has been submitted to the open source journal Frontiers in Earth Science, Structural Geology and Tectonics IF: 2.689

Figure. Experimental setup, boundary conditions, and composition diagrams for the modelling phases of: a) thick-skinned (i.e., basement-involved) extension; b) thin-skinned convergence; c) thick-skinned convergence.

28

MEMÒRIA anual Institut de Recerca Geomodels

Modeling deltaic sedimentation and internal delta deformation using discrete elements.

Stuart Hardy

Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de L’Oceà, Universitat de Barcelona (UB), Spain.

Gilbert deltas are an important component of many extensional basins. They are remarkable for their coarse-grained nature, large size, steep forests (up to 30-35 degrees) and exhibit a variety of slope instability features (faulting, slump scars, avalanching). There has been much research interest in Gilbert deltas due to their sensitivity to relative base-level changes, giving them a key role in basin analysis. Numerical modelling has previously been used to simulate such deltas, typically employing continuum numerical techniques where the basic data elements are stratigraphic volumes or timelines and the sediments themselves have no mechanical properties. This study presents first results from a novel 2D discrete element model of Gilbert delta formation in an active extensional tectonic setting, and where the deposited sediments have intrinsic mechanical properties and can fault, collapse and slump.

Figure. Footwall-derived Gilbert delta simulation. Results shown at (a) 100, (b) 200, (c) 300, (d) 400 and (e) 500 ka. Fault slip is 2m/ka. Also shown is the incremental shear strain over the previous 1500 yrs at each stage.

29

Resum activitats 2020

Discrete Element Modeling of the interaction of a mobile substrate, pre- growth sedimentary cover and growth strata

Stuart Hardy

Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de L’Oceà, Universitat de Barcelona (UB), Spain.

Mechanical stratigraphy is now recognised as a fundamental control on the development of geological structures in the upper crust. This is never more apparent than when salt is part of the crustal section. The interaction of a ductile salt substratum and a brittle sedimentary cover is complex, but an understanding of it is essential both from an economic and academic standpoint. Here, I present first results of a discrete element model which combines a viscous (linear Newtonian) substrate and a frictional-cohesive cover. The approach is applied to several experiments simulating extensional deformation, both thick-and thin-skinned. Strain rates in all experiments are c. 1015 s-1. The complex manner in which salt flows in the substrate and faults develop in the cover are illustrated and their linkage/evolution examined. Movement of the viscous substrate is the result of both Couette-type and Poiseuille-type flows and combinations thereof, whilst deformation in the cover takes the form of discrete, dilational faults which are not directly linked, or only soft-linked, to any sub-salt basement faults. In models with a basement fault, the fault itself presents a growing and important no-slip boundary which significantly affects viscous flow.

Figure. Experiment with a centrally located basement normal fault dipping at 30 degrees, a viscous lower section 1000 m thick (representing ductile salt) and an overlying frictional-cohesive section 1750 m thick representing a brittle, sedimentary overburden. Model geometry shown after 100, 250, 500, 750 and 1000 m displacement on the basement fault.

30

MEMÒRIA anual Institut de Recerca Geomodels

Salt detached passive margins to fold-and-thrust belts: insights from analog modeling

1Pablo Santolaria, 1Pablo Granado, 1Elizabeth P. Wilson, 1Oriol Ferrer, 1Josep Anton Muñoz

1Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona 08028 Barcelona.

Abstract

The presence of salt horizons has a strong influence on the structural evolution of passive margins and fold-and-thrust belts, and unraveling the structural grain of the salt-bearing passive margin before its incorporation into a fold-and-thrust belt can be challenging, as it is the understanding of the geometry of the contractional structures resulting from the reactivation of the former salt structures. The development of the passive margin salt system has a strong impact on its subsequent contractional evolution and so understanding the distribution of salt and sediment within the passive margin is crucial to attain reliable interpretations. Yet, it is not fully understood how these salt-sediment systems develop and, specifically, how salt tectonics is initially triggered and evolves through space and time. On rift to passive margins, there are two fundamental triggering and controlling salt tectonic mechanisms: i) extension by gravitational collapse, and ii) differential loading. Questions arise regarding timing: do these governing mechanisms act at the same time? In this case, which one dominates? Alternatively, does one mechanism precede the other? If so, which one is first? Is it dependent upon the location and timing of deformation on the passive margin? Which are the resulting structural styles and stratigraphic evidences that may help us to answer these questions? And, which are the resulting geometries when they are shortened? Squeezed salt structures, salt extrusions and canopies, welds, translated and rotated minibasins and rollovers develop from the reactivation and rejuvenation of the passive margin salt system and so their evolution is strongly controlled by the inherited pre-contractional stage.

By using sandbox analog modeling, we tackle some of these questions aiming to characterize the structural architecture of inverted salt detached passive margins to shed light on the understanding of the pre-orogenic configuration of contractional systems. Our experimental program involves the contraction of salt detached passive margins develop by differential loading and gravitational collapse. Morphometric evolution monitoring, architectural 3D reconstructions and the interpretation and restoration of key sections allow us to get the most out of our experiments. Experimental results enable us to advance our comprehension of passive-margins to fold-and-thrust belt salt systems and de-risk their interpretation in terms of the petroleum system regarding minibasins subsidence patterns or hydrocarbon pathways through salt welds, among others. The design of the experimental program is inspired by and compared against field examples from the Pyrenees and the Northern Calcareous Alps as well as present day continental margins. This work has been submitted to several international congresses, namely vEGU 2021 (Vienna, Austria) and APPG 2021 (Denver, USA).

Figure. Interpreted sandbox models after 50 cm of shortening (above), and its structural restoration (below).

31

Resum activitats 2020

3D structure and kinematics of salt walls and megaflaps driven by differential loading: lessons from analogue modeling and field examples

1Eduard Roca, 1Oriol Ferrer, O., 2Mark G. Rowan, 1Frederic Oriol Escosa, 1Òscar Gratacós, 1Josep Anton Muñoz,, 3Katherine A.Giles

1 Geomodels Research Institute, Dept. de Dinàmica de la Terra i de l’Oceà. Universitat de Barcelona, Barcelona, Spain 2 Rowan Consulting, Inc., Boulder, CO, USA. 3 Institute of Tectonic Studies, Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA.

Abstract

Little is known about the internal deformation at the flanking edges and the 3D architecture at the terminations of salt walls driven by differential loading. This induces risk in hydrocarbon exploration of poorly imaged areas. Using an experimental approach based on sandbox models and comparing their results with the southeastern termination of the Gypsum Valley salt wall (Paradox Basin), we have investigated the internal deformation and 3D structure of rectilinear salt walls around their terminations. The experimental results document that in rectilinear salt walls driven by differential loading the plan-view geometry of the salt walls depends on the salt thickness. Hence, salt wall terminations developed over a constant-thickness salt layer are abrupt with a rectangular form; and those formed over a progressively decreasing salt layer thickness depict a plan-view triangular shape. They also show that at the ends of the salt walls, faults are mainly parallel or perpendicular to the diapir trend, being predominantly transversal in the abrupt terminations and longitudinal in the gradual ones. This work has been submitted to several international congresses, namely EGU 2020 (Vienna, Austria) and APPG 2019 (San Antonio, USA).

Figure. Panoramic and top view of the contour map of the top of the pre-kinematic layers with some experiment sections showing the overburden structure at the lateral terminations of a salt wall drived by differential loading that includes a sharp vertical polymer termination (top) and a polymer termination by a gradual polymer thinning (bottom).

32

MEMÒRIA anual Institut de Recerca Geomodels

C. Models d'alta resolució High Resolution Models

Main research topics in this research line during this year:

- LIDAR and photogrammetry are tools integrated into our lines of research, with a constant hardware and software improvement. The research is oriented to extract the maximum information from the obtained digital models using software and Artificial Intelligence techniques.

33

Resum activitats 2020

34

MEMÒRIA anual Institut de Recerca Geomodels

Terrestrial SfM-MVS photogrammetry from smartphone sensors

1StefanoTavani, 2Pablo Granado, 1Umberto Riccardi, 3Thomas Seers, 3Amerigo Corradetti

1 DISTAR, Università degli Studi di Napoli “Federico II”, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy 2 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 3 Department of Petroleum Engineering, Texas A&M University at Qatar, Qatar

Abstract

Smartphones can be regarded as cameras, natively equipped with geolocation and orientation sensors, making them powerful, portable, user-friendly and inexpensive tools for terrestrial structure from motion/multiview stereo photogrammetry (SfM-MVS) surveys. Camera extrinsic parameters (i.e. camera position and orientation), required to produce fully georeferenced SfM- MVS 3D models are available for the majority of smartphone images via inbuilt magnetometer, accelerometer/gyroscope, and global navigation satellite system (GNSS) sensors. The precision of these internal sensors is not yet sufficient to directly use them as input to SfM-MVS photogrammetric reconstructions. However, when the reconstructed scene is significantly greater than the positional error, camera extrinsic parameters can be successfully used to register 3D models during post-processing. We present a survey of a 400"m wide vertical cliff to illustrate a workflow that enables the use of smartphone cameras to generate and fully georeference photogrammetric models without employing ground control points. Survey images were acquired at a distance of ~350"m to the mapped scene using a consumer-grade smartphone. This survey image dataset was subsequently used to build an unreferenced 3D model, which was registered during post-processing using orientation and position metadata tagged to each photograph.This contribution has been publicated in the journal Geomorphology Volume 367, 15 October 2020, 107318. IF: 3.819

Figure. Workflow for 3D structure from motion/multiview stereo photogrammetry model production and registration from smartphone sensors.

35

Resum activitats 2020

Fracture characterization using LIDAR, GPR, CMD, electric tomography and classical field techniques for flow modeling, La Fou Quarry, Massif, Barcelona.

1,2Laura Blanco, 1David Garcia-Sellés, 1Òscar Gratacós, 1Josep Anton Muñoz, 1Miquel Coll, 1Juanjo Ledo, 1Alex Marcuello, 3Carles Colàs, 4Jose Maria Ramos, 4Luis Arenas

1 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Spain 2 Anufra, Soil & Water Consulting, Barcelona, Spain 3 Radiopoint Systems. S.L 28031 Madrid, Spain 4 Cementos Molins Industrial, S. A. Sant Vicenç dels Horts, Barcelona, Spain

Abstract

Different sampling techniques have been used to characterize the fractures of the quarry La Fou (Garraf Massif, Barcelona), a) LIDAR (Light Detection and Radar) from a terrestrial device, b) digital photogrammetry, c) electromagnetic techniques such as GPR (Ground Penetration Radar), DEMP (Dipole). ElectroMagnetic Profiling) and TRE (electrical resistance tomography) and d) scanlines on the ground with tape measure and compass. These techniques allows us to know in more detail the 3D arrangement of the fractures and improve their geometric characterization. The progress of the quarry is in perpendicular sections of 8 meters in front of the exploitation.This allows to develop a representative DFN of case study in La Fou quarry and this to be able to determine hydraulic connectivity and fluid flow modelling. Geologically, the Garraf massif is constituded by the Lower Cretaceous limestones arranged with a gentle SW bedding orientation and highly fractured. The fracturing is mainly by joints and normal low-angle faults, derived from significant tectonic activity and affected by a riffting process during the Neogene. Four consecutive fronts have been scanned with a laser scanner and photographies to create a High Digital Terrain Model. Two electrical tomography profiles of 140 m in length were made with a vertical penetration of 27 m. On the same surface, 2 GPR cubes with surface dimensions of 29 m long by 12 m wide, with a vertical penetration of 3 m, were sampled. The sampling was completed with several CMD profiles, achieving vertical penetrations close to 3 m deep. On the area sampled with GPR, a controlled contribution of 12 m3 of water was carried out and, in the course of 2 hours, the area was re-sampled with GPR to try to observe the circulation of the fluid through the fractures. The purpose of the characterization is modelize the fractures and simulate flow with a DFN (Discrete Fracture Network) with FracMan software and perform successive flow models to estimate hydraulic connectivity.

FIGURE. Graphic diagram of front benching with the approximate location of the data collection points using LiDAR, photogrammetry, GPR, CMD, electrical tomography and scanlines.

FIGURE. Front benching of La Fou quarry Garraf Massif (Barcelona). Cretaceous Limestones

36

MEMÒRIA anual Institut de Recerca Geomodels

D. Dinàmica i evolució de moviments de vessants: moviments de massa, caigudes de blocs i allaus de neu Dynamics and evolution of mass movements:

landslides, rockfails and snow avalanches

Main research topics in this research line during this year:

- Multidiciplinary study of landslides including rockfalls and complex landslides combining aerial and terrestrial LiDAR, time-lapse photogrammetry, seismic and geodetic monitoring. - Development of new analytical methods for rockfall detection and dynamic characterization by using terrestrial LiDAR, photogrammetry and seismic data. - Development of methods and software for seismic detection, characterization and recognition of release areas of snow avalanches. - Major mixed and powder snow avalanches dynamics and characterization through field observations and numerical modelling

37

Resum activitats 2020

38

MEMÒRIA anual Institut de Recerca Geomodels

Multidisciplinary studies for investigating the historical landslide of Puigcercós, Catalan Pyrenees

1Giorgi Khazaradze, 1Marta Guinau, 1Xabier Blanch, 2Antonio Abellán, 3Mar Tapia, 1Gloria Furdada, 1,3Emma Suriñach 1 Grup RISKNAT, Institut Geomodels, University of Barcelona, Faculty of Earth Sciences, Department of Earth and Ocean Dynamics, Barcelona, Spain 2 Institute of Applied Geosciences, School of Earth and Environment, University of Leeds, Leeds, UK 3 Laboratori d’Estudis Geofísics Eduard Fontserè, Institut d’Estudis Catalans, Barcelona, Spain

Abstract More than a century ago, the Puigcercós village located in the region of Pallars Jussà (, Spain), suffered a large-scale landslide that occurred on January 13th, 1881. More than 5 million m3 of sediments and rocks were displaced and a 200 m long and 25 m high rock scarp was formed. Luckily, during the main event, the nearby village was not affected, and due to a prompt evacuation and relocation of the entire village, no casualties were reported. Nevertheless, consequent retreat of the main scarp did destroy the big part of the old village, which confirmed not only the necessity for its relocation, but also gave one of the first clearly described and confirmed examples of a successful geologic risk prevention. During the last decade, the members of the RISKNAT-UB group have chosen this site to conduct pilot studies of rockfalls and landslides using a multidisciplinary approach. The utilized observational techniques include Terrestrial Laser Scanner (TLS), photogrammetry, GPS, seismic monitoring and geophysical prospecting techniques. The work presented here is an overview of these activities, including the main milestones of the ongoing research. Special emphasis will be given to the use of geodetic techniques for investigating changes on the depositional area of the landslide and around the crown cracks at the upper level of the main scarp. As a result of the GPS observations, for the first time, 130 years after the occurrence of the event, it was possible to observe a continuing geomorphological activity of the depositional zone of this historical landslide. Currently, the RISKNAT-UB group operates cost-effective, high-resolution and low-cost photogrammetric instruments and seismic continuous records at the site, in order to monitor the evolution of the Puigcercós rock scarp. The correlation of the seismic and the photogrammetric data and intermittently obtained LiDAR images enables us to monitor and characterize frequent rockfalls and premonitory deformations occurring at the site. These observations have allowed quantifying the rate of retreat of the rock scarp at a rate of 10 to 11 cm/yr and a slow motion of the depositional zone up to 6 mm/yr. Since the geologic risk at the study area is not significant, due to the absence of population and/or infrastructures, this site is an ideal natural laboratory for developing new observational techniques, which can be used to develop early warning systems for rockfalls and landslides.

Figure. GPS velocity field in PGC1 fixed reference frame with 68% confidence ellipses. Background hillshade is from a ICGC LiDAR DEM with a 2x2 m resolution.

39

Resum activitats 2020

Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras

1Xabier Blanch, 2,3Antonio Abellan and 1Marta Guinau 1 RISKNAT Research Group, GEOMODELS Research Institute, Faculty of Earth Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] 2 Institute of Applied Geosciences, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; [email protected] 3 Center for Research on the Alpine Environment (CREALP), Sion, CH-1950 Valais, Switzerland

Abstract The emerging use of photogrammetric point clouds in three-dimensional (3D) monitoring processes has revealed some constraints with respect to the use of LiDAR point clouds. Oftentimes, point clouds (PC) obtained by time-lapse photogrammetry have lower density and precision, especially when Ground Control Points (GCPs) are not available or the camera system cannot be properly calibrated. This paper presents a new workflow called Point Cloud Stacking (PCStacking) that overcomes these restrictions by making the most of the iterative solutions in both camera position estimation and internal calibration parameters that are obtained during bundle adjustment. The basic principle of the stacking algorithm is straightforward: it computes the median of the Z coordinates of each point for multiple photogrammetric models to give a resulting PC with a greater precision than any of the individual PC. The different models are reconstructed from images taken simultaneously from, at least, five points of view, reducing the systematic errors associated with the photogrammetric reconstruction workflow. The algorithm was tested using both a synthetic point cloud and a real 3D dataset from a rock cliff. The synthetic data were created using mathematical functions that attempt to emulate the photogrammetric models. Real data were obtained by very low-cost photogrammetric systems specially developed for this experiment. Resulting point clouds were improved when applying the algorithm in synthetic and real experiments, e.g., 25th and 75th error percentiles were reduced from 3.2 cm to 1.4 cm in synthetic tests and from 1.5 cm to 0.5 cm in real conditions.

Figure. Results from the application of the PCStacking algorithm to real images. (a) Histogram of the differences between the Enh-PCn 25 feb and Enh-PCn 26 feb. Each colored line represents a different number of PCs introduced into the PCStacking algorithm. (b) Error of the differences obtained in the different comparisons (Enh-PCn 25 feb vs. Enh-PCn 26 feb).

40

MEMÒRIA anual Institut de Recerca Geomodels

Detection and characterization of landslides and rockfalls using seismic data: Strengths and weaknesses

1,2TAPIA, Mar; 2GUINAU, Marta; 2ROIG, Pere; 2PÉREZ-GUILLÉN, Cristina; 1,2SURIÑACH, Emma; 2BLANCH, Xabier; 2TELLETXEA, Bixen; 2KHAZARADZE, Giorgi; 2ROYAN, Manuel Jesús; 2ECHEVERRIA, Anna; 2FERRATER, Marta 1Laboratori d’Estudis Geofísics Eduard Fontserè, Institut d’Estudis Catalans (LEGEF-IEC). C/ del Carme, 47, 08001 Barcelona. [email protected]. 2Grup R.C. RISKNAT, I.R. Geomodels, Dept. Dinàmica la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona.

Abstract

Landslides and rockfalls are a geological hazard with a high impact on society that can be intensified due to an increase in the occurrence of extreme weather events. Seismic monitoring is a relatively low-cost technique that is advantageous due to its continuous recording, unlike other monitoring techniques. Both landslides and rockfalls leave a characteristic mark on the seismic signals, allowing the determination of the day and time of occurrence, the location of the event, the dynamics of the process and an estimate of the volume based on the energy involved. The study of landslides and rockfalls from seismic signals requires adapting the methodology to each place, making a good characterization of the seismic records, highlighting the strengths and limitations of the method. In this work, the results obtained by the RISKNAT group will be presented, on the one hand, in the village of La Riba (Tarragona), where a planar rock slide and a detachment caused by a blast took place, and on the other hand in Puigcercós (Lleida), where an escarpment is being studied in which rock falls take place and is being monitored by a seismic station along with other techniques such as LiDAR, GPS and terrestrial photogrammetry.

Figure. Detection of two main rockfalls (Rock 1 and 2) together with minor precursory detachments using continous seismic records and STA / LTA techniques at Puigcercós. Previous studies allow to discriminate rockfall events from the seismic signal and to deduce approximate volumes.

41

Resum activitats 2020

Rockfall activity identification by means of Terrestrial Laser Scanner and Machine Learning. Case studies at Montserrat Massif and Castellfollit de la Roca (Catalonia, Spain)

1,2,6Laura Blanco, 1,3David García-Sellés, 4Nicolas Pascual, 4Anna Puig, 4Maria Salamó, 1,3Marta Guinau, 1,6Òscar Gratacós, 1,6Josep Anton Muñoz, 5Marc Janeras, 5Oriol Pedraza 1 GEOMODELS Research Institute, University of Barcelona, Spain ([email protected]) 2 Anufra, Soil & Water Consulting, Spain 3 University of Barcelona, RISKNAT Research Group, Facultat de Ciències de la Terra, Spain 4 University of Barcelona, WAI Research Group, Facultat de Matemàtiques i Informàtica, Spain 5 Institut Cartogràfic i Geològic de Catalunya, Engineering Geology Unit, Barcelona, Spain 6 University of Barcelona, GGAC Research Group, Facultat de Ciències de la Terra, Spain

Abstract

Rockfall monitoring with remote sensing techniques, photogrammetric or LIDAR, requires of temporal and spatial resolutions, as well as the precision, budget, logistics and dilatory processes and must be complemented by an efficient methodology for the identification and classification of the changes in the point cloud due to rockfall activity. The methodology developed is implemented in a computer solution that tries to minimize user intervention. Monitoring with high temporal resolution can be an advantage to create a machine learning system. The developed algorithms identify clusters of points with different values of position, taking a threshold value as a reference with respect to a previous point cloud. The algorithms also characterize these clusters through seventeen geometric and textural parameters statistically analyzed to classify the different process occurred on the cliff, such as a) rockfall, b) small rock movements on the cliff as rock displacement prior to a rockfall and c) non-interest clusters of vegetation or noise like edge effects. Machine learning techniques are applied to classify clusters characterized by rockfalls or small movements events. For this reason, the system builds a mathematical model or “training data” based on clusters previously classified by the user. With this learning, the system can classify automatically clusters from new point clouds. Different machine learning strategies have been tested to achieve an optimal solution and adapted to each scenario. The proposed methodology has been tested in two different scenarios. The first case corresponds to the Montserrat Massif (Barcelona, NE Spain), in a fractured conglomerate outcrop (150 m height and 190 m length) with a long history of rockfalls and a high presence of visitors. The second scenario corresponds to the basaltic cliff at Castellfollit de la Roca (Girona, NE Spain). The outcrop is extended along of 230 meters and vertically 35 m. The retreat of the cliff affects the East side of the village.

Figure: Left. Landscape of the Montserrat Massif. Right. Example of rockfall (Volume 0.02 m3)

42

MEMÒRIA anual Institut de Recerca Geomodels

Climatic and structural controls on Late glacial and Holocene rockfall occurrence in high elevated rock walls of the Mont Blanc massif (Western Alps) ! ! 1,2Xavi Gallach, 2 Julien Carcaillet, 1Ludovic Ravanel, 1Philip Deline, 2Christophe Ogier, 1Magali Rossi, 1Emmanuel Malet, 3David Garcia Sellés

1 EDYTEM Laboratory, Université Savoie Mont Blanc, Université! Grenoble Alpes, CNRS, Chambéry, France 2 ISTerre Laboratory, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France 3 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Spain

ABSTRACT

In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long term control on rockfall occurrence, a selection of paleo rockfall scars was dated in the Glacier du Géant basin [>3200m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall! occurrence was compared to different climatic and glacial! proxies. This study presents 55 new samples (including replicates) and 25 previously published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02ka to 88.40 ± 7.60ka. Holocene ages and their uncertainties were used !to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7ka, related to the Holocene Warm Periods; (ii) c. 4.5–4ka, related to the Sub boreal Warm Period; (iii) c. 2.3–1.6ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetr! ic three dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best preserved rockfall scars ($0.91 ± 0.12ka). A structural study was carried out! at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls! using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened up during long term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and! the rock wall !scales, control the rock wall shapes as well as the geometry and volume of the rockfall events. This contribution has been publicated in the journal Earth Surface Processes And Landforms 45, 3071–3091,2020! DOI: 10.1002/esp.4952

Figure. Location of the 80 rock wall surfaces dated in the nine study sites of the Glacier du Géant basin.

43

Resum activitats 2020

Estimation of Avalanche Development and Frontal Velocities Based on the Spectrogram of the Seismic Signals Generated at the Vallée de la Sionne Test Site

Emma Suriñach 1,2, Elsa Leticia Flores-Márquez 3, Pere Roig-Lafon 1 , Glòria Furdada 1 and Mar Tapia 2

1 RISKNAT Avalanches Research Group—Institut Geomodels, Earth Sciences Faculty, Universitat de Barcelona (UB), 28008 Barcelona, Spain. 2 Laboratori d’Estudis Geofísics Eduard Fontserè (LEGEF-IEC), 08001 Barcelona, Spain. 3 Instituto de Geofísica, UNAM, Circuito Instituto S/N, Coyoacán 04510, Mexico.

Abstract:

The changes in the seismic signals generated by avalanches recorded at three sites along a path at the Vallée de la Sionne (VdlS) experimental site are presented. We discuss and correlate the differences in the duration, signal amplitudes, and frequency content of the sections (Signal ONset (ON), Signal Body (SBO), and Signal TAil and Signal ENd STA-SEN) of the spectrograms with the evolution of the powder, transitional and wet snow avalanches along a path. The development of the avalanche front was quantified using the exponential function in time F (t) = K’ exp (! t) fitted to the shape of the signal ONset (SON section of the spectrogram. The speed of the avalanche front is contained in !. To this end, a new method was developed. The three seismic components were converted into one seismic component (FS), when expressing the vector in polar coordinates. We linked the theoretical function of the shape of the FS-SON section of the spectrogram to the numerical coefficients of its shape after considering the spectrogram as an image. This allowed us to obtain the coefficients K’ and !. For this purpose, the Hough Transform (HT) was applied to the image. The values of the resulting coefficients K’ and _ are included in different ranges in accordance with the three types of avalanche. Curves created with these coefficients enable us to estimate the development of the different avalanche types along the path. Our results show the feasibility of classifying the type of avalanche through these coefficients. Average speeds of the avalanches approaching the recording sites were estimated. The speed values of wet and transitional avalanches are consistent with those derived from GEODAR (GEOphysical Doppler radAR) measurements, when available. The absence of agreement in the speed values obtained from seismic signals and GEODAR measurements for powder snow avalanches indicates, for this type of avalanche, a different source of the measured signal. Hence, the use of the two measuring systems proves to be complementary. This contribution has been published in the journal Geosciences, 21 March 2020, 10, 113; doi:10.3390/geosciences10030113

Table. Main characteristics of the selected avalanches. Aval. N.: Avalanche name used in this paper. Type: Avalanche type: POW—powder snow, TRANS—transitional, and WET—wet snow. Size: L—large, M—medium, S—small. Classification after SLF and [19]. (+) from [59]. (A): artificially triggered avalanche. Date: Date of occurrence. N_: SLF internal code. Release location (See Figure 1). Av12 WET–L descended Gullies 1 and 2 (After [19]). GEODAR (GEOphysical Doppler radAR): Information from images, B&C: for avalanches reaching sites B and C. In the GEODAR column, the letters have been replaced by numbers that correspond to the ranges of the start and/or end of the GEODAR signal whenever the avalanche does not reach sites B or C. Snow cover information after [19].

44

MEMÒRIA anual Institut de Recerca Geomodels

Figure. Curves for Equation (14) with values in Table 3 of the SON section of the spectrograms of the avalanches for site C. The classification corresponds to that in Table 1. The curves were shifted in time for comparison. Capital letter C is added to the avalanche name in accordance with the site.

45

Resum activitats 2020

The Avalanche of Les Fonts d’Arinsal (Andorra): An Example of a Pure Powder, Dry Snow Avalanche

Glòria Furdada 1 , Aina Margalef 2 , Laura Trapero 2, Marc Pons 2, Francesc Areny 3, Margaret Baró, Albert Reyes and Marta Guinau

1 RISKNAT Research Group, Geomodels Institute, Department of Earth and Ocean Dynamics, University of Barcelona, 08028 Barcelona, Spain. 2 Snow and Mountain Research Centre of Andorra (CENMA-IEA), AD600 Sant Julià de Lòria, Andorra. 3 Department of Industry and Transport, Ministry of Economy, Andorra Government (until 2006), c/Prat de la Creu 62–64, AD500 Andorra la Vella, Andorra. 4 ASI Consultants (until 2003), Camí de l’Església Cs Joan PB-1, AD300 Anyós, Andorra; 5 Camp de Neu Ordino-Arcalís, Grandvalira Resorts, AD300 El Serrat, Andorra.

Abstract:

On 8th February 1996, in the north-western part of Andorra in the Pyrenees, the Les Fonts d’Arinsal (LFd’A) pure powder avalanche was triggered, descending some 1200 m to the bottom of the Arinsal valley and continuing up the opposite slope for about 200 m. This size 4–5 avalanche reached velocities of up to 80 ms-1, devastated 18 ha of forest, involved a minimum volume of up to 1.8 x 106 m-3 and caused major damage to eight buildings. Fortunately, no one was injured thanks to an evacuation, but 322 people lost their properties. This study describes the physical characteristics of the LFd’A avalanche path and provides data on earlier avalanches, the meteorological synoptic situation and snowpack conditions that generated the avalanche episode, the warning and preventive actions carried out, the effects and evidence of the large avalanche, and the defence system implemented afterwards. A discussion of the avalanche dynamics based on observations and damage, including the role of snow entrainment, the total lack of characteristic dense flow deposits, as well as the evidence of a two-phase flow (fluidisation and suspension), is presented. This case study is an example of a paradigmatic large, pure powder, dry-snow avalanche, which will be useful for model calibration. This contribution has been published in the journal Geosciences, 31 March 2020, 10, 126; doi:10.3390/geosciences10040126

Figure. Photograph taken from a helicopter the day after the avalanche (Dept. d’Indústria). (A) track and run-out zones of Les Fonts (left) and Percanela (right) avalanches; the LFd’A avalanche entrained the whole snowpack in the track zone, completely destroying the forest and partially eroding the soil

46

MEMÒRIA anual Institut de Recerca Geomodels

Figure. Map of the LFd’A avalanche run-out. In violet, the main zone with destruction; the purple dotted plot area corresponds to the strong aerosol blow a_ected area, and the violet thick dotted line the limit where dirt (pine needles and fragments of branches, small pieces of furniture, etc.) were found. In purple arrows, the main trajectory of the avalanche. The numbers related to the red dots represent the damage and evidence of elements displaced by the avalanche.

47

Resum activitats 2020

Numerical modelling of the Coll de Pal snow avalanche with Iber

M. Sanz-Ramos1a - E. Bladé1b - C. A. Andrade2 - P. Oller3,4 - G. Furdada4

1Flumen Institute (Universitat Politècnica de Catalunya – BarcelonaTECH & International Centre for Numerical Methods in Engineering – CIMNE), Barcelona, Spain 2Departamento de Geología, Universidad de Chile, Santiago, 8370450, Chile 3GeoNeuRisk, 08024, Barcelona, Spain 4RISKNAT Research Group; Geomodels Institute; Department of Earth and Ocean Dynamics, Universitat de Barcelona, 08028 Barcelona, Spain

Abstract:

The high concerns about natural hazards, such as snow avalanches, have led to the development of numerical models as support tools for their assessment, allowing to define, later, strategies to minimize the risks. The Coll de Pall snow avalanche, occurred on February 10th 2018 closed to the homonym mountain pass (Eastern Pyrenees), mobilized around of 2,431 m3 of quite dry snow. The avalanche firstly was narrowed to pass along a gully, then passed across a road, and finally stopped after 400 m from the release area, covering the inner part of the road with a snow depth up to 2.4 m. The recognition campaigns revealed that the snow avalanche may be classified as a dry, dense flow with some cohesion because the avalanche occurred with relatively low temperatures (-11ºC), some snow-aggregates were observed and the deposition area was a quite well-defined. The release area had to be estimated because of the lack of data. The event was simulated with the free 2D-SWE numerical tool Iber that implements an ad hoc numerical scheme for the rheological model. The domain was discretized using an unstructured triangular mesh of almost 60,000 elements. The numerical results were compared with the observations. This contribution has been published in the Virtual Proceedings VSSW 2020: https://presentation.vssw2020.com/poster/numerical-modelling-of-the-coll-de-pal-snow- avalanche-with-iber/

Figure. Flow depth and flow velocity best simulations, and terrain slope directions; free 2D- SWE numerical tool Iber was used.

48

MEMÒRIA anual Institut de Recerca Geomodels

E.E Dinàmica i caracterització d’avingudes i inundacions Dynamics and characterization of floods

Main research topics in this research line during this year:

-Flood torrential dynamics: bank erosion, channel widenning, fluvial deposits, Large- Wood accumulation, water marks, hydrological response. Derived high energy and low energy zones during floods. -Multitemporal geomorphological analysis oriented to flood characterisation. -Land-use changes, hydrological response and geomorphological thresholds. -Flood hazard characterisation and flood risk management

49

Resum activitats 2020

50

MEMÒRIA anual Institut de Recerca Geomodels

Flood Consequences of Land-Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula)

Glòria Furdada 1,2,3, Ane Victoriano 1,2,3 , Andrés Díez-Herrero 4 , Mar Génova 5, Marta Guinau 1,2,3 , Álvaro De las Heras 4, Rosa Ma Palau 6,7 , Marcel Hürlimann 6 , Giorgi Khazaradze 1,2,3, Josep Maria Casas 1,3, Aina Margalef 8, Jordi Pinyol 9 and Marta González 9

1 Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, c/ Martí i Franquès s/n, 08028 Barcelona, Spain. 2 RISKNAT Research Group, University of Barcelona, c/ Martí i Franquès s/n, 08028 Barcelona, Spain 3 Geomodels Research Institute, University of Barcelona, c/ Martí i Franquès s/n, 08028 Barcelona, Spain 4 Geological Hazards Division, Geological Survey of Spain & IMDEA-Water. c/ Ríos Rosas 23, 28003 Madrid, Spain. 5 Department of Natural Systems and Resources, Technical University of Madrid (UPM), 28040 Madrid, Spain. 6 Department of Civil and Environmental Engineering, Division of Geotechnical Engineering and Geosciences, UPC BarcelonaTECH, c/ Jordi Girona 1–3 (D2), 08034 Barcelona, Spain. 7 Center of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1–3 (C4), 08034 Barcelona, Spain 8 Centre d’Estudis de la Neu I la Muntanya d’Andorra/Snow and Mountain Research Center of Andorra, Av. Rocafort 21-23, Edifici Molí 3r pis, AD600 Sant Julià de Lòria, Andorra. 9 Group of the Geological Hazard Prevention Map of Catalonia, Cartographic and Geological Institute of Catalonia, Parc de Montjuïc S/N, 08038 Barcelona, Spain.

Abstract

The sensitive mountain catchment of Portainé (Eastern Pyrenees, Iberian Peninsula) has recently experienced a significant change in its torrential dynamics due to human disturbances. The emplacement of a ski resort at the headwaters led to the surpassing of a geomorphological threshold, with important consequences during flood events. Consequently, since 2008, channel dynamics have turned into sediment-laden, highly destructive torrential flows. In order to assess this phenomenon and o acquire a holistic understanding of the catchment’s behaviour, we carried out a field work-based multidisciplinary study. We considered the interaction of the various controlling factors, including bedrock geology, geomorphological evolution, derived soils and coluvial deposits, rainfall patterns, and the hydrological response of the catchment to flood events. Moreover, anthropogenic land-use changes, its consequential hydrogeomorphic e_ects and the role of vegetation were also taken into account. Robust sedimentological and geomorphological evidence of ancient dense debris flow show that the basin has shifted around this threshold, giving rise to two di_erent behaviours or equilibrium conditions throughout its history: alternating periods of moderate, bedload-laden flows and periods of high sediment- laden debris flow dynamics. This shifting could have extended through the Holocene. Finally, we discuss the possible impact of climate and global change, as the projected e_ects suggest future soil and forest degradation; this, jointly with more intense rainfalls in these mountain environments, would exacerbate the future occurrence of dense sediment-laden flows at Portainé, but also in other nearby, similar basins. This contribution has been published in the journal Water, 29 January 2020, 12, 368; doi:10.3390/w12020368, and in the book Flood Risk Assessments: Applications and Uncertainties, Díez-Herreo and Garrote (eds.), MDPI, Basel. ISBN 978-3-03936-938-6

51

Resum activitats 2020

Table Synthesis of the methodology used to carry out the present research, with 3 levels of analysis and considering causal control factors, local effects and global consequences in the studied basin.

52

MEMÒRIA anual Institut de Recerca Geomodels

Flash-flood hazard hydro-geomorphic characterization and mapping: analysis of the 2019 and 1994 Francolí river flood effects.

Llanos Valera-Prieto1, Sergi Cortés1,2, Glòria Furdada1, Marta González2, Jordi Pinyol2, J. Carles Balasch3, Giorgi Khazaradze1, Jordi Tuset3, Jaume Calvet1,

1 RISKNAT Group, Geomodels institute. Dpt. de Dinàmica de la Terra i de l´Oceà. Facultad de Cienciès de la Terra, Universitat de Barcelona, Barcelona, Spain. 2 Geological Hazard Prevention Map of Catalonia, Cartographic and Geological Institute of Catalonia, Parc de Montjuïc S/N, 08038 Barcelona, Spain. 3 Dpt. de Medio Ambiente y Ciencias del Suelo. Universidad de Lleida.

Abstract

On October 22, 2019, intense rains took place in Catalonia (292,6 mm in 24 hours at Prades), associated with a meteorological isolated depression at high atmospheric level (DANA in Spanish language). These rains caused a sudden discharge increase and a major flash-flood in the Francolí river (Tarragona, Catalonia, Spain). As a result, the river swept along a large quantity of vegetation, crops and infrastructures, such as bridges, roads, and houses. Unfortunately, the flood caused a considerable economic damage (exceeding 100 million euros), and a loss of six human lives. This area was also affected by the 1994 flood, which produced 10 fatalities and losses worth 17,000 million euros. The Francolí river watershed has an area of 853 km2 and a length of 59 km. The study area stretches for "20 km along the upper basin, without regulatory infrastructures. It covers the localities of Vimbodí, L´Espluga de Francolí, Montblanc and Vilaverd, with a population of 12,463 people. Downstream Vilaverd, the river crosses the strait of La Riba at the west of the Prades mountains. The Francolí River has low water levels much of the year and a strong seasonal regime. It presents high sediment mobility and large transportation capacity. Orthophotographs, LiDAR and field work data, including GNSS-RTK data of river sections, are fundamental for this hydro-geomorphic analysis. It is performed mostly through classical and stereo-anaglyph photo-interpretation and comparison of the 2019 (post-flood event), 2016 (pre- flood event), 1995 (after the 1994 flood) and 1945-56 orthophotographs (provided by the Geological and Cartographic Institute of Catalonia). The main effects considered are: a) channel migration, cuts or changes in the sinuosity of meanders; b) significant bank erosion; c) pull up and dragging of vegetation; d) channel widening and braiding; e) development of secondary active channels during the flood; f) significant erosive and sedimentary morphologies; g) extension of the flooded areas through ephemeral evidence. From the geomorphological effects of the 2019 and 1994 floods, the Active Band is determined and mapped. This characterization highlights that the Francolí river is, geomorphologically, very active. In consequence, when defining flood hazard zones, hydraulic modelling would not be able to capture the complexity of this system and would produce biased results. Once the Active Band is determined and with the estimation of peak flows in crucial localities, the Preferential Flow Zone (PFZ) can be defined. PFZ is the envelope of the areas where the flow concentrates during major floods or, also, the most frequently flooded areas in minor floods. This zoning allows us to discriminate areas with high and low flow energies, and to identify the margins most prone to erosion. Accordingly, varying levels of flood hazard can be mapped, and flood areas classified. This combined analysis of indicators allows us to characterize the flood hazard more precisely in the studied stretch. The method can serve to better understand and predict the flash-floods associated hydro-geomorphic hazards in these kind of geomorphologically active rivers. The authors thank the financial support from PROMONTEC project (CGL2017-84720-R AEI/FEDER, UE), Spanish MINEICO. This contribution has been presented and published in EGU2020; Doi: https://doi.org/10.5194/egusphere-egu2020-10393

53

Resum activitats 2020

Figure: Flood effects and morphology allowing to discriminate areas with high and low flow energies

54

MEMÒRIA anual Institut de Recerca Geomodels

Runoff variability of an extreme flash flood event on the Catalan Coastal System-Ebro Basin water divide (NE Iberian Peninsula)

Josep Carles Balasch1, Jordi Tuset1, Xavier Castelltort1, Mariano Barriendos2, Llanos Valera-Prieto3, Giorgi Khazaradze3, Glòria Furdada3, Jaume Calvet3, and David Pino4,5

1Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain 2Department of History and Archaeology, University of Barcelona, Barcelona, Spain 3RISKNAT Group - Geomodels Institute, Faculty of Earth Sciences, University of Barcelona, Spain 4Department of Physics, Universitat Politècnica de Catalunya (UPC)-Barcelona Tech, , Spain 5Institute of Space Studies of Catalonia (CTA-UPC), Barcelona, Spain

Abstract

On the 22nd and 23rd of October 2019 a severe rainfall produced floods in the basins of the -Ebro Depression border (Francolí, Set, Femosa rivers) that affected various towns such as L'Espluga de Francolí, Montblanc, l'Albi, Vinaixa, among others, causing 6 deaths and material damages that exceeded 100 million euros. According to historical records, this rainfall episode would exceed the maximum rainfall estimates expected for 500 years in this region and the maximum heights reached by the water are comparable to, or exceed, those of the remembered Santa Tecla flash flood on September 1874, which would have a recurrence of more than 250 years. This rain was caused by a S-SE warm and wet Mediterranean air mass over the Catalan Coastal System (Prades and Llena Ranges). The area of maximum rainfall was located at the headwaters of the rivers Set, Francolí and Montsant rivers, with rain depths above 200 mm. The hourly distribution at El Vilosell and Prades rain gauges shows 50 mm from 6 to 14 UTC and màximum intensity of 10 to 15 mm h-1, followed by a second pulse of 180-220 mm from 16 to 01 UTC and maximum intensity of 65 mm h-1 (maximum 3.1 mm min-1). Soil moisture content was low at the time of the rain after a dry summer. Early precipitation saturated the topsoil, therefore the soil surface was very wet at the beginning of the second rainfall event and it generated a hortonian overland flow. The highest rainfall intensity occurred around 19 UTC and the peak flow response was immediate, around an hour later, depending on the location. Despite the similarity of rainfall and initial soil moisture conditions, the hydrological response in the two analyzed basins was markedly different. The flows generated in the Set River basin at l'Albagès reservoir produced a peak flow of 245 m3 s-1 (1.5!m3!s-1!km-2) and a very low flood runoff ratio of only 8%. In the basin of the Francolí River, at L'Espluga de Francolí, the peak flow was 1,300 m3 s-1 (13 m3!s-1!km-2) and the runoff ratio was of the order of 70%. The Set river basin is basically agricultural with terraced slopes that retained much of the precipitation, only released after the flood as baseflow. The Francolí river basin has steeper slopes and channels and is dominated by an extensive tree cover but very poorer soils that caused little water retention, giving rise to a major hydrological response, an order of magnitude larger than that of the Set River. This contribution has been presented and published in EGU2020; Doi: https://doi.org/10.5194/egusphere- egu2020-8250

Figure. Rainfall depth distribution on the analyzed catchments and location of rain gauges

55

Resum activitats 2020

56

MEMÒRIA anual Institut de Recerca Geomodels

F. Anàlisi i incorporació de dades geofísiques Analysis and incorporation of geophysical data

Main research topics in this research line during this year:

- Study of 3D seismic data from offshore Gabon - Magnetotelluric Study of a landfill - Analysis and modelling of Magnetotelluric Data from the Travale Geothermal Area (Italy) - Long Period MT data acquisition and modelling to obtain a resistivity model of Iberia within the IBERGIC project on the effects of magnetic storms on electrical infrastructures. - Geothermal Energy, including: o the geological and geophysical characterization of geothermal reservoirs, o development and improvement of geophysical techniques (measurements and processing) for its work in urban areas and in the presence of infrastructures o the review of geophysical models obtained from real data in different types of geothermal reservoris and the generation of a series of conceptual models from the analysis of said real models, with the integration of geological knowledge.

57

Resum activitats 2020

58

MEMÒRIA anual Institut de Recerca Geomodels

Three-dimensional magnetotelluric characterization of the Travale geothermal field (Italy)

Francesca Pace1, Anna Martì2, Pilar Queralt2, Alessandro Santilano3, Adele Manzella3, Juanjo Ledo2, Alberto Godio1

1 Politecnico di Torino, Italy, 2 Institut Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 3 Institute of Geosciences and Earth Resources, Italy.

Abstract

The geoelectrical features of the Travale geothermal field (Italy), one of the most productive geothermal fields in the world, have been investigated by means of three- dimensional (3-D) magnetotelluric (MT) data inversion, which deploys the information stored in the full impedance tensor and the vertical magnetic transfer function. To the best of the authors’ knowledge, this study presents the first resistivity model of the Travale geothermal field derived from derivative-based 3-D MT inversion. The MT data that have been acquired in Travale during the past decades were collected and accurately analyzed to determine the geoelectrical dimensionality and directionality, strike direction and phase tensor properties. Data from 51 MT sites were selected for 3- D inversion. The static shift effect was corrected through new time-domain electromagnetic (TDEM) measurements. A number of 3-D MT inversion tests were performed by changing the tensor(s) to be inverted, the grid rotation and the starting model including a priori information in order to assess the connection between the inversion response and geology. The final 3-D model was compared with other subsurface data and models. In particular, a deep resistive body was imaged between 3 and 8 km of depth. It was correlated with a low velocity body and can be reasonably interpreted as a highly-fractured volume of rocks with vapor-dominated circulation. The outcome of this study provides new insight into the interpretation of the complex geothermal system of Travale.

59

Resum activitats 2020

Integration of geophysical methods and fractures study for the Vallès geothermal system characterization (NE Spain)

Mitjanas, G.; Ledo, J.; Queralt, P.; Alías, G.; Piña, P.; Marcuello, A.; Martí, A.

Institut Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain

Abstract

The Vallès geothermal system is located in the Catalan Coastal Ranges (CCR) (NE Spain). The CCR are formed by horst and graben structures limited by NE-SW and ENE-WSW striking normal faults, developed during the opening of the Valencia Trough (northwestern Mediterranean) (Gaspar-Escribano et al., 2004). In the Vallès Basin area, the thermal anomaly is located in the northeastern horst-graben limit, where a highly fractured Hercynian granodiorite is in contact with Miocene rocks by a major normal fault. This main structure seems to control the heat and the hot-water flow, nevertheless, the geological structure of this area, as well as the role of the Vallès normal fault, is poorly understood. Magnetotellurics and gravity methods together with a detailed geological map have been applied in this area to understand the main structure. Although the geophysical part makes up most of the study, we are also elaborating a detailed geological map of the area, making a fractures study at different scales. We are working with DEM alignments analysis, and fractures study from outcrops and thin sections. Our preliminary results in gravity show a strong gravity gradient in the NE-SW Vallès half-graben system and the recent MT profiles image the main fault of that system (Vallès normal fault). These results show a basin geometry with the major thickness of the basin towards the depocenter, disagreeing with the roll-over geometry assumed in previous works. Interpretations of the fractures study, together with geophysical data and models, have allowed a preliminary characterization of damage zones associated with the fault system, which are directly related to the fluid flow and the hot springs. The nature of this damage zones could be related to relay ramps, commonly regarded as efficient conduits for fluid flow (Fossen and Rotevatn, 2016).

Figure. Magnetotelluric model with the location of the MT sites. S1, S2 and S3 represents the basement-basin limit in the different boreholes (IGME 1982, 1984, 1986).

60

MEMÒRIA anual Institut de Recerca Geomodels

G. Tectònica Activa Active Tectonics

Main research topics in this research line during this year:

- Space geodetic and remote sensing applications in crustal deformation studies - Paleosismology by characterization of seismic parameters in moderate to slow slip faults (western Mediterranean) - Geochronology of recent units - Seismic hazard calculations - Scientific dissemination about Seismic Hazards

61

Resum activitats 2020

62

MEMÒRIA anual Institut de Recerca Geomodels

Constraints on geodetic slip partitioning between the Alhama da Murcia and Palomares faults in the SE Betics, Spain

Khazaradze, G., Staller, A., Martínez-Diaz, J. J., López, R., & Masana, E.

The NE-SW trending Trans-Alboran Shear Zone (TASZ) is a main structural feature in Gibraltar Arc. The Eastern Betic Shear Zone (EBSZ) is the NE continuation of the TASZ, consisting of several left-lateral strike-slip faults, spanning over 250 km from Alicante. In this study we concentrate on the two of them: Alhama de Murcia (AMF) and Palomares (PF) faults. The AMF is the longest onshore fault in the EBSZ and is divided into segments based on seismicity, tectonics and geomorphology. This fault is considered one of the most active faults in the Eastern Betics. The AMF is a reverse and left-lateral strike-slip fault with horizontal slip rates determined by paleoseismology ranging between 0.06 to 0.53 mm/yr. The PF, which runs NNE- SSW and changes its orientation to NE-SW in the northern part, is not as well studied.

Until now, no GPS measurements have been available between the two faults and therefore, it was impossible to attribute the observed overall compression of 0.8±0.4 mm/yr and fault-parallel sinistral motion of 1.3±0.2 mm/yr to AMF or PF. Thus, considering seismic and geologic arguments, the bulk of this geodetic slip was attributed to the AMF, ignoring the contribution of the PF. The new results presented here, based on the data from the continuous GPS station SENM installed in Sierra Enmedio in June 2016, clearly indicate that the PF is presently active and is playing an active role in the ongoing tectonics of the EBSZ.

Figure: Horizontal GPS crustal deformation velocities based on continuous and campaign observations processed using Gamit/Globk software at the UB. Error ellipses are 95% confidence limits. Reference system is w.r.t. to stable Eurasia.

63

Resum activitats 2020

Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain)

Octavi Gómez-Novell, Julián García-Mayordomo, María Ortuño, Eulàlia Masana and Thomas Chartier

Including faults as seismogenic sources in probabilistic seismic hazard assessments (PSHA) has turned into a common practice as knowledge of active faults is improving. Moreover, the occurrence of earthquakes in multi-fault ruptures has evidenced the need to understand faults as interacting systems rather than independent sources. We present a PSHA for the Southeastern Spain obtained by including the faults of a moderate seismicity region, the Eastern Betics Shear Zone (EBSZ) in SE Spain, as the main seismogenic sources in two separate source models, one considering background seismicity. In contrast with previous studies in Spain, earthquake occurrence of the EBSZ system is modeled considering different hypotheses of multi-fault ruptures at the whole fault system scale and weighted in a logic tree. We compare the hazard levels with those from an area source PSHA and a previous fault- based approach. The results show a clear control of the EBSZ faults in the seismic hazard for all return periods, increasing drastically the hazard levels in the regions close to the fault traces and influencing up to 20 km farther with respect to the area source PSHA. The seismic hazard is dependent on the fault slip rates as peak ground accelerations and territorial extension of the fault influence appear higher around the Alhama de Murcia and Carboneras faults, while lower slip rate faults (Palomares Fault) show minor contribution to the hazard. For the return period of 475 years and near-fault locations, our models are more consistent with the ground motion values reached in the 2011 Mw 5.2 Lorca event than the building code or national seismic hazard map, which suggest that our fault system-based model performs more accurate estimations for this return period. Fault data, mainly slip rates, and its uncertainties have a clear impact on the seismic hazard and, for some faults, the lack of detailed paleoseismic studies can compromise the reliability of the hazard estimations. This, together with epistemic uncertainties concerning the background seismicity, are key discussion points in the present study, having an impact on further research and aiming to serve as a case example for other low-to-moderate seismicity regions worldwide. Abstract from Gómez-Novell et al. (2020). Frontiers in Earth Science, 579398: https://doi.org/10.3389/feart.2020.579398

Figure. Mean Hazard maps for PGA (g) of one of the models explored for the respective return periods (RPs) of 475 years, 975 years, 2475 years and 4975 years, equivalent to the probabilities of exceedance (POE) of 10%, 5%, 2%, and 1%, respectively. From Gómez-Novell et al (2020).

64

MEMÒRIA anual Institut de Recerca Geomodels

Fault2SHA Eastern Betics laboratory; where are we three years after?

Ortuño, M., García-Mayordomo, Álvarez-Gómez, J.A., Alonso-Henar, J., Canora, C., Gómez-Novell, O., Herrero, P., J., Insua-Arévalo, J.M., Khazaradze, G., López, R., Martín-Banda, R., Martín-Rojas, I., Martínez-Díaz, J., Masana, E., Medina, I., Rodríguez-Escudero, Pérez-López, R.

It’s been three years from the birth of the Fault2SHA-Betics working group in 2017. Some of the main ideas highlighted in the first meetings have turned today in recurrent “mantras” and common practices for the group. These had to be with two main changes of paradigm: On one hand, we abandoned the vision of faults in the Betics as sources that behave individually: the complex rupturing model is now agreed and determines the way we regard the fault systems in the Betics (in particular, the Eastern Betic shear zone, EBSZ) and the way we model faults for SHA purposes. With the use of the SHERIFS approach, segmentation is not rigid (as it was the case of the previous models) allowing for multi-segment and even multi-fault ruptures that can be considered in PSHA calculations. Additionally, physics-based models are now being tested for the EBSZ faults. Conclusions from these modelling highlights the need of good quality geological data (including filling in the gaps of knowledge in the fault system) in order to produce reliable hazard results, and also the importance of better defining how the seismic parameters change along the faults segments. On the other hand, by understating how geological data propagates into SHA, we put now special attention in defining uncertainties when gathering and communicating data from the Betics lab. This specially guides the scopes of our work, forcing us to look for a wider diversity of sources of information. To reduce these uncertainties, some of the followed strategies are: 1) propagating errors in the calculation of seismic parameters from geological data; 2) combining different geochronological methods; 3) defining slip rates by including data from different fault branches and 3D trenching, data from older makers (in the absence of Quaternary ones) and data from GPS stations, and; 4) using data from different scales to define geometries and kinematics (from seismic subsurface to microscopic data). Pending issues are, for instance, the definition of own segmentation criteria, the use of common scaling relationships and the debate about the role of system’s neighbouring faults. In V Fault2sha workshop-All Hands on Deck: Promoting Faults in Seismic Hazard Assessment. London, UK: University College London. Retrieved from http://fault2sha.net/5th-workshop/

65

Resum activitats 2020

Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast

Ramírez-Herrera, M.T., Corona, N., Cerny, J., Castillo-Aja, R., Melgar, D., Lagos, M., Goguitchaichvili, A., Machain, M.L., Vázquez-Caamal, M.L., Ortuño, M., Caballero, M., Solano-Hernandez, E.A., Ruíz- Fernández, A-C.

Globally, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events because of their short time record. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events. Instrumental records suggests that the Mexican Subduction earthquakes produce relatively small tsunamis, however historical records and now geologic evidence suggest that great earthquakes and tsunamis have whipped the Pacific coast of Mexico in the past. The sediment marks of centuries old-tsunamis validate historical records and indicate that large tsunamigenic earthquakes have shaken the Guerrero- Oaxaca region in southern Mexico and had an impact on a bigger stretch of the coast than previously suspected. We show that large earthquakes and tsunamis occur more often than thought and that long-fault ruptures of the Mexican subduction are not uncommon. We present the first geologic evidence of a great tsunamigenic earthquake near the trench of a subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Two sandy tsunami deposits extend over 1.5 km inland of the coast. The youngest tsunami deposit is associated with the 1787 great earthquake, M 8.6, producing coastal subsidence and a giant tsunami that poured over the coast flooding 500 km alongshore the Mexican Pacific coast and up to 6 km inland. The oldest event from a less historically documented event occurred in 1537. The 1787 earthquake, and tsunami and a probable predecessor in 1537, suggest a plausible recurrence interval of 250 years. We proved that the common believe that great tsunamis do not occur on the Mexican Pacific coast cannot be sustained. Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast. Scientific Reports. 10:11452. https://doi.org/10.1038/s41598-020-68237-2

66

MEMÒRIA anual Institut de Recerca Geomodels

First paleoseismological results in the epicentral area of the sixteenth century Ameca earthquake, Jalisco – México.

Núñez Meneses, A., Lacan, P., Zúniga, R., Audin, L., Ortuño, M., Rosas Elguera, J., León-Loy, R., Márquez, V.

The Trans-Mexican Volcanic Belt (TMVB) is a calc-alkaline volcanic arc cut by different active crustal fault systems that have originated several destructive historical earthquakes. Located in the central part of Mexico this region offers exceptional climatic, and fertility of soil conditions, which is the reason why more than 50% of the Mexican population now live here, increasing the seismic risk. Determining the seismic potential of these fault systems is important in the western section of the TMVB, in the vicinity of the city of Guadalajara, where more than 5 million inhabitants are concentrated in a densely populated urban area. We focus here on the epicentral area of the MW 7.2 sixteenth century Ameca earthquake, one of the first earthquakes described to take place in the American continent and which also may be the largest crustal earthquake to have occurred in the TMVB in the historical record. According to some historical sources, this earthquake would be associated with the Ameca-Ahuisculco Fault but no neotectonic study has been carried out so far to characterize this fault. Here, we describe the geomorphology of the fault escarpment and the characteristics of different fault segments. This first step allowed to select a suitable site for a paleoseismological study to track the historic event. The results of the interpretation of two trenches are consistent, showing evidence of net activity of the fault in the tectono-sedimentary record with two and possibly three seismic events. The older one of these is not well recorded and interpreted as a possible event that could have occurred after 27,91 ± 0,4 cal ka BP and before 5,67 ± 0,064 cal ka BP. The second one and best recorded event occurred around 5,67 ± 0,064 cal ka BP whilst the last one occurred after 0,985 ± 0,065 cal ka BP and is likely to be the geological record of the Ameca sixteenth century earthquake. Considering the potential rupture lengths and the coseismic displacement measured in the trenches, this fault system seems capable of generating earthquakes of magnitude 6.9 to 7.3 and represents a major source of earthquake hazard to the city of Guadalajara. Journal of South American Earth Sciences 107 (2021) 103121. https://doi.org/10.1016/j.jsames.2020.103121

67

Resum activitats 2020

68

MEMÒRIA anual Institut de Recerca Geomodels

H. Paleomagnetisme aplicat a la tectònica Paleomagnetism applied to tectonics

Main research topics in this research line during this year:

- Vertical axis rotations in fold and thrust belts to unravel the primary, progressive or secondary origin of arcs and oblique structures. - Salt tectonics deformation characterized by means of vertical axis rotations - Anisotropy of magnetic susceptibility (AMS) to deduce deformation patterns in fold and thrust belts, minibasins and salt diapirs - AMS applied to deduce lava flow directions

69

Resum activitats 2020

70

MEMÒRIA anual Institut de Recerca Geomodels

Paleomagnetism on salt-detached syndiapiric overburden rocks from the Northern margin of the Basque-Cantabrian extensional Basin (N Spain)

1,2 Elisabet Beamud, 3 Ruth Soto, 1Charlotte Peigney, 1Eduard Roca, 3 Emilio L. Pueyo

1Institute de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, UB. 2 Paleomagnetic Laboratory (CCiTUB-Geo3Bcn CSIC) 3 Instituto Geológico y Minero de España

The Basque-Cantabrian Basin is a hyperextended extensional basin that formed as the result of the opening of the Bay of Biscay at latest Jurassic-middle Cretaceous times. It is formed by upper mantle and crustal rocks affected by both high- and low-angle faults that die against an Upper Triassic salt layer that decouples the deformation and generate salt diapirs. From late Santonian (Late Cretaceous), the Basque-Cantabrian Basin was involved in the Pyrenean orogeny which reactivated the previous faults and salt décollement. In this scenario, our study focuses at the northern margin of this basin where the salt overburden (Jurassic to Eocene in age) is displaced several km northwards and appears compartmentalized by several salt walls (Bakio, Bermeo, Guernica and Mungia diapirs). These walls are linked by narrow stripes of variable orientations in which the overburden appears strongly deformed by tight detachment folds and minor thin-skinned thrusts. The piercing salt is composed of Upper Triassic evaporites, red clays and volcanic ophites, and is flanked by Aptian-Albian syn-diapiric carbonate to terrigenous halokinetic sequences limited by angular unconformities that become conformable as distance to the diapir edges increases. Using a paleomagnetic study, we seek to better understand the kinematics of suprasalt deformation trying to detect and quantify vertical axis rotations recorded during both the extensional and later contractional reactivation of the basin margin. For that, 52 paleomagnetic sites have been analyzed in the overburden sequence. Of these, 50 sites were sampled in Aptian, Albian and Cenomanian marls, marly limestones and fine grained sandstones, and 2 sites were sampled in Eocene sandstones and marly limestones. Characteristic components are usually defined between 200-450 ºC pointing to titanomagnetite as the main remanence carrier. They show predominant anticlockwise rotations with some anomalous clockwise and larger anticlockwise rotations near the salt diapirs. All these components yield normal polarity, as expected by the age of the rocks, which (except the Eocene sites) coincide with the Cretaceous superchron C34n. However, some of the sites are clearly remagnetized as they yield negative fold tests, whereas some other sites show a prefolding magnetization. These results are also supported by several hysteresis analyses and back field experiments that confirm a clear remagnetization signal in the Day diagram in part of the studied rocks. However, the spatial location of remagnetized rocks does not show a distinct estructural pattern. With the current data, the origin and age of this remagnetization is difficult to assess and further analysis will be necessary. It could be either an earlier Albian-Maastrichtian remagnetization or a remagnetization linked to the Pyrenean compression. Although these uncertainties, the obtained results allow establishing a preliminary kinematic model for the suprasalt deformation together with the underlying decoupled autochtonous materials.

a) b)

Figure. (a) Negative fold test for sites of Aptian-Albian materials around the Bakio diapir and (b) positive fold test for Cenomanian-Coniacian marls and marly limestones at outcrop scale

71

Resum activitats 2020

Pliocene growth of the Dowlatabad syncline in Frontal Fars arc: Folding propagation across the Zagros Fold Belt, Iran

1Mahdi Najafi, 2Elisabet Beamud, 3 Jonas Ruh, 4 Frédéric Mouthereau, 5Alireza Tahmasbi, 6Gilen Bernaola, 7Ali Yassaghi, 5 Hossein Motamedi, 8Shahram Sherkati, 5 Mohammad Ghasem Hassan Goodarzi, and Jaume 9Vergés

1 Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran 2 Paleomagnetic Laboratory, CCiTUB–Geosciences Barcelona CSIC 3 Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zurich 4 Geosciences Environnement Toulouse, Université Toulouse Paul Sabatier, CNRS, France 5 National Iranian Oil Company, Exploration Directorate, PO Box 19395-6669, Tehran, Iran 6 Department of Mining-Metallurgy Engineering and Material Science, Faculty of Engineering in Bilbao, University of the BasqueCountry (UPV/EHU) 7 Department of Geology, Tarbiat Modares University, Tehran, Iran 8 PETRONAS, Kuala Lumpur, Malaysia 9 Group of Dynamics of the Lithosphere, Geosciences Barcelona, CSIC The integration of biostratigraphy, strontium isotope stratigraphy, and magnetostratigraphy allowed for the precise dating of the >3.0-km-thick marine to non-marine foreland sedimentary succession within the Dowlatabad growth syncline along the Frontal Fars arc in the Zagros Fold Belt that extends from eastern Turkey to Southern Iran. This area was the missing link to complete the dating of syntectonic depòsits in the Fars arc and quantify the migration of sedimentary belts as well as the propagation of folding across the entire Mesopotamian foreland basin. Both are essential for definint the interplay of basin evolution and sequence of folding. Deposition of the foreland marine marls in the Mishan Formation started at ca. 11.5 Ma. The transition to a non-marine basin infill occurred at 4.9 Ma by the progradation of thick fluvial deposits of the Aghajari Formation with a fast accumulation rate of 63 cm/k.y. The beginning of growth strata deposition and thus the onset of folding in the Dowlatabad syncline is dated at 4.65 Ma. The first appearance of carbonate conglomerates sourced from the Guri limestone at 2.8 Ma marked the progressive dismantling of the nearby growing anticlines. The tectonic deformation in the front of the Fars arc was active for at least 2.85 m.y. and ceased at 1.8 Ma before the deposition of the discordant and slightly folded Bakhtyari conglomerates characterized by a clast composition derived from the Zagros hinterland. The compilation of magnetostratigraphic ages reveals that both the migration of the Aghajari-Bakhtyari sedimentary belts and the propagation of the folding front was insequence toward the foreland at a rate close to 20 mm/yr in the Fars arc and 15 mm/yr in the Lurestan arc, in the last 20 m.y. These high rates of folding propagation are about one order of magnitude larger than age equivalent shortening rates ( 4 mm/yr in Fars arc and 2 mm/yr in Lurestan arc) and thus imply an efficient detachment level at the base of the deformed Arabian sedimentary cover. Numerical experiments on both" the cover and basement sequences" are designed to test the influence of inherited basement structures on the deformation propagation within the cover sequence, providing clues on the partly coeval in-sequence deformation of the Zagros Simply Folded Belt and the local out-of-sequence Mountain Frontal Fault system as illustrated by regional and local geology.

Figure. Regional structural cross-section extending from the Main Zagros Thrust to Saudi Arabia, across the High Zagros, Fars arc, and Persian Gulf. The onshore segment closely follows the cross-sections by McQuarrie (2004) and Mouthereau et al. (2007). The depth of Moho is based on geophysical studies and numerical modeling (Paul et al., 2010; Jiménez-Munt et al., 2012; Tunini et al., 2015; Dashti et al., 2019). syn.—syncline; Gp.—Group.

72

MEMÒRIA anual Institut de Recerca Geomodels

Age of synorogenic deposits and timing of folding in Dezful embayment, SW Zagros Fold Belt

1A. Lashgari, 1M.R. Hayhat, 2J. Vergés, 3E. Beamud, 4M. Najafi, 1M.M. Khatib, 5H.R. Karimnejad

1 Geology Department, University of Birjand, Birjand, Iran 2 Group of Dynamics of the Lithosphere (GDL), Inst 3 Paleomagnetic Laboratory CCiTUB - ICTJA CSIC 3 Insitute of Earth Sciences Jaume Almera ICTJA, CSIC 4 Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran 5 National Iranian Oil Company, Exploration Directorate, Sheikh-Bahai Square, Tehran, Iran

Abstract

Syntectonic deposits of the Mesopotamian flexural basin have been dated in the Lurestan and Fars salients in the Zagros foldbelt since the early 2000's but not in the Dezful embayment where most of the Zagros foreland oil is trapped. We use 237 samples collected for magnetostratigraphy to date shallow marine to fluvial-alluvial pre-growth and growth strata deposits along a >2700 m section in the NE flank of the Jarik anticline in north Dezful embayment. The Jarik anticline grew by a combination of compression and coeval diapirisme like other structures in north Dezful embayment. The correlation of the local magnetostratigraphy with the Geomagnetic Polarity Time Scale indicates ages of 14.1 Ma and ~13.6 Ma for the bases of the Mishan and Aghajari formations. The bases of Lahbari Mb. and Bakhtyari Fm. are ~9.0 Ma and ~7.0 Ma. The onset of growth strata in the NE flank of the Jarik anticline is ~12.8 Ma with a duration of 5.8 Myr for this anticline. This study presents for the first time the age of syntectonic deposition and folding in the Dezful embayment that is essential to determine burial and generation of hydrocarbons in this oil rich province.

Figure. Sedimentation rates (cm/kyr) for the studied succession in the NE flank of Jarik anticline as derived from the magnetostratigraphic correlation. The base of growth strata is shown as a red dash line.

73

Resum activitats 2020

Timing and magnitude of vertical-axis rotations in the eastwards- flanking synorogenic sediments of the South-Pyrenean fold-and-thrust belt. Kinematics and origin of the salient curvature.

1,2Charlotte Peigney, 1,3Elisabet Beamud, 1,2Òscar Gratacós, 3,4Luis Valero, 5Ruth Soto, 1,2Eduard Roca and 1,2Josep Anton Muñoz

1 Geomodels UB Research Institute, University of Barcelona, Barcelona, Spain ([email protected]) 2 Dpt. Dinàmica de la Terra i de l’Oceà, University of Barcelona, Barcelona, Spain 3 Paleomagnetism Laboratory, CCiTUB – ICTJA CSIC, Barcelona, Spain 4 Département des sciences de la Terre, Université de Genève, Geneva, Switzerland 5 Instituto Geológico y Minero de España, Zaragoza, Spain

! Abstract

The South-Pyrenean fold-and-thrust belt consists of three major thin-skinned thrust sheets (Bóixols, Montsec and Serres Marginals) made up of uppermost Triassic to Oligocene cover rocks emplaced during Late Cretaceous-Oligocene times. In its central part, it forms a major salient (the Pyrenean South-Central Unit) whose geometry is controlled by the areal distribution of the pre-orogenic Upper Triassic and synorogenic Eocene salt décollement layers. Both westwards and eastwards, the salient is fringed by Paleogene synorogenic deposits that are deformed by detachment folds with orientations ranging from N-S to E-W. In the western edge of the salient, the varying trend of the folds is a result of synorogenic vertical axis rotations (VAR) which caused the clockwise rotation of the folds from an initial predominant E-W trend to the current NW-SE to NNW-SSE trend. The salient, at least on its western part, developed from a progressive curve originated from divergent thrust transport directions and distributed shortening. The aim of our study is to get a better understanding of the whole salient, by studying the kinematics of the deformation on the most frontal part of its eastern edge. Here, some sparse anticlockwise rotations have been reported but their origin and their possible relationship with the distribution of the salt décollements has not yet been addressed. For this purpose, 78 paleomagnetic sites have been sampled on the synorogenic upper Eocene- Oligocene materials of the NE Ebro foreland Basin, in the Artesa de Segre area, focusing on the limbs of oblique salt-cored anticlines (Ponts, Vilanova de l’Aguda, Cardona) which are detached above the synorogenic Eocene-Oligocene evaporites of the Cardona and the Barbastro formations. VAR analyses principally show anticlockwise rotations similar to those previously identified to the North in the Oliana Anticline, although a small number of clockwise rotations were also detected. In addition to the VAR analysis, a magnetostratigraphic study of the Eocene-Oligocene continental materials of the northern limb of the Sanaüja Anticline has been conducted in order to constrain the age of these rotations from stratigraphic correlations. The demagnetization of 104 samples from a ca. 1100 m thick magnetostratigraphic section shows Priabonian to Rupelian ages for this succession. The integration of our results on timing, direction and magnitude of foreland VAR with previous paleomagnetic and structural data from both the western and eastern boundaries of the frontal thrust of the Pyrenean South-Central Unit will allow the understanding of the kinematics of the thrust salient as a whole.

Figure. A sampling site for VAR analysis (red sandstones and mudstones of the Solsona Fm) and interpreted mean paleomagnetic directions at the site (with clockwise to no VAR at this location).

74

MEMÒRIA anual Institut de Recerca Geomodels

I. Sedimentología, cronoestratigrafia i anàlisi de conques Sedimentology, Chronostratigraphy and Basin Analysis

Main research topics in this research line during this year:

- Study of past environmental changes through sedimentological analysis and geochemistry - Analysis of sediment routing systems through the study of 4D sedimentation rates variations and basin-scale forward numerical modeling. - Paleogeographic reconstruction of ancient source-to-sink systems in active regions. - Decoding Milankovitch climatic signal from sedimentary sequences. Application of forward numerical models to understand climate forcing and its signal propagation from source to sink. - Magnetostratigraphy as a chronostratigraphic tool to calibrate marine and continental successions. Calibration of the shallow marine larger benthic zonation in the Pirenean region. Calibration of vertebrate biochronology from Neogene and Paleogene continental sequences in Iberian basins. - Magnetostratigraphic dating of synorogenic successions and evolution of fold and thrust belts.

75

Resum activitats 2020

76

MEMÒRIA anual Institut de Recerca Geomodels

Magnetostratigraphic dating of the Paleogene synorogenic sediments of the NE sector of the Ebro Foreland Basin (Spanish Pyrenees)

1,2Charlotte Peigney, 1,2,3Elisabet Beamud, 1,2Òscar Gratacós, 1,2Eduard Roca, 1,2Alberto Sáez, 1,3,4Luis Valero, and 1,2Josep Anton Muñoz

1 Geomodels Research Institute, Universitat de Barcelona, Barcelona, Spain ([email protected]) 2 Dpt. de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 3 Paleomagnetic Laboratory, CCiTUB - Geo3Bcn CSIC, Barcelona, Spain 4 Département des Sciences de la Terre, Université de Genève, Geneva, Switzerland  Abstract In foreland settings at the front of active orogens, the aggradation/progradation of fluvial fans and sedimentary changes in lacustrine systems depends greatly on the tectonic activity and the derived drainage pattern changes in the hinterland. As a result of the emplacement and erosion of the South- Pyrenean thrust sheets, a system of N-S fluvial fans prograded into the Ebro foreland basin from late Eocene to Oligocene times. After the synorogenic deposition of the Priabonian marine evaporites of the Cardona Fm, the Ebro Basin was characterized by internal drainage, with the fluvial fans grading to lacustrine systems at the center of the basin, which developed and migrated in response to subsidence changes. All these deposits were deformed by variably oriented salt-detached folds, evidencing the basinwards propagation of the deformation. In this work, we study the Solsona-Sanaüja fluvial fan system aiming to precisely determine the age of the transition from fluvial fan to lacustrine systems in the NE sector of the Ebro Basin. Our new magnetostratigraphic study consisted in the sampling and analysis of 195 samples along a ca. 1800m thick stratigraphic section of the late Eocene-Oligocene succession in the northern limb of the NW-SE oriented Sanaüja Anticline. Our results show overall Priabonian to Rupelian ages for the succession, considering an age of 36 Ma. for the top of the Cardona Fm from previous magnetostratigraphic studies. This allows dating the end of the evaporitic sedimentation as Priabonian and establishing a late Priabonian to early Rupelian age for the transition from the younger lacustrine deposits to the most important fluvial fan episode of progradation in the study area. The final progradation of the fluvial fan system was coeval to a tectonically controlled reorganization of the drainage pattern of the basin responding to the emplacement of the South-Pyrenean thrust sheets. Meanwhile, smaller scale alternation between lacustrine and alluvial deposits was possibly driven by climatic changes related to orbital eccentricity cycles. The correlation and integration of these results with previous magnetostratigraphic studies in the area can help analyzing sedimentation patterns and architectural changes in the basin margins at a regional scale.

Figure . Local magnetostratigraphy of the studied series and location of the Sanaüja section (red line on the geological map, modified from the 1:50k geological map of Catalunya, ICGC).

77

Resum activitats 2020

10 Myr evolution of sedimentation rates in a deep marine to nonmarine foreland basin system: Tectonic and sedimentary controls (Eocene, Tremp–Jaca Basin, Southern Pyrenees, NE Spain)

Andreu Vinyoles1,2, Miguel Lopez-Blanco1,2 , Miguel Garces1,2 , Pau Arbues1,2, Luis Valero2,3,4, Elisabet Beamud1,2,3 , Belen Oliva-Urcia5 , Patricia Cabello1,2

!"#$%&'(#'")*+,)-.'(#'/.'0#11.')'(#'/23-#+4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' ;<#9,9(#/7'=#7#.1->'?*7%)%@%#4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' AB./#9,.C*#%)-'D.E91.%91F'GG)058?G0HI'G:?G4'8.1-#/9*.4':$.)* J"#$.1%,#*%'9K'L.1%>':-)#*-#74'5*)6#17)%F'9K'<#*#6.4'<#*M6#4':N)%O#1/.*(' P"#$%&'(#'<#9/9CQ.'F'<#9R@Q,)-.4'5*)6#17)(.('I@%S*9,.'(#'T.(1)(4'T.(1)(4':$.)*'

Abstract

The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge-top piggy-back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge-top, foreredeep, forebulge configuration to a wedge-top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin (Figure 1) representingrepresenting the full range of depositional environament and times. While the derived long- term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge-top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non-graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge-top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge-top depozone. This contribution has been publicated in the journal Basin Research Volume 33 (1), February 2021, https://doi.org/10.1111/bre.12481

Figure. Correlation among the Tremp, Ainsa and Jaca sub-basins through the N-Profile and the S-Profile showing the lateral and vertical SR variations through the studied logs.

78

MEMÒRIA anual Institut de Recerca Geomodels

Lithostratigraphic and structural characterization and geological mapping of the Paleogene of the Sarral (67-31) and Montblanc (67-32) sheets from the Geological map of Catalonia 1:25.000.

Núria Carrera1,2, Miguel Lopez-Blanco1,2 , Pau Arbues1,2, Miguel Garces1,2 , Elisabet Beamud1,2,3 , Miquel Angel Marín4 , Lluís Cabrera1,2

!"#$%&'(#'")*+,)-.'(#'/.'0#11.')'(#'/23-#+4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' ;<#9,9(#/7'=#7#.1->'?*7%)%@%#4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' AB./#9,.C*#%)-'D.E91.%91F'GG)058?G0HI'G:?G4'8.1-#/9*.4':$.)* J:GUD5T8L=#*'0#->*9/9CF'G#*%#14'<#1,.*F'

! Abstract

A detailed geological map of the SE margin of the Ebro basin, attached to the Catalan Coastal range (Sarral and Montblanc 1:25.000 sheets) has been produced using traditional fied mapping procedures combined with indoor mapping through GoogleEarth. The main results of this research are: (1) two 1:25.000 geological maps of the paleogene of the SE margin of the Ebro basin including lithostratigraphic units, tectonic structuresstructures, dip data and quaternary cover boundaries; (2) four geologicgeologic cross sections solving the distribution of lithostratigraphic units and the structures affecting the paleogene strata; (3) three 3D stratigraphic surfaces (Fig.1) built from the geological mapping data, dip domainsdomains and supported by well log data; (4) a re-definition of the lithostratigraphic units of the area and a new litho- and chronostratigraphic panel of the paleogene strata; (5) the characterization and mapping of a series of non-previously detected faults and folds related to the Catalan Coastal range structure affecting the paleogene infill of the Ebro basin; (6) a new tectonosedimentary characterization since previously defined unconformities (and progressive unconformities) have been reinterpretedreinterpreted as the geometic effect of faults, folds and truncation relations betweenbetween Paleogene and younger strata.

Figure. View of the reconstructed 3D stratigraphic surfaces, corresponding to the base of the paleogene, Montblanc and Blancafort units.

79

Resum activitats 2020

Reconstructing the Early Eocene Sediment Routing System of the south- eastern Pyrenees.

Miguel Garcés1,2, Miguel López-Blanco1,2, Elisabet Beamud1,2,3, Josep Anton Muñoz1,2, Pau Arbués1,2, Luis Valero4, Andreu Vinyoles1,2

!"#$%&'(#'")*+,)-.'(#'/.'0#11.')'(#'/23-#+4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' ;<#9,9(#/7'=#7#.1->'?*7%)%@%#4'5*)6#17)%.%'(#'8.1-#/9*.4'8.1-#/9*.4':$.)*' AB./#9,.C*#%)-'D.E91.%91F'GG)058?G0HI'G:?G4'8.1-#/9*.4':$.)*' J'5*)6#17)%V'(#'<#*M6#4':N)%O#1/.*(' Abstract !

The Early Eocene was the period of most intense plate collision during the building of the Pyrenean orogen. Tectonic loading of the overriding European plate caused flexure of the subducting Iberian plate and formation of an elongated foredeep connected westward with the Atlantic Ocean. The uneven distribution of the Triassic evaporites caused the formation of a thrust salient in the central Pyrenees related to tectonic inversion of the pre-existing Mesozoic rift basins. This process ultimately resulted in the partitioning of the foreland basin and the isolation of the Ripoll Basin in the East from the Tremp-Graus and Ainsa-Jaca basins in central and western south-Pyrenees. The precise timing and the surface processes related to this reorganization of the sediment routing system remains not fully understood. Early tectono- stratigraphic reconstructions envisaged a scenario of isolation of the eastern Pyrenean Foreland basin in the early Eocene, while other recent studies on detrital zircon geochronometry suggest that the sedimentary transfer system in the Tremp-Graus basin connected upstream to the Ripoll basin until middle Lutetian times. In this contribution we discuss constraints on the early Eocene paleogeography of the south-eastern Pyrenees in the light of a revised chronostratigraphic scheme. We put forward a scenario that tries reconciling all available structural, stratigraphic, petrologic, geochronologic, and sedimentologic datasets.

Figure. A Cuisian paleogegraphy map of the south-pyrenean foreland. The foredeep developed with two separated turbiditic troughs. Wide shallow platforms in the central region developed linked to salt migration and accumulation at the front of the advancing Montsec thrust. Sediments to the Ager basin were routed between the Montsec and the lower thrusts.

Paleogeographic maps were constructed based on a revised chronostratigraphy and the integration of existing balanced cross-sections. The revised chronostratigraphy highlights the

80

MEMÒRIA anual Institut de Recerca Geomodels

contrasting evolution of the Ripoll and the Jaca foredeeps. Fast-filling Ripoll basin with formation of an evaporitic plugs evidences its role as efficient sediment sink, with no sediment transfer to other zones. The Ripoll basin underwent rapid deepening at 50Ma, marked by the transition from coastal (Coronas Fm.) to deep marine environments (Armàncies Fm.). Very high sedimentation rates led to accommodation overfilling as early as Early Lutetian (46Ma). Earlier provenance studies indicated that catchment areas of sediments in the Tremp-Graus and Ager basins were different. Besides, sediments of the Ripoll basin reveal striking similarities with data from the Ager basin, which suggests a common catchment area in the eastern Pyrenees. The overall distribution of environments in the south-pyrenean realm do not favour a scenario where sediments filling the Ager basin were transported across the deep and rapidly subsiding Ripoll basin. Sediments to the Ager basin could be routed from the eastern Pyrenees along the hangingwall of the lower Pedraforca thrust-sheets. Salt pillows formed in front of the Montsec thrust contributed to the building of the divide between the Ager and Ripoll basins, preceding the rise of the Serres Marginals thrust in the Lutetian.

81

Resum activitats 2020

Origin and propagation of sedimentary sequences throughout the Escanilla fluvial routing system (South Pyrenean foreland basin)

Luis Valero1, Elisabet Beamud2,3, Miguel Garcés3,4, Andreu Vinyoles3,4, Nikhil Sharma1, Stephen E. Watkins1, Maxime Tremblin1, Cai Puigdefàbregas3, François Guillocheau5, Alex C. Whitakker6, Miguel López-Blanco3,4, Pau Arbués3,4, and Sébastien Castelltort1

!"V$.1%#,#*%'(#7':-)#*-#7 (#'/.'0#11#4'5*)6#17)%V'(#'<#*M6#4'=@#'(#7'T.1.W->#17'!A4'GUX!;YP4'<#*M6# ;D.E91.%91)'(#'B./#9,.C*#%)7,#'B./#9,.C*#%)7,#'(#'8.1-#/9*.'ZGG)058XG:?G[4':9/V')':.E.1Q7':.E.1Q7'7\*4'Y]Y;]4''8.1-#/9*.' A<#9,9(#/7'=#7#.1->'?*7%)%@%#4'T.1%)')'^1.*R@V7'7\*4'Y]Y;]4'8.1-#/9*.' J"#$.1%.,#*%'(#'")*+,)-.'(#'/.'0#11.')'/_3-#+4'^.-@/%.%'(#'G)M*-)#7'(#'/.'0#11.4'T.1%)')'^1.*R@V7'7\*4'Y]Y;]4'8.1-#/9*. P"V$.1%#,#*%'(#7'<#97-)#*-#74'5*)6#17)%V'(#'=#**#7'!\G`=:'Z5T='a!!][4'=#**#7' a"#$.1%,#*%'9K'L.1%>':-)#*-#'.*('L*C)*##1)*C4'?,$#1)./'G9//#C#'D9*(9*4':bc';Id'D9*(9*'

During middle Eocene, the Escanilla fluvial system transported and deposited material from East to West in the southern Pyrenees foreland basin. The paleogeography and sedimentology of the source to sink system is well established. The temporal framework is made of scattered low resolution magnetostratigraphies, and a robust temporal framework in the most distal (Olson) and most proximal (Sis) parts of the system. We built a new high resolution magnetostratigraphy from the middle part of the system, the Lascuarre section. The correlation of Lascuarre with the high resolution magnetostratigraphies and the integration of these data with other available chronological constraints results into a robust complete temporal framework from source to sink. Sedimentological analyses of the Lascuarre section allow recognizing a set of sedimentary sequences throughout the record. Here we present the result of the analyses, and discuss the relative weight of the different forcing. Particularly, we elucidate the role of tectonics in relation to subsidence distribution patterns, and also the distinct expression of climate. Eventually, we identify and explore the signal propagation mechanisms of climate aberrations and of quasiregular orbital variations along the routing system.

Figure. Lacustrine intervals in the Lascuarre section correlate with times of 400kyr eccentricity màxima, while coarsening of fluvial sedimentation correlate with times of eccentricity mínima.

82

MEMÒRIA anual Institut de Recerca Geomodels

Orbital origin of the stratigraphic sequences in South-Pyrenean syn- kinematic sediments.

Valero, Luis1; Vinyoles, Andreu2; Garcés, Miguel 2; López-Blanco, Miguel 2; Beamud, Elisabet 23; Pueyo-Morer, Emilio4; Rodriguez-Pintó, Adriana5; Sharma, Nikhil1; Watkins, Stephen 1 & Castelltort, Sébastien 1

!&'"#$&':-)#*-#7'(#'/.'0#11#4'5*)6#17)%F'9K'<#*#6.4'<#*M6#' ;&'?*7%)%@%'<#9,9(#/7'e'"#$.1%.,#*%'(#'")*+,)-.'(#'/.'0#11.')'(#'/_3-#+4'5*)6#17)%.%'(#'8.1-#/9*.' A&'D.E91.%91)'(#'B./#9,.C*#%)7,#4'GG)058XG:?G4'8.1-#/9*.' J&'?*7%)%@%9'<#9/SC)-9'F'T)*#19'(#'L7$.f.'Z?

Understanding the relative weight of allogenic drivers in the geological record still constitutes an unsolved problem in stratigraphy. Extracting the stratigraphic signature of orbital cycles may help to disentangle the complex causal relationship among the different drivers. Here, we study the role of orbital cicles in active tectonic emplacements in the South-Pyrenean Foreland Basin. In particular, we focus in the syn-kinematic delta to prodelta sediments of the Middle to Late Eocene Pico del Aguila anticline. Growth strata geometries evidence tectonic uplift and a shallowing upward stratigraphy. Superposed to that general trend, sedimentary sequences reveal shifts in the Accommodation/Sediment supply ratio forced by allogenic factors. A new ca 1000 m magnetostratigraphy combined with other regional magnetostratigraphic provides a high-resolution age model that permits to date the formations and also allows testing the role of orbital cyclicity. Based on facies description we built a clastic index depicting changes in either distality and depth of the facies. We conducted spectral analyses (Redfit, MTM) and Evolutive Harmonic Analyses to understand the correspondence of sequence duration with Milankovitch target frequencies. Our results provide ages for the Guara, Arguis, Belsue formations and the base of Campodarbe formation for this sector of the basin. The contact between Guara and Arguis is very close of the top of Chron C19n. The Belsue and Arguis formations interfinger up to the chron C16n, leading to a major progradation marked by the obliteration of the Arguis marls by the Belsué formation, and subsequently the complete marine restriction occurs towards the top of C16n. This confirms the continentalization of the South Pyrenean Foreland basin-Ebro as an isochronous event. Spectral analysis and evolutive spectra reveal significant frequencies throughout the stratigraphic column, in spite of the effects of the growing anticline. Constrained by our magnetostratigraphic model we show that these peaks fit well with Earth’s eccentricity. In particular, the sequential stratigraphy division responds to the beat of 400-kyr eccentricity. In addition, it is also relevant the imprint of the minima of 2.4 Myr as well as the nodes of obliquity (1.2 Myr). Eccentricity minima is related to progradational trends, whilst eccentricity màxima are linked to transgressive, and-or high-stand conditions. We discuss the upstream or downstream forcing in the setting, and finally we suggest that accommodation driven cycles are the more likely scenario.

Figure. Transgressive-Regressive sequences in the Belsué-Atarés delta System to the East of Pico del Aguila, Sierras Exteriores, Southern Pyrenees.

83

Resum activitats 2020

Next-generation Deepwater Core Imaging and Analysis of Research Cores from the Ainsa and Tabernas Basins, Spain

1,2Pau Arbués, 1,2Josep Anton Muñoz, 1,2Marco De Matteis, 1,2Patricia Cabello, 1,2Miguel López-Blanco, 4Timothy Demko, 1Zaín Belaustegui, 1Miquel Canals i 1Jaime Frigola

!'"#$.1%.,#*%'(#'")*+,)-.'(#'/.'0#11.')'(#'/_3-#+&'5*)6#17)%.%'(#'8.1-#/9*.&' ;'?*7%)%@%'(#'=#-#1-.'<#9,9(#/74'5*)6#17)%.%'(#'8.1-#/9*.&' A''Lhh9*XT9E)/'5$7%1#.,'=#7#.1->'G9,$.*F4'U9@7%9*4'0i4'5*)%#(':%.%#7&'

Abstract

Research in ancient deepwater systems has been carried by Geomodels since the inception of the Institute, and has evolved to include studies in comprehensive outcrop analogues: from conventional outcrop to digital outcrop, behind-the-outcrop data and to static and dynamic models, suitable for both industry and academia from application and training perspectives. Examples of case studies for comprehensive outcrop analogues include the Solitary Channel (Almería) and the O Grao (Huesca) turbidite systems, which initiated in 2014. These two cases are remarkable as they include drillcore and geophysical well logs (behind- the-outcrop data) from several research wells. The drillcore material is already available and has been the subject of study in previous phases of the research. Most of the tasks in the ensuing period have been devoted to the essential counterpart: the accurate characterization of the outcrops. In this respect we have consolidated a metodology by which conventional outcrop data are integrated to Digital Outcrop Models, which are in turn interpreted and ellaborated as data for structural analysis, in turn having impact as to the production of the fundamental input for hierarchical geocellular facies models: pseudowells. The methodology is well tested and can become a common practice in other types of outcrop studies.

Figure. Example of the workflow connecting outcrop and digital outcrop (left) to the hierarchical gecellular facies modeling environment (rigth).

84

MEMÒRIA anual Institut de Recerca Geomodels

Sedimentary architecture of the Middle Ordovician Hawaz Formation in the Murzuq Basin (Libya)

Marc Gil-Ortiz1, Neil David McDougall2, Patricia Cabello1,3, Mariano Marzo1,3, Emilio Ramos1,3

!?*7%)%@%'(#'=#-#1-.'<#9,9(#/7&'5*)6#17)%.%'(#'8.1-#/9*.4'-\T.1%Q')'^1.*R@M7'7\*4'Y]Y;]'Z8.1-#/9*.4':$.)*[' ;?*(#$#*(#*%'-9*7@/%.*%'7#(),#*%9/9C)7%'ZT.(1)([ A"#$.1%.,#*%'(#'")*+,)-.'(#'/.'0#11.')'(#'/_3-#+4'^.-@/%.%'(#'G)M*-)#7'(#'/.'0#11.&'5*)6#17)%.%'(#'8.1-#/9*.'Z8.1-#/9*.['

Abstract ! ! The Hawaz succession was deposited during Darriwilian to Sandbian Stages of the Middle Ordovician and facies distribution patterns were! tightly linked to relative sea level fluctuations. Tidally-influenced facies belts dominated during transgressive stages whereas tide- and wave- dominated facies belts prevailed during high stand stages in an overall global greenhouse period. Seven facies associations were identified including, from proximal to distal, sandy tidal flat, subtidal bar and dune complexes, abandoned subtidal complexes, middle to lower shoreface, burrowed shelfal and lower shoreface, burrowed inner shelf and shelfal storm sheet deposits. These facies associations have been proven to form laterally extensive correlatable facies belts extending for tens to hundreds of kilometres over the area of study and probably further across the Saharan craton. Their extension and distribution can be linked to a genetic stratigraphic framework of three main depositional sequences and their respective systems tracts, which form the basis for a sequence-stratigraphic zonation supported by both petrophysical and reservoir quality properties. By making use of an extensive and diverse subsurface dataset, a series of stratigraphic correlation panels were created to clarify possible facies lateral changes, together with paleogeographic gross depositional environment maps in order to infer the spatial distribution of facies across and down depositional dip within the study area in an apparently ‘layer cake’ succession. The results of this study suggest that the Hawaz Formation was deposited in a non-linear, relatively protected or embayed shoreline with multiple bays/estuaries most likely influenced by the subtle effects of pre-existing north-northwest to south-southeast Pan-African structures controlling accommodation space and reactivated during Ordovician times.

Figure: (A) Stratigraphic Chart and (B) Wheeler diagram of the Murzuq basin sedimentary infill, and (C) seismic section of the Hawaz Formation basin architecture.

85

Resum activitats 2020

Cenozoic tectonostratigraphic evolution of the strike-slip Cauto- Guacanayabo Basin, Eastern Cuba

Yaniel M. Vázquez-Taset1, Francesc Sàbat2,3, Patricia Cabello2,3, Israel Cruz-Orosa4, Emilio Rams2,3

1Yachay Tech University, School of Earth Sciences, Energy and Environment, Hda. San José s/n y Proyecto Yachay, 100119, Urcuquí, Ecuador 2Dept. de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain 3Geomodels Research Institute, Universitat de Barcelona, Barcelona, Spain 4Independent researcher

Abstract

An integrated study of Cauto-Guacanayabo strike-slip basin has allowed establishing its tectonostratigraphic evolution. This work uses subsurface data (wells, seismic and gravimetric) and surface data (digital terrain model and geological mapping) to investigate the relations between sedimentary infill and tectonic activity. In the sedimentary infill, four tectonosequences have been recognized, which are constituted by 19 lithostratigraphic units which range in age from middle Eocene to Holocene, and are delimited by regional unconformities at the basin scale. In seismic reflection profiles, the thickness of the sedimentary record can exceed 2600 ms of double time (TWT), while the thickness cut by the boreholes reaches 2500 m in the northeast part of the basin. Each tectonosequence shows different geometries, thickness and number of depocenters. The predominant geometries in a mapping view are rectangular and elongated in the northeast-southwest direction. This evidences the complexity and compartmentalization of the sedimentary infill in the Cauto-Guacanayabo Basin. The coexistence of extensive and compressive structures, close to each other in the Cauto- Guacanayabo Basin, is associated with local transtensive and transpressive regimes. These regimes have been controlled by the left lateral activity of the Cauto-Nipe strike-slip fault and the Guacanayabo-Nipe tectonic corridor. The compressive structures are mainly located in the southern part to the northeast – southwest and east-northeast – westsouthwest directions. In the northeast part of the basin, extensive structures with north – south, northeast – southwest and possibly northwest – southeast directions are common, while in the Gulf of Guacanayabo, there is evidence of lesser deformation. The structural patterns indicate that the most intense activity of the Guacanayabo-Nipe tectonic corridor took place during the middle Eocene. The tectonic activity of the corredor begins to wane in the upper Oligocene, which coincides with the transfer of slip to the Orient Fault, the corrent boundary between the Caribbean and North American plates.

Figure. Simplified scheme of the deformation regimes in the Cauto-Guacanayabo Basin. The figure shows the direction of the main stresses: Cauto-Nipe fault (CNF), Principal Displacement Zone (PDZ), depocenters, structural uplifts, and the main faults that controlled the sedimentation in each tectonosequence (A, B, C and D).

86

MEMÒRIA anual Institut de Recerca Geomodels

The Oligocene-Miocene Guadalope-Matarranya fan as an analog to topographically inverted megafan deposits on Mars

Hayden, A.T1., Lamb, M.P1., Myrow2, P., Mohrig3, D.C., Williams4, R.M.E., Cuevas Martinez, J.L.5, Cardenas, B.T3., Findlay, C.P.3, Ewing, R.C.3, McElroy, B.J.6

1CALTECH, Division of Geological and Planetary Sciences 2Colorado College, Geology Department 3University of Texas, Jackson School of Geosciences 4Planetary Science Institute, Tucson 5Geomodels Institute, Universitat de Barcelona 6Geology&Geophysics, University of Wyoming Numerous deposits and valleys on Mars have been studied to better understand the early martian hydrological system. Of particular interest is the flow duration, which can be estimated by dividing deposit volume by bankfull sediment discharge times an intermittency factor, a parameter relating bankfull (i.e., flood) conditions to the long-term mean. Intermittency factor has been calculated for a large number of terrestrial systems, but values for Mars are unknown. Here we investigated fluvial fan deposits from the Miocene Caspe Formation in Spain as an analog to fans on Mars because it has exhumed channel belts that create sinuous ridges in the modern topography, similar to those observed on Mars. We used the thicknesses of dune sets, bar sets, and channel belts to reconstruct bankfull channel dimensions (1.4 m) and bankfull sediment discharge (0.48 m3/s). Combined with estimated total sediment volume (362 km3) and previous constraints on depositional timespan (~6 Myr), we calculated an intermittency factor of 0.0040, which is among the lower values measured for Earth. The intermittency factor is smaller than value commonly assumed for Mars, implying that longer depositional timespans of 104-106 years for martian fans and deltas could be possible. Sent for publication in Journal of Geophysical Research - Planets

Figure. Examples of sinuous ridges in megafans from the Aeolis Dorsa region of Mars (panels a-c) and the Ebro Basin of Spain (panel d). a&b) CTX images of portions of two large branching ridge networks in Aeolis Dorsa (area = 2100 and 2700 km2; 155.0, -5.0; 151.0, -6.5); black polygon traces the rough outline of the megafan, black arrow indicates inferred paleoflow direction. White ‘c’ in panel b indicates location of panel c. c) HiRISE image (PSP_002279_1735) of the ridges in the network of panel b, zoomed in on sinuous ridges crossing with aeolian yardangs. The material under the ridge caprock shows clear layering. d) Crossing ridges at our Site 9, surrounded by farmlands

87

Resum activitats 2020

High accuracy reconstruction of subdued synsedimentary structures

Jose Luis Cuevas1, Lluis Cabrera1, Mariano Marzo1, Pau Arbués1, Luis Valero2, Miguel Garcés1, Elisabeth Beamud1

1Geomodels Institute, University of Barcelona 2Department of Earth Sciences, University of Geneva, Genève, Switzerland

Abstract

Stacked networks of paleo-channel fills of Oligo-Miocene age outcrop extensivelly in the SE Ebro Basin, between Caspe and Alcañiz, occupying an area of some 3000 Km2. Thickness of these series is close to 400 m. Due to the lack of continuous marker beds, combined with the low relief landscape, the reconstruction of the stratigraphy of these networks has been hitherto impossible. In order to overcome the aforementioned difficulties, a workflow aimed at automatically identify these networks on digital elevation models has been developed. Cloud points derived from the positions of the paleochannel fill sandstone bodies on digital elevation models have been analysed in order to identify major synthetic stratificaction surfaces. These surfaces allowed for the identification of a very subdued growth strata structure whose dips range from 0.1º to 2º. The accuracy in the dip determination is less than 0.1º. Corresponding strike measurement accuracy is less than 1º. The structures identifyed by applying this method allowed for the subdivision of the series into 9 stratigraphic levels.

Figure. Perspective view from the NE of the structure of the studied area. Vertical exxageration x10

Figure. Perspective view from the E of the syntetic stratification surfaces

88

MEMÒRIA anual Institut de Recerca Geomodels

Quantified paleochannel belt dynamics

Jose Luis Cuevas1, Lluis Cabrera1, Mariano Marzo1, Pau Arbués1, Luis Valero2, Patricia Cabello1, Miguel Garcés1, Elisabeth Beamud1

1Geomodels Institute, University of Barcelona 2Department of Earth Sciences, University of Geneva, Genève, Switzerland ' Abstract

Fine-scale archtitectural analysis of the stacking of multi-storied fluvial channel fill deposits, and .their spatial relationships to overbank and floodplain deposits has been performed in the Oligocene-Miocene Caspe Formation, by means of LIDAR surveys (Fig. 1) combined with photogrammetric reconstructions (Fig. 2). Such analysis allowed for the quantification of the dynamic relationships between channel and floodplain aggradation. Results show stacking geometries close to that of turbiditic channels (Graph 1), indicating high coupling between channel and floodplain aggradation. Such high coupling has not been previously identified in unconfined alluvial basins, and it could have been caused by coalescence of simultaneous or near-simultaneous overbank flow from neighboring channels over wide areas.

Fig.1LIDAR surfey of a channel fill and its related overbank Graph 1 Accretion vs lateral migration

Fig. 2 Parameters used for the quantification of the multi-storey channel fills architecture

89

Resum activitats 2020

90

MEMÒRIA anual Institut de Recerca Geomodels

3. PUBLICACIONS Publications

91

Resum activitats 2020

92

MEMÒRIA anual Institut de Recerca Geomodels

3.1 Publicacions en revistes SCI Ajanaf, T.; Gómez-Gras, D.; Navarro, A.; Martín-Martín, J.D.; Rosell, J.; Maate, A. (2020). The building stone of the Roman city of Lixus (NW Morocco): provenance, petrography and petrophysical characterization. Geologica Acta, 18.13, 1-16. Q2, IF 1.370 Blanch, X.; Abellan, A.; Guinau, M. (2020). Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras. Remote Sensing, 12, 1240. Q1, IF 4.509 Bons, P.D.; Gomez-Rivas, E. (2020). Origin of meteoric fluids in extensional detachments. Geofluids, 2020, 7201545. Q2, IF 1.534 Cantarero, I.; Parcerisa, D.; Plata, M.A.; Gómez-Gras, D.; Gomez-Rivas, E.; Martín-Martín, J.D.; Travé, A. (2020). Fracturing and Near-Surface Diagenesis of a Silicified Miocene Deltaic Sequence: The Montjuïc Hill (Barcelona). Minerals 10(2), 135; https://doi.org/10.3390/min10020135. Q2, IF 2,380 Cruset, D., Cantarero, I., Benedicto, A., John, C. M., Vergés, J., Albert, R., Gerdes, A., Travé, A., (2020). From hydroplastic to brittle deformation: Controls on fluid flow in fold and thrust belts: Insights from the Lower Pedraforca thrust sheet (SE Pyrenees). Marine and Petroleum Geology 120:104517, DOI: 10.1016/j.marpetgeo.2020.104517. Q1, IF 3,790 Cruset, D.; Cantarero, I.; Benedicto, A.; John, C.M.; Vergés, J.; Albert, R.; Gerdes, A.; Travé, A. (2020). Geochronological and geochemical data from fracture-filling calcites from the Lower Pedraforca thrust sheet (SE Pyrenees). Data in Brief 31:105896. DOI: 10.1016/j.dib.2020.105896. SCImago Journal Rank (SJR) 0,105. Cruset, D.; Ibanez-Insa, J.; Cantarero, I.; John, C. M.; Trave, A. (2020). Significance of Fracture-Filling Rose-Like Calcite Crystal Clusters in the SE Pyrenees. Minerals 10(6), 522, DOI: https://doi.org/10.3390/min10060522. Q2, IF 2,380 Cruset, D.; Vergés, J.; Albert, R.; Gerdes, A.; Benedicto, A.; Cantarero, I.; Travé, A. (2020). Quantifying deformation processes in the SE Pyrenees using U-Pb dating of fracture-filling calcites. Journal of the Geological Society 177, 1186 -1196. Q2, IF 3,100. de Riese, T.; Bons, P.D.; Gomez-Rivas, E.; Sachau. T. (2020). Interaction between crustal-scale Darcy and hydrofracture fluid transport: a numerical study. Geofluids, 8891801. Q2, IF 1.534. Díaz, J., Ruiz, M., Curto, J.J., Torta, J.M., Ledo, J., Marcuello, A., Queralt, P. (2020). On the observation of magnetic events on broad-band seismometers. Earth, Planets and Space, 72 (1), 109. Q1, IF 4.3 Di Paolo, F.; Ledo, J.; "l#zak, K. et al. (2020). La Palma island (Spain) geothermal system revealed by 3D magnetotelluric data inversion. Scientific Reports, 10, 18181 https://doi.org/10.1038/s41598-020-75001-z. Q1, IF 3.998. Finch, M.A.; Bons, P.D.; Steinbach, F.; Griera, A.; Llorens, M.-G.; Gomez-Rivas, E.; Ran, H.; de Riese, T. (2020). The ephemeral development of C’ shear bands: a numerical modelling approach. Journal of Structural Geology, 139, 104091. Q2, IF 2.836 Folch, A.; del Val, L; Luquot, L.; Martínez-Pérez, L.; Bellmunt, F.; Le Lay, H.; Rodellas, V.; Ferrer, N.; Palacios, A.; Fernández, S.; Marazuela, M.A.; Diego-Feliu, M.; Pool, M.; Goyetche, T.; Ledo, J.; Pezard, P.; Bour, O; Queralt, P; Marcuello, A.; Garcia-Orellana, J:; Saaltink, M.W.; Vázquez-Suñé, E.; Carrera, J. (2020). Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to

93

Resum activitats 2020

characterize and monitor a coastal aquifer, Journal of Hydrology, 588, 125050. https://doi.org/10.1016/j.jhydrol.2020.125050. Q1, IF 4.5 Furdada, G.; Victoriano, A.; Díez_Herrero, A.; Génova, M.; Guinau, M.; De las Heras, A.; Palau, R.M.; Hürlimann, M.; Khazaradze, G.; Casas, J.M.; Margalef, A.; Pinyol, J.; González, M. (2020). Flood Consequences of Land_Use Changes at a Ski Resort: Overcoming a Geomorphological Threshold (Portainé, Eastern Pyrenees, Iberian Peninsula). Water Special Issue: Flood Risk Assessments: Applications and Uncertainties, 12, 368. Q2, IF 2.544 Gay, A.; Favier, A.; Potdevin, J.L.; Lopez, M.; Bosch, D.; Tribovillard, N.; Ventalon, S.; Cavailhes, T.; Neumaier, M.; Revillon, S.; Travé, A.; Bruguier, O.; Delmas, D.; Nevado, C. (2020). Poly-phased fluid flow in the giant fossil pockmark of Beauvoisin, SE basin of France. Bsgf-Earth Sciences Bulletin 191, 35. Q4, IF 0,579 Grare, A.; Benedicto, A.; Mercadier, J.; Lacombe, O.; Travé, A.; Guilcher, M.; Richard, A.; Ledru, P.; Blain, M.; Robbins, J. (2020). Structural controls and metallogenic model of polyphase uranium mineralization in the Kiggavik area (Nunavut, Canada). Mineralium Deposita 1 – 34. Q1, IF 4,323 Gómez-Novell, O., Chartier, T., García-Mayordomo, J., Ortuño, M., Masana, E., Insua-Arévalo, J.M., Scotti, O. (2020a). Modelling earthquake rupture rates in fault systems for seismic hazard assessment: The Eastern Betics Shear Zone. Engineering Geology 265 105452. https://doi.org/10.1016/j.enggeo.2019.105452 Q1, IF 4.779 Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., Chartier, T. (2020b). Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain). Frontiers in Earth Science 8:579398. https://doi.org/10.3389/feart.2020.579398 Q2, IF 2.689 Gomez-Rivas, E.; Butler, R.W.H.; Healy, D.; Alsop, G.I. (2020). From hot to cold – the temperature dependence on rock deformation processes: an introduction. Journal of Structural Geology, 132, 103977. Q2, IF 2.836 Humphrey, E.; Gomez-Rivas, E.; Neilson, J.; Martín-Martín, J.D.; Healy, D.; Yao S.; Bons, P.D. (2020). Quantitative analysis of stylolite networks in different platform carbonate facies. Marine and Petroleum Geology, 114, 104203. Q1, IF 3.790 Llorens, M.-G.; Griera, A.; Bons, P.D.; Gomez-Rivas, E.; Weikusat, I.; Prior, D.; Kerch, J.; Lebensohn, R.A. (2020). Seismic anisotropy of temperate ice in polar ice sheets. Journal of Geophysical Research: Earth Surface, 125, e2020JF005714. Q1, IF 3.56 Moragas, M.; Baqués, V.; Travé, A.; Martín-Martín, J.D.; Saura, E.; Messager, G.; Hunt, D.W.; Vergés, J. (2020). Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco) Basin Research. Wiley-Blackwell Publishing Ltd. 32-3, pp.546-566. Q1, IF 3,304 Muñoz-López, D.; Alías, G.; Cruset, D.; Cantarero, I.; Jonh, C.D; Travé, A. (2020). Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone, Solid Earth 11, 2257- 2281, DOI: https://doi.org/10.5194/se-11-2257-2020. Q2, IF 2,921 Muñoz-López, D.; Cruset, D.; Cantarero, I.; Benedicto, A.; John, CM.; Travé, A. (2020). Fluid Dynamics in a Thrust Fault Inferred from Petrology and Geochemistry of Calcite Veins: An Example from the Southern Pyrenees. Geofluids, Article ID 8815729, DOI: https://doi.org/10.1155/2020/8815729. Q2, IF 1,534 Núñez Meneses, A., Lacan, P., Zúniga, R., Audin, L., Ortuño, M., Rosas Elguera, J., León-Loy, R., Márquez, V. (2021). First paleoseismological results in the epicentral area of the sixteenth century Ameca earthquake, Jalisco – México. Journal

94

MEMÒRIA anual Institut de Recerca Geomodels

of South American Earth Sciences 107 (2021) 103121. https://doi.org/10.1016/j.jsames.2020.103121 Q3 IF 1,704 Ramos, A.; López-Mir, B.; Wilson, E.P.; Granado, P.; Muñoz, J.A. (2020). 3D reconstruction of syn-tectonic strata deposited during the inversion of salt-related structures: learnings from the Llert syncline (South-central Pyrenees). Geologica Acta, 18.20, 1 – 19. Q2, IF 1.370 Snidero, M.; Carrera, N.; Lopez-Mir, B.; Mencos, J.; Granado, P.; Butillé, M.; Tavani, S.; Sàbat, F.; Muñoz, J.A. (2020) Diapir kinematics in a multi-layer salt system from the eastern Persian Gulf. Marine and Petroleum Geology, 117, 104402 Q1, IF 3.790 Strauss, P. ; Granado, P. ; Muñoz, J.A. (2020). Subsidence analysis of salt tectonics- driven carbonate minibasins (Northern Calcareous Alps, Austria). Basin Research doi: 10.1111/bre.12500 Q1, IF 3.304 Sun, X.; Alcalde, J.; Gomez-Rivas, E.; Struth, L.; Johnson, G.; Travé, A., (2020). Appraisal of CO2 storage potential in compressional basins: global assessment and case study in the Sichuan Basin (China). Geoscience Frontiers. Q1, IF 4,202 Tavani, S.; Granado, P. ; Corradetti, A.; Seers, T.; Casas, J.M.; Muñoz, J.A. (2020). Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees. Solid Earth doi: 10.5194/se-2020-70 Q1, IF 2.921 Tavani, S.; Granado, P.; Ricardi, U.; Seers, T.; Corradetti, A. (2020). Terrestrial SfM-MVS photogrammetry from smartphone sensors. Geomorphology, 15, 107318 Q1, IF 3.819 Wu, J.; Fan, T.; Gomez-Rivas, E.; Travé, A.; Gao, Z.; Wang, S.; Sun. X. (2020). Fractal characteristics and sealing capacity of Ordovician carbonate cap rocks: a case study based on outcrop analogues from the Tarim Basin, China. AAPG Bulletin 105, 437-479. Q2, IF 2,952 Yao, S.; Gomez-Rivas, E.; Martín-Martin, J.D.; Gómez-Gras, D.; Travé, A.; Griera, A.; Howell, J. (2020). Fault-controlled dolostone geometries in a transgressive- regressive sequence stratigraphic framework. Sedimentology 67, 3290-3316. https://doi.org/10.1111/sed.12739. Q1, IF 3,405 Garcés, M.; López-Blanco, M.; Valero, L.; Beamud, E.; Muñoz, J.A.; Oliva-Urcia, B.; Vinyoles, A.; Arbués, P.; Cabello, P.; Cabrera, L. (2020). Paleogeographic and sedimentary evolution of the South- Pyrenean foreland basin. Marine and Petroleum Geology, 113, 104105. Q1, IF 3.79 Lashgari, A.; Hayhat, M.R.; Vergés, J.; Beamud, E.; Najafi, M.; Khatib, M.M.; Karimnejad, H.M. (2020). Age of synorogenic deposits and timing of folding in Dezful Embayment, SW Zagros Fold Belt. Marine and Petroleum Geology, 113, 104148. Q1, IF 3.79 Lima, M.; Gayo, E.M.; Latorre, C.; Santoro, C.M.; Estay, S.A.; Cañellas-Boltà, N.; Margalef, O.; Giralt, S.; Sáez, A.; Pla-Rabes, S.; Stenseth, N. Chr (2020). Ecology of the collapse of Rapa Nui society. Proceedings of The Royal Society B: Biological Sciences 287, 20200662.!Q1 (Ecology, Evolutionary Biology, Biology). IF 4.638 ! Martí, A.; Queralt, P.; Marcuello, A.; Ledo, J.; Rodríguez-Escudero, E.; Martínez- Díaz, J.J.; Campanyà, J.; Meqbel, N. (2020). Magnetotelluric characterization of the Alhama de Murcia Fault (Eastern Betics, Spain) and study of magnetotelluric interstation impedance inversion. Earth, Planets and Space. Springer Open. 72, 16, 19pp. Q1, IF 4.3 Miró, J.; Muñoz, J.A.; Manatschal, G.; Roca, E. (2020). The Basque"–"Cantabrian Pyrenees: report of data analysis. BSGF - Earth Sciences Bulletin 191: 22. Q2, IF 1.5

95

Resum activitats 2020

Najafi, M.; Beamud, E.; Ruh, J.; Mouthereau, F.; Tahmasbi, A.; Bernaola, G.; A. Yassaghi, A.; Motamedi, H.; Sherkati, S.; Goodarzi, M.G.H.; Vergés, J. (2020). Pliocene Growth of Dowlatabad Syncline as a Constraint of Folding Propagation Across the Fars Arc in Zagros. GSA Bulletin, https://doi.org/10.1130/B35748.1 Q1, IF 3.588 Pérez-Cano, J.; Bover Arnal, T.; Martín-Closas, C. (2020). Barremian charophytes from the Maestrat Basin (Iberian Chain). Cretaceous Research, 115, 104544. Q2, IF 1.854 ! Vázquez-Taset, Y. M.; Sàbat, F.; Cabello, P.; Cruz-Orosa, I.; Ramos, E. (2020). Cenozoic tectonostratigraphic evolution of the strike-slip CautoGuacanayabo Basin, Eastern Cuba. Journal of South American Earth Sciences, 100, 102592. https://doi.org/10.1016/j.jsames.2020.102592 Q3, IF 1.704 Vergés, J.; Poprawski, J.; Almar, Y.; Drzewiecki, P.A.; Moragas, M.; Bover Arnal, T.; Macchiavelli, C.; Wright, W.; Messager, G.; Embry, J.-C.; Hunt, D. (2020). Tectono-sedimentary Evolution of Jurassi-Cretaceous diapiric structures:! Miravete anticline, Maestrat Basin, Spain. Basin Research, 32, 1653 - 1684. Q1, IF 3.304 Vinyoles, A.; López-Blanco, M.; Garcés, M.; Arbués, P.; Valero, L.; Beamud, E.; Oliva-Urcia, B.; Cabello, P. (2020). 10 Myr evolution of sedimentation rates in a deep marine to non-marine foreland basin system: tectonic and sedimentary controls (Eocene, Tremp-Jaca basin, Southern Pyrenees, NE Spain). Basin Research. https://doi.org/10.1111/bre.12481 Q1, IF 3.304 Roca, E.; Ferrer, O.; Rowan, M.G.; Muñoz, J.A.; Butillé, M.; Giles, K.A.; Arbués, P.; de Matteis, M. (2021). Salt tectonics and controls on halokinetic-sequence development of an exposed deepwater diapir: The Bakio Diapir, Basque-Cantabrian Basin, Pyrenees. Marine and Petroleum Geology, 123, 1-25. Q1, IF 3.79 Ramírez-Herrera, M.T., Corona, N., Cerny, J., Castillo-Aja, R., Melgar, D., Lagos, M., Goguitchaichvili, A., Machain, M.L., Vázquez-Caamal, M.L., Ortuño, M., Caballero, M., Solano-Hernandez, E.A., Ruíz-Fernández, A-C. (2020). Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast. Scientific Reports. 10:11452. https://doi.org/10.1038/s41598-020-68237-2 Q1, IF 3.998. Rowan, M.G.; Muñoz, J.A.; Giles, K.A.; Roca, E.; Hearon IV, T.E.; Fiduk, J.C.; Ferrer, O.; Fisher, M.P. (2020). Folding and fracturing of rocks adjacent to salt diapirs. Journal of Structural Geology, 141, 104187. Q1, IF 2.836 Gallach, X.; Carcaillet, J.; Ravanel, L.; Deline, P.; Ogier, C.; Rossi, M.; Malet, E.; Garcia Sellés, D. (2020). Climatic and structural controls on Late glacial and Holocene rockfall occurrence in high elevated rock walls of the Mont Blanc massif (Western Alps). Earth! Surface Processes and Landforms, 45, 3071–3091.Q1,! IF 3.694 !

96

MEMÒRIA anual Institut de Recerca Geomodels

3.2 Publicacions en llibres, derivades de congresos nacionals o internacionals, o en revistes no SCI Furdada, G. (2020) Trenta anys del primer Butlletí de Perill d'Allaus al Pirineu de Catalunya. Neu i Allaus, 12, 50-57, https://www.acna.cat/revista-nia/ Furdada, G.; Margalef, A.; Trapero, L.; Pons, M.; Areny, F.; Baró, M.; Reyes, A.; Guinau, M. (2020). The Avalanche of Les Fonts d'Arinsal (Andorra): An Example of a Pure Powder, Dry Snow Avalanche. Geosciences, 10.4, 126. Furdada, G.; Victoriano, A.; Díez-Herrero, A.; Génova, M.; Guinau, M.; De las Heras, A.; Palau, R.M.; Hürlimann, M.; Khazaradze, G.; Casas, J.M.; Margalef, A.; Pinyol, J.; Gonzalez, M. (2020) Flood consequences of land-use changes at a ski resort: overcoming a geomorphological threshold (Portainé, Eastern Pyrenees, Iberian Peninsula). Flood Risk Assessments: Applications and Uncertainties. Díez-Herrero, A. and Garrote, J. (Eds). MDPI. Basel (SWITZERLAND), 57-82. https://doi.org/10.3390/books978-3-03936-939-3 (https://www.mdpi.com/books/pdfview/book/2813) Garcés, M.; Beamud, E. (2020). Geochronology: Magnetostratigraphic Dating. Reference Module in Earth Systems and Environmental Sciences, 104105-104119. Rodríguez-Salgado, P., Falivene, O., Frascati, A., Arbués, P., Monleon, O., Butille, M., Cabello, P., López-Blanco, M., Pöppelreiter, M. C. (2020). Stratigraphic forward models of the Sobrarbe Deltaic Complex (Ainsa Basin, NE Spain): Controls on stratigraphic architecture. In: J. Grötsch and M. Pöppelreiter (eds), Digital Geology – Multi-scale analysis of depositional systems and their subsurface workflows, pp. 71 – 90. Kachakhidze, M., Kachakhidze-Murphy, N., Khazaradze, G., & Khvitia, B. (2020). Earthquake precursor mobile network. Earthquake Science, 33, 1–8. https://doi.org/10.29382/eqs-2019-0000-00 Ortuño, M. (2020). El relleu dels Pirineus. Història de paisatges que romanen. Àrnica, Resvista naturalista dels Pirineus, num. 1, 22-25. Depósito Legal L-1110-2004 Ortuño, M., Viaplana-Muzas, M. (2020). Origin and Evolution of the Pyrenees Topography. In: C. Quesada and J. T. Oliveira (eds.), The Geology of Iberia: A Geodynamic Approach, Regional Geology Review (Springer), Volume 5: Active Processes: Seismicity, Active Faulting and Relief, pgn 90-97. https://doi.org/10.1007/978-3-030-10931-8 Ortuño., M., Lacan, P. (2020). Active faults within the Pyrenees. In: C. Quesada and J. T. Oliveira (eds.), The Geology of Iberia: A Geodynamic Approach, Regional Geology Review (Springer), Volume 5: Active Processes: Seismicity, Active Faulting and Relief, pgn 44-48. https://doi.org/10.1007/978-3-030-10931-8 Scarselli, N.; Bilal, A.; McClay, K.; Ferrer, O.; Gumprechet, S.; Paten, T. (accepted). Seismic geomorphology as a tool to explore the georesource potential of slope failures – examples from offshore Northwest Shelf, Australia. A: Iacopini, D.; Bell, R.; Vardy, M. (Eds.). Interpreting Subsurface Seismic Data, Elsevier. Suriñach, E.; Flores-Márquez, E.L.; Roig-Lafon, P.; Furdada, G.; Tapia, M. (2020) Estimation of Avalanche Development and Frontal Velocities Based on the Spectrogram of the Seismic Signals Generated at the Vallée de la Sionne Test Site. Geosciences, 10.3, 113

97

Resum activitats 2020

98

MEMÒRIA anual Institut de Recerca Geomodels

4. PARTICIPACIONS A CONGRESSOS Congress participation

99

Resum activitats 2020

100

MEMÒRIA anual Institut de Recerca Geomodels

4.1 Congressos de caràcter internacional

Ahmadi, N.; Travé, A.; Playà, E.; Frigola, J.; Hollis, C.; Kotti, N.; Mardassi, B.; Felhi, M.; Tlili, A. 2020 Sedimentological and geochemical aspects of the late Paleocene-early Eocene phosphorites cropping out in North western Tunisia (Sra Ouertane Basin). Presentació comunicació. 3rd Conference of the Arabian Journal of Geosciences TUNÍSIA Balasch, J.C.; Tuset, J.; Castelltort, X.; Barriendos, M.; Valera-Prieto, Ll.; Khazaradze, G.; Furdada, G.; Calvet, J. and Pino, D. (2020) Runoff variability of an extreme flash flood event on the Catalan Coastal System-Ebro Basin water divide (NE Iberian Peninsula) EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8250, https://doi.org/10.5194/egusphere-egu2020-8250 Beamud, E.; Soto, R.; Peigney, C.; Roca, E.; Pueyo, E. (2020) Paleomagnetism on salt-detached syndiapiric overburden rocks from the Northern margin of the Basque- Cantabrian extensional Basin (N Spain). EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4598, https://doi.org/10.5194/egusphere-egu2020-4598 Blanco, Laura; Garcia-Sellé, David; Pascual, Nicolas; Puig, Anna; Salamó, Maria; Guinau, Marta; Gratacós, Òscar; Muñoz, Josep Anton; Janeras, Marc; Pedraza, Oriol (2020). Methodology for rockfall activity identification and Machine Learning classification based on Point Clouds monitoring in Montserrat Massif (Spain). European Geosciences Union General Assembly. Vienna, Austria (Virtual presentation). May 2020.https://meetingorganizer.copernicus.org/EGU2020/EGU2020- 5783.html?EGUsphere Bonilla Alba, R.; Gomez-Paccard, M.; del Rio, J.; Beamud, E.; Martínez-Ferreras, V.; Gurt-Esparraguera, J.M.; Ariño Gil, E.; Palencia-Ortas, A.; Pavón-Carrasco, F.J.; Martin-Hernandez, F.; Chauvin, A.; Osete, M.L. (2020) Evidences of a Geomagnetic Field Intensity Decrease from 500 BCE to 50 CE in South Uzbekistan. AGU Fall Meeting Online, 1-17 December, San Francisco (USA) Bons, P.D.; de Riese, T.; Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.; Weikusat, I. (2020). Stress and strain rate variations and strain localisation in ice: Another complexity to be considered apart from a simple enhancement factor. European Geosciences Union General Assembly. Vienna, Austria (Virtual presentation). May 2020. Bons, P.D.; de Riese, T.; Gomez-Rivas, E.; Naaman, I.; Sachau, T. (2020). Hydrofractures and crustal-scale fluid flow. European Geosciences Union General Assembly. Vienna, Austria (Virtual presentation). May 2020. Canillas, V.; Torta, J.M.; Marsal, S.; Curto, J.J.; Marcuello, A.; Ledo, J.; Queralt, P. (2020) Improving the modelling of GIC in Spain by including the 220 kV power grid. AGU Fall Meeting 2020 Castillo Reyes, O.; Queralt, P.; Ledo, J.; Marcuello, A.; Mitjanas, G.; de la Puente, J. (2020) Control Source Electromagnetic test in the Vallès Basin (Spain) for geothermal characterization: experiment setup and numerical simulations. AGU Fall Meeting 2020 de Riese, T.; Bons, P.D.; Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.; Weikusat, I. (2020). Influence of initial preferred orientations on strain localisation and fold patterns in non-linear viscous anisotropic materials. GeoUtrecht 2020. Utrecht, The Netherlands (Virtual presentation). August 2020. de Riese, T.; Bons, P.D.; Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.; Weikusat, I. (2020). Influence of initial preferred orientations on strain localization in non-linear viscous anisotropic material. Tectonics Community Science Workshop. Virtual presentation. July 2020.

101

Resum activitats 2020

Furdada, G. and Guinau, M.(2020) Teaching Natural Hazards at University level: Integration of ICT, and advanced and classic techniques in classroom and fieldwork. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10481, https://doi.org/10.5194/egusphere-egu2020-10481 Garcés, M.; López-Blanco,M.; Beamud, E.; Muñoz, J.A.; Arbués, P.; Valero, L.; Vinyoles, A. (2020) Reconstructing the Early Eocene Sediment Routing System of the south-eastern Pyrenees. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10853, https://doi.org/10.5194/egusphere-egu2020-10853 García-Mayordomo, J., Ortuño, M., Lacan, P., Audin, L., Audemard, F., Prieto, G., Peruzza, L., Zúñiga, R., Benavente, C., Moreiras, S., López, M.C., Arcila, M. and OLLIN network members (2020). The OLLIN 669-IGCP project: First steps of a Fault2SHA approach in Latin American countries. All Hands on Deck: Promoting Faults in Seismic Hazard Assessment Fault2SHA 5th Workshop - Online. Gómez-Novell, O., Ortuño, M., García-Mayordomo, J., Masana, E., Rockwell, T., Baize, S., Pallàs, R. (2020). Paleo-surface ruptures at both sides of a pressure ridge along Alhama de Murcia Fault (SE Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3117, https://doi.org/10.5194/egusphere-egu2020-3117 Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., Chartier, T., Rockwell, T., Baize, S., Pallàs, R. (2020). Fault system-based probabilistic seismic hazard of the Eastern Betics Shear Zone (SE Spain) and paleoseismic evidence along multiple-fault branches of the Alhama de Murcia Fault, Fault2SHA 5th workshop, Online, 12 November 2020. Gomez-Rivas, E.; Martín-Martín, J.D.; Humphrey, E.; Bons, P.D.; Neilson, J.; Griera, A.; Travé, A.; Koehn, D. (2020). Stylolite networks: geometrical controls exerted by sedimentary facies and their effects on carbonate rock permeability and diagenesis. 3rd Conference of the Arabian Journal of Geosciences (CAJG). Sousse, Tunisia (Virtual presentation). November 2020. Gomez-Rivas, E.; Griera, A.; Playà, E.; Gómez-Gras, D.; Travé, A.; Llorens, M.-G. (2020). Fracturing and sealing in a subsurface salt body: the Súria anticline (SE Pyrenees). 3rd Conference of the Arabian Journal of Geosciences (CAJG). Sousse, Tunisia (Virtual presentation). November 2020. Gomez-Rivas, E.; Llorens, M.-G.; Griera, A.; Bons, P.D.; Lebensohn, R. (2020). Deformation and dynamic recrystallisation of polycrystalline rocks: examples of full-field numerical simulations of polar ice, evaporites and mantle rocks. TecTask Workshop Structural Geology in the 21st Century. Kharagpur, India. February 2020. Granado, P., Ruh, J. 2020. Contractional rejuvenation of syn-rift salt-bearing minibasins by numerical simulations. EGU General Assembly 2020, Vol. 22, EGU2020- 2583, Viena (Austria). Herms, I.; Piris, G.; Colomer, M.; Peigney, C.; Griera, A.; Ledo, J. (2020) 3D Numerical Modelling Combined with a Stochastic Approach in a Matlab-based Tool to Assess Deep Geothermal Potential in Catalonia: The Case Test Study of the Reus Valls Basin. World Geothermal Congress 2020. POSTPONED TO 2021 Khazaradze, G.; Guinau, M.; Blanch, X.; Abellán, A.; Tapia, M.; Furdada, G.; Suriñach, E. (2020). Multidisciplinary studies of the Puigcercós historical landslide in the Catalan Pyrenees . EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7796, https://doi.org/10.5194/egusphere-egu2020-7796 Khazaradze, G., Staller, A., Martínez-Diaz, J. J., López, R., & Masana, E. (2020). Constraints on geodetic slip partitioning between the Alhama da Murcia and Palomares faults in the SE Betics, Spain. In All Hands on Deck: Promoting Faults in Seismic Hazard Assessment. Fault2SHA 5th Workshop – Online, 13/11/2020. http://fault2sha.net/5th-workshop/ 102

MEMÒRIA anual Institut de Recerca Geomodels

Khazaradze, G., Pena-Castellnou, S., Santamaría-Gómez, A., & Vernant, P. (2020). 3D GPS velocity field of the Iberian Peninsula. In Instituto Geográfico Nacional y el Instituto Português do Mar e da Atmosfera (Ed.), Spanish-Portuguese Assembly (AHPGG) (pp. 1–4). May,26-29, Toledo, Spain (Online). Khazarade, G., Vertical Crustal Modeling, Participation: Round table, Conference: Solid Earth Science and Sea Level Change, 12-13/11/2020, USA, online. Lacan, P., Leon Loya, R., Zuniga, R., Ortuño, M., Audin, L., Perea, H., Cruz Atienza, V., Diaz Mojica, J., Nuñez Meneses, A., Suarez, G. (2010). Paleoseismology and seismic hazard assessment of crustal faults in central Mexico and consequences for the nearby megacities. Fault2SHA Eastern Betics laboratory; where are we three years after? All Hands on Deck: Promoting Faults in Seismic Hazard Assessment Fault2SHA 5th Workshop - Online. Larrasoaña, J.C.; Pueyo, E.L.; Calvin, P.; Mata-Campo, M.P.; Rodríguez-Pintó, A.; Barnolas, A.; Beamud, E.; Bellido, E.; Bernaola, G.; Egli, R.; Gil-Peña, I.; Izquierdo- Llavall, E.; Montes, M.J.; Oliva-Urcia, B.; Orera, A.; Payros, A.; Samsó, J.; Toro, R. (2020) Unravelling the kinetics of burial remagnetizations. AGU Fall Meeting Online. San Francisco (USA) Llorens, M.-G.; Griera, A.; Bons, P.D.; Gomez-Rivas, E.; Weikusat, I.; Prior, D.; Lebensohn, R. (2020). The effect of melt on seismic anisotropy of ice polycrystalline aggregates. European Geosciences Union General Assembly. Vienna, Austria (Virtual presentation). May 2020. Llorens, M.-G.; Griera, A.; Gomez-Rivas, E.; Bons, P.D.; Weikusat, I.; Prior, D.; Lebensohn, R. (2020). Insights into seismic anisotropy of temperate ice during simple shear deformation. Tectonics Community Science Workshop. Virtual presentation. July 2020. Maggio, G.; Kiyan, D.; Hogg, C.; Queralt, P.; Arraocou, P.; Bean, J.C.; Mcateer J.; Blake, S. (2020) The GEO-URBAN Project: Exploring the Geothermal Potential of Dublin City by using Electromagnetic and Passive Seismic Methods. World Geothermal Congress 2020. POSTPONED TO 2021 Martínez van Dorth, D.; D'Auria, L.; Ledo Fernández, J.; Piña-Varas, P.; Di Paolo, F.; Cabrera-Pérez, I.; Cervigón, G.; Przeor, M.; Hernández, W.; Queralt, P.; Marcuello, A.; Pérez, N. (2020) The blackout of September 2019 on the island of Tenerife: an opportunity to estimate the level of contamination of electromagnetic noise using the magnetotelluric method. EGU General Assembly Conference, 4-8 May, 2020. Online Mcateer J., Kiyan D. , Maggio G., Queralt P., Benjumea B., Stafford P., Blake S., Clake J. and the GEO-URBAN Consortium (2020) The GEO-URBAN Project – Identification and Assessment of Deep GEOthermal Heat Resources in Challenging URBAN Environments. World Geothermal Congress 2020. POSTPONED TO 2021 Milanese, F.; Montes, M.; Olivero, E.B.; Beamud, E.; Santillana, S.; Tobin, T.S.; Rapalini, A. E.; Kirschvink, J.L. (2020) Coniacian-Paleocene chronostratigraphy of the James Ross Basin: a synthesis. GSA 2020 Connects Online. Montreal (Canada) Mitjanas, G.; Ledo, J.; Queralt, P.; Alías, G.; Piña, P.; Marcuello, A.; Martí, A. (2020) Integration of geophysical methods and fractures study for the Vallès geothermal system characterization (NE Spain). EGU General Assembly Conference, 4-8 May, 2020. Online Muñoz, J.A., Granado, P., Strauss, P., Pelz, K., Roca, E., Ferrer, O., Wilson, E.P., Santolaria, P. 2020. Structural styles of fold and thrust belts reactivating passive margins involving salt. AAPG ACE 2020, 7-10 June 2020. Houston (USA) Muñoz-López, D.; Alías, G.; Cruset, D.; Cantarero, I.; John, C.D.; Martín-Martín, J.D.; Travé, A. 2020. Changes in the fluid regime during successive reactivations of a

103

Resum activitats 2020

Pyrenean thrust fault. Presentació comunicació. 3rd Conference of the Arabian Journal of Geosciences Muñoz-López, D.; Benedicto, A.; Cruset, D.; Cantarero, I.; John, C.D.; Martín-Martín, J.D.; Travé, A. 2020. Fluid flow compartmentalization during thrusting. A petrological and geochemical approach in the Southern Pyrenees. Presentació comunicació. 3rd Conference of the Arabian Journal of Geosciences TUNÍSIA Ortuño, M., García-Mayordomo, J., Álvarez-Gómez, J.A., Alonso-Henar, J., Canora, C., Gómez-Novell, O., Herrero, P., J., Insua-Arévalo, J.M., Khazaradze, G., López, R., Martín-Banda, R., Martín-Rojas, I., Martínez-Díaz, J., Masana, E., Medina, I., Rodríguez-Escudero, Pérez-López, R. (2020). Fault2SHA Eastern Betics laboratory; where are we three years after? In All Hands on Deck: Promoting Faults in Seismic Hazard Assessment. Fault2SHA 5th Workshop – Online, 13/11/2020., Invited conference http://fault2sha.net/5th-workshop/ Pastoressa, A.E.; Balasco, M.; Juanjo Ledo, J.; Queralt, P.; Romano, G.; Siniscalchi, A.; Tripaldi, S. (2020). Three-dimensional Magnetotelluric Crustal Model of High Agri Valley seismic area to identify and to quantify the resistivity variation in depth. EGU General Assembly Conference, 4-8 May, 2020. Online

Pérez-Jiménez, J.L.; Caja, M.A.; Peña, A.C.; Blázquez, V.; Santos, C.A.; García-Diego, L.; Sánchez-Pézez-Cejuela, V.; Palomares, E.; Bover-Arnal, T.; Martín-Martín, J.D. (2020). Digital Rock Physics in Drill Cuttings. European Association of Geoscientists & Engineers. Conference Proceedings, ResTech2020, Apr 2020, Volume 2020, p.1 – 2. DOI: https://doi.org/10.3997/2214-4609.202RESTECH08

Peigney, C.; Beamud, E.; Gratacós, O.; Valero, L.; Soto, R.; Roca, E.; Muñoz, J.A. (2020) Timing and magnitude of vertical-axis rotations in the eastwards-flanking synorogenic sediments of the South-Pyrenean fold-and-thrust belt. Kinematics and origin of the salient curvature. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7685, https://doi.org/10.5194/egusphere-egu2020-7685 Pelz, K., Granado, P., König, M., Wilson, E.P., Strauss, P., Roca, E., Thöny, W., Muñoz, J.A. 2020. Predictive uncertainties in salt detached fold and thrust belts – examples from the surface and subsurface of the Eastern Northern Calcareous Alps (Austria). EGU General Assembly 2020, Vol. 22, Viena (Austria) Piris, G.; Herms, I.; Griera, A.; Gomez-Rivas, E.; Colomer, M.; Arnó, G. (2020). 3DHIP- Calculator. A new tool for developing deep geothermal resource assessments from 3Dmodels using the ‘Heat-In-Place’ method and Monte Carlo simulations. Preliminary results in theEmpordà Basin case study, (NE Catalonia) – GeoERA HotLime project. 8th European Geothermal Workshop. Strassbourg, France (Virtual presentation). October 2020. Pueyo, E.L.; Román-Berdiel, M.T.; Ayala, C.; Loi, F.; Soto, R.; Beamud, E.; Fernandez de Arévalo, E.; Gimeno, A.; Galán, L.; Schamuells, S.; Bach-Oller, N.; Clariana, P.; Rubio, F.M.; Casas-Sainz, A.M.; Oliva-Urcia, B.; García-Lobón, J.L.; Rey, C.; Martí, J. (2020) Density and magnetic susceptibility relationships in non-magnetic granites; a “wildcard” for modeling potential fields geophysical data. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8736, https://doi.org/10.5194/egusphere-egu2020- 8736 Queralt, P.; Ledo, J.; Marcuello, A.; Mitjanas, G., Alias, G., Piña-Varas, P.; Martí, A. (2020) MT, CSEM and Gravity Joint Interpretation for a Geothermal Study the Vallès Basin (Catalan Costal Range, NE Spain). World Geothermal Congress 2020. POSTPONED TO 2021 Ramírez-Herrera, M.T., Corona, N., Lagos, Castillo-Aja, R., Goguitchaichvili, A., Machain, M.L., Caballero, M., M., Cerny, J., Ortuño, M. (2020). The Mexican

104

MEMÒRIA anual Institut de Recerca Geomodels

subduction zone - geological and historical evidence of large earthquakes and tsunamis. GSA invited talk, abstract 356527 Nora Richter, James M Russell, Linda Amaral Zettler, Wylie De Groff, Pedro MV Raposeiro, Vitor MC Gonçalves, Erik J de Boer, Sergi Pla-Rabes, Armand Hernandez, Alberto Sáez, Roberto Bao, Ricardo M. Trigo and Santiago Giralt (2020). Tracking Hydroclimate Changes and Human Impacts over the Last Millennium in Lake Sediment Records from Flores Island, the Azores. AGU 2020 Fall Meeting. American Geosciences Unión (AGU). Online. Sanz-Ramos, M.; Bladé, E.; Andrade, C.A.; Oller, P.; Furdada, G. (2020) Numerical modelling of the Coll de Pal snow avalanche with Iber. VSSW 2020, Online, 4-10 October 2020, https://presentation.vssw2020.com/poster/numerical-modelling-of-the- coll-de-pal-snow-avalanche-with-iber/ Sharma, N., Vérité, J., Watkins, S., Valero, L., Whittaker, A., Garcès, M., Puigdefabregas, C., Guillocheau, F., Adatte, T., Castelltort, S. (2020) Upstream versus downstream changes in a natural sediment routing system from source to sink. EGU General Assembly 2020, EGU2020-1004. https://doi.org/10.5194/egusphere-egu2020- 1004 Simon-Muzas, A.; Casas-Sainz, A. M.; Soto, R.; Gisbert, J.; Román-Berdiel, T.; Oliva- Urcia, B.; Pueyo, E. L.; Beamud, E. (2020) Anisotropy of magnetic susceptibility (AMS) of lava and volcanoclastic flows of the Stephano-Permian Cadi basin (central-eastern Pyrenees), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10284, https://doi.org/10.5194/egusphere-egu2020-10284 Sokhadze, G., Hahubia, G., Kachakhidze, M., Khazaradze, G. (2020). Present-day crustal deformation of Georgia (Caucasus). EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8100, https://doi.org/10.5194/egusphere-egu2020-8100 Strauss, P., Ruh, J., Huet, B., Granado, P., Muñoz, J.A., Pelz, K., Roca, E., Wilson, E.P. 2020. Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria). EGU General Assembly 2020, Vol. 22, Viena (Austria) Tapia, M., Guinau, M., Suriñach, E., Roig, P., Pérez-Guilén, C., Telletxea, B., Khazaradze, G. Royan, M.J., Echeverria, A., Ferrater, M.. Detection and characterization of landslides and rockfalls using seismic data: strengths and weaknesses. In Spanish-Portuguese Assembly (AHPGG) (pp. 1–2). May, 2020, Toledo, Spain (online): Instituto Geográfico Nacional y el Instituto Português do Mar e da Atmosfera. Valero, L.; Beamud, E.; Garcés, M.; Vinyoles, A.; Sharma, N.; Watkins, S.E.; Tremblin, M.; Puigdefàbregas, C.; Guillocheau, F.; Whitakker, A.C.; López-Blanco, M.; Arbués, P.; Castelltort, S. (2020) Origin and propagation of sedimentary sequences throughout the Escanilla fluvial routing system (South Pyrenean foreland basin). EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19537, https://doi.org/10.5194/egusphere-egu2020-19537 Valera-Prieto, Ll.; Cortés, S.; Furdada, G.; González, M.; Pinyol, J.; Balasch, J.C.; Khazaradze, G.; Tuset, J. and Calvet, J. (2020). Flash-flood hazard hydro-geomorphic characterization and mapping: analysis of the 2019 and 1994 Francolí river flood effects . EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10393, https://doi.org/10.5194/egusphere-egu2020-10393 Valero, L.; Peris, S.; Sharma, N.; Watkins, S.; Beamud, E.; Gracés, M.; Vinyoles, A.; Tremblin, M.; Zaki, A.; Guillocheau, F.; Whittaker, A.C.; López-Blanco, M.; Arbués, P.; Puigdefábregas, C.; Castelltort, S. (2020) Source to Sink Upstream or Downstream Propagation of Climate Cycles and Events: Insights from the South Pyrenean Foreland Basin. AGU Fall Meeting Online, 1-17 December, San Francisco (USA)

105

Resum activitats 2020

Wessels, R.; Lange, O.; and the EPOS TCS Multi-scale laboratories Team (2020) EPOS Multi-scale laboratories Data Services & Trans-national access program. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15358, https://doi.org/10.5194/egusphere-egu2020-15358 Wilson, E.P., Granado, P., Muñoz, J.A., Strauss, P., Pelz, K., Peresson, H. 2020. Structural Framework and Tectonostratigraphic Controls on the Evolution of the Turbón and Serrado Anticlines, South-Central Pyrenees, Spain. AAPG ACE 2020, 7-10 June 2020. Houston (USA)

4.2 Congressos de caràcter nacional Furdada, G. (2020) El alud de nieve polvo de Les Fonts d'Arinsal de 1996. Jornada Virtual Associació per al Coneixement de la Neu i les Allaus ACNA, 7 November 2020, https://www.acna.cat/jornada-i-assemblea-acna-2020/ Playà, E., Travé, A., Martín-Martín, JD., Gómez-Rivas, E. 2020. Laboratorios virtuales en Ciencias de la tierra: ¿es posible transformar una asignatura de campo en una actividad no presencial? Poster. II Congreso Internacional de Innovación docente e Investigación en Educación Superior: Avanzando en las Áreas de Conocimiento (CIDICO) ESPANYA Playà, E., Cantarero, I., De Haan, W.P., Bover-Arnal, T. 2020. Aprendizaje universitario colaborativo semipresencial en clave aprendizaje-servicio (ApS): un modelo aplicado al grado de geología. Poster. Congreso Internacional de Innovación docente e Investigación en Educación Superior: Avanzando en las Áreas de Conocimiento (CIDICO) ESPANYA Raposeiro, P.M.; Pontevedra, X; Carballeira, R.; Guinarte, R.; Castro, D.; Souto, M.; Hernández, A.; Sáez, A.; Bao, R. (2020). Paleoecological changes in the camoebian populations coupled to the evolution of the Doniños coastal lake (NW Iberian Peninsula) XX Congress of the Iberian Association of Limnology (AIL-2020), Murcia (Espanya)

106

MEMÒRIA anual Institut de Recerca Geomodels

5. PROJECTES Projects

107

Resum activitats 2020

108

MEMÒRIA anual Institut de Recerca Geomodels

5.1 Participació en Projectes d’ I+D finançats en Convocatòries Públiques Títol: El Jaciment Paleontològic dels Casots, un Ecosistema de Fa 16 milions d'anys. Recerca, recuperació patrimonial i socialització Entitat finançadora: Departament de Cultura de la Generalitat de Catalunya Número de Projecte: CLT009/18/00068 Durada: 2018-2021 Import concedit: 39.504,00 % Investigador Principal : Isaac Casanovas, Participant: Lluis Cabrera, Miguel Garcés

Títol: Grup de geodinàmica i anàlisi de conques (GGAC) Entitat finançadora: Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) Número de Projecte: 2017SGR596 Durada: 2017-2020 Import concedit: --- Investigador Principal : Josep Antoni Muñoz de la Fuente.

Títol: OLLIN-Identification of seismogenic faults in populated areas of Latin America and its incorporation into seismic hazard assessment Programa: UNESCO-IUGS-IGCP Entitat finançadora: UNESCO Número de Projecte: IGCP 669 Import concedit: 8.797,05 % anuals Durada: 2020- 2024 Investigadora Principal : María Ortuño

Títol: GEOSEDIM GRC - Grup de Recerca Consolidat Geologia Sedimentària. Entitat Finançadora: AGAUR Nº de Projecte: 2017SGR824 Durada: 2017-2020 Import Concedit: 44.035,20% Investigador Principal: Anna Travé

Títol: Ecosistemas marinos y cambios ambientales en los margenes de Gondwana durante la explosion cámbrica y la biondiversificación ordovícica Entitat finançadora: Ministerio de Economia y Competitividad Número de projecte: CGL2017-87631-P Durada: 2018-2020 Import cincedit: 229.000,00% Investigador/s Principal/s: José Javier Álvaro Blasco, IGEO, CSIC. Participant: ---

Títol: Monitoreo, Modelización e Integración de Métodos para el Control de Procesos Activos en Montañas Entitat finançadora: Ministerio de Economia y Competitividad Número de projecte: CGL2017-84720-R Durada: 2018-2021 Import cincedit: 242.000,00 % Investigador/s Principal/s: Emma Suriñach Cornet; Gloria Furdada Bellavista

Títol: Understanding the interplay between deformation, dynamic fluid flow and rock alteration in the Earth’s crust Entitat finançadora: Ministerio de Ciencia, Innovación y Universidades (Programa Ramón y Cajal) Nº Projecte: RYC-2018-026335. Durada: 01/01/2020 - 31/12/2024. Import Concedit: 208.600 % Investigador principal: Enrique Gómez Rivas.

Títol: Determining the main controls on fault-associated Dolomitisation and their influence on reservoir quality distribution Entitat finançadora: Natural Environment Research Council (NERC) Durada: 01/09/2017 – 30/08/2021 Import Concedit: 114.660 % Investigador principal: Enrique Gómez Rivas.

109

Resum activitats 2020

Títol: Prediction of structural damage, fracture cementation and fluid flow in folds associated with thrusts: application to CO2 storage and hydrocarbon reservoris. Entitat finançadora: China Scolarship Council. Nº Projecte: 201806450043 Durada: 01/10/2018 – 30/09/2021. Import Concedit: 36.000 % Investigadors principals: Enrique Gómez Rivas, Juan Alcalde i Anna Travé

Títol: Dynamic behaviour of salt rocks: exploring the interplay between deformation, recrystallisation and trace element transport with full-field numerical simulations. Entitat finançadora: China Scolarship Council. Durada: 01/12/2020 – 30/11/2024. Import Concedit: 48.000 %. Investigador principal: Enrique Gomez-Rivas, Albert Griera i Maria-Gema Llorens.

Títol: GRUP DE RECERCA EN RISCOS NATURALS -RISKNAT Entitat finançadora: Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) Número de Projecte: 2017SGR126 Durada: 2017-2020 Import concedit: --- Investigador Principal : Eulalia Masana Closa

Títol: Caracterización holística de las GIC en la península Ibérica: del análisis de corrientes magnetosféricas e ionosféricas a las influencias de la litosfera Entitat Finançadora: Ministerio de Economía y Competitividad. Nº de Projecte: CGL2017-82169-C2-2-R. Durada: 2018-2020. Import Concedit: 133100 % Investigadors/es principals: Juan Jose Ledo Fernandez i Pilar Neus Queralt Capdevila

Títol: Identificación y Evaluacion de Recursos Geotérmicos en Entornos Urbanos Difíciles. Entitat Finançadora: Ministerio de Ciencia, Innovación y Universidades. Nº de Projecte: PCI2018-092943 Durada: 2018-2021. Import Concedit: 117000 % Investigadora principal: Pilar Neus Queralt Capdevila

Títol: ¿Cuándo fue realmente colonizado el Archipielago de las Azores? Una aproximación paleolimnológica de alta resolución. Discover AZORES Entitat Finançadora: Fundaçao para a Ciencia e Tecnologia (FCT), Portugal Nº de Projecte: PTDC/CTA-AMB/28511/2017 Durada: 2018-2021 Import Concedit: 239.472,68 % Investigadora principal: Pedro Miguel Raposeiro. Participant: Alberto Sáez

Títol: Impacto de las Transiciones Climáticas del Paleógeno en los Sistemas Sedimentarios de Iberia Entitat Finançadora: Ministerio de Ciencia, Innovación y Universidades. Nº de Projecte: PID2019-106440GB-C21. Durada: 2020-2024. Import Concedit: 139.150 % Investigadors/es principals: Miguel Garcés Crespo y Miguel López Blanco

Títol: Earth Surface Signaling Systems: Upstream versus downstream propagation of climatic signals from source-to-sink, in nature and experiments. Entitat finançadora: Fonds national suisse de la recherche scientifique. Nº Projecte: 200020_182017 / 1. Durada: 2018-2022. Import Concedit: 719.906,00 CHF. Investigadora principal: Sèbastien Castelltort. Participant: Miguel Garcés

Títol: Tectónica Salina en cinturones contractivos Entitat finançadora: MCOC - Ministerio de Economia y Competitividad Nº de Projecte. CGL2017-85532-P Durada: 2018 – 2020 Import concedit: 181.500,00% Investigador Principal: Eduard Roca Abella

110

MEMÒRIA anual Institut de Recerca Geomodels

Títol: Radiografiando sistemas magmáticos silícicos: el Magmatismo Permo-Carbonífero del Pirineo Catalán”. Subproyecto 1: Mecanismos de transporte y emplazamiento de magmas silícicos: El caso del volcanismo Permo-Carbonífero del Pirineo Catalán (MODEM) Entitat finançadora: MCOC - Ministerio de Economia y Competitividad Nº de Projecte. CGL2017-84901-C2-1 Durada: 2018 – 2021 Import concedit: 90.000,00% Investigador Principal: Joan Martí Molist. Participant: Josep Oriol Ferrer

Títol: 3D Integrative Geological Modeling of Gas Hydrates Entitat Finançadora: Ministerio de Economía y Competitividad Nº de Projecte: RTI2018-097312-A-I00 Durada: 01/01/2019 a 31/12/2021 Import Concedit: 54.450,00 % Investigador Principal: Patricia Cabello López

Títol: Circulación de fluidos durante la evolución de cuencas invertidas y cinturones orogénicos: aplicación en el almacenamiento de C02 Tipus de contracte/Programa: NTME - Programa Nacional de ciencias y tecnologías medioambientales Entitat finançadora: MCOC - Ministerio de Economia y Competitividad Nº Projecte: PGC2018-093903-B-C22 Durada: 2019 - 2021 Import concedit 127.050,00% Investigador/s Principal/s: Anna Travé Herrero; Juan Diego Martín Martín

Títol: GI-GRIMS - Grup d’Innovació de Geoquímica i Roques Ígnies, Metamòrfiques i Sedimentàries Tipus de contracte/Programa: PPID - Projectes d'Innovació Docent Entitat finançadora: UBAR - Universitat de Barcelona Nº Projecte: GINDOC-UB/137 Durada: 2016 - 2022 Import concedit: --- % Investigador/s responsable/s: Meritxell Aulinas Junca Participant: Anna Travé Herrero

Títol: Variaciones rapidas de la intensidad del campo geomagnético en el Mediterraneo: Caracterización a partir de yacimientos del bronce final y de cerámicas finas tardoromanas (GEOMED) Entitat finançadora: Ministerio de Economía y Competitividad. Nº Projecte: CGL2015-63888-R. Durada: 2016-2020. Import Concedit: 50.000,- % Investigadora principal: Miriam Gómez Paccard (CSIC). Participant: Elisabet Beamud (equip de treball)

Títol: Las sociedades antiguas complejas de Asia Central a través de la cerámica. Entre la tradición nómada y las influencias mediterráneas. Entitat finançadora: Ministerio de Economía y Competitividad. Nº Projecte: HAR2016-75133-C3-1-P. Durada: 2017-2020. Import Concedit: 47.190,- % Investigadora principal: V. Martínez Ferreras & J.M Gurt i Esparraguera (UB) Participant: Elisabet Beamud (equip de treball)

Títol: Caracterizacion 2.5 y 3D de la estructura cortical del Pirineo catalán con especial atención a los cuerpos graníticos y cuencas volcano-sedimentarias Permocarboniferos (SIMPROP). Entitat finançadora: Ministerio de Economía y Competitividad. Nº Projecte: CGL2017-84901-C2-2-P. Durada: 2017-2020. Import Concedit: 85.000,-% Investigadora principal: Concepción Ayala (IGME) Participant: Elisabet Beamud (equip de treball)

Títol: Actividades extractivas del sílex en Cataluña: las canteres prehistóricas de Serra Llarga. Entitat finançadora: Generalitat de Catalunya – convocatoria de proyectos cuatrienales de investigación en materia de Arqueología y Paleontología para el período 2018-2021. Nº Projecte: CLT009/18/00042. Durada: 2018-2021. Import Concedit: 13.301,80% Investigadora principal: Xavier Terradas Batlle (IMF CSIC) Participant: Elisabet Beamud (equip de treball)

Títol: Estudio Paleosismológico y de Sismología Observacional del sismo de Ameca de 1568, en la zona occidental de la Faja Volcánica Trans-Mexicana y sus repercusiones para la determinación del riesgo sísmico de la región Jalisco-Colima"

111

Resum activitats 2020

Entitat finançadora: Universidad Autónoma Nacional de México. Durada: 2019-2021. Nº Projecte: UNAM-DGAPA IN109819 Import Concedit: 700.000 pesos mexicans Investigadora principal: Ramón Zúñiga (UNAM) Participant: María Ortuño (equip de treball)

Títol: Impactos climáticos de la Era Común sobre los ecosistemas acuáticos del NE de España. - IMPACOM Entitat finançadora: Ministerio de Ciencia e Innovación Nº Projecte: PID2019- 107424RB-I00. Durada: 01/06/2020 - 31/05/2023. Import Concedit: 118.580 % Investigadora principal: Roberto Bao Casal (Universidade da Coruña) Participant: Alberto Sáez (investigador).

Títol del projecte/contracte: Pyrenees Imaging eXperience: an InternationaL network (PIXIL) Entitat finançadora: EUUN - Unió Europea Nº projecte: EFA362/19 Import Concedit: 240.000,00 % Durada: 2019-2021 Investigadora responsable: Pilar Neus Queralt Capdevila ! "#$%&' "#$%&'!()*(&$&+#*%!#%!"*,)-.!+*!"#%/!012!345!6,+,25!10!57234!)588192:58!7;58!?"@"A 693925B! ()$*$+$!,*)+)-+.%/+'!.,,%!A!,;>C!.921D57! 0123/%!.3!4/%536$3'!EFGHEH!!!724%/$!6%)63.*$'!@IGJKGLMEE!!!!!!!!!!!!!!!!!!!!!!89/+.+'!@G@GA@G@L! 7):3;$*<+.%/!/3;4%);+=&3'!N>=95O!$72:58!-258D1!

5.2 Participació en Projectes d’I+D amb Empreses i/o Administracions

Títol: Vigilancia y seguimiento de la erosión y ocurrencia de desprendimientos en el Tajo de San Pedro, Granada Entitat Finançadora: Patronato de la Alhambra- y Generalife Nº de Projecte: FBG310750 Durada: 2020-2021 Import Concedit: 14.878,05% Investigador Principal: Marta Guinau

Títol: Auscultació del massís rocós mitjançant làser escàner terrestre TLS A la muntanya de Montserrat i a Castellfollit de la Roca (any 2020) Entitat Finançadora: Institut Cartogràfic i Geològic de Catalunya Nº de Projecte: FBG15006 Durada: 2020-2021 Import Concedit: 14.817,00% Investigador Principal: Marta Guinau

Títol: Study on Salt Structures of Western Greece Entitat finançadora: Hellenic Petroleum SA Nº de Projecte: FBG310973 Durada: 2020-2021 Import concedit: 149.000,00% Investigador Principal: Josep Anton Muñoz de la Fuente

Títol: Salt tectonics Analog Modeling Project Entitat finançadora: OMV Exploration & Production GmbH Nº de Projecte: FBG310629 Durada: 2020- 2022 Import concedit 306.800,00% Investigador Principal: Josep Anton Muñoz de la Fuente

Títol: Expertise externe dans le cadre du project COLORS Entitat finançadora: CNRS - Centre National de la Recherche Scientifique (CNRS) Nº de Projecte: FBG308770 Durada: 2016- 2021 Import concedit 25.000,00% Investigador Principal: Josep Anton Muñoz de la Fuente

112

MEMÒRIA anual Institut de Recerca Geomodels

Títol: Next-generation Deepwater Core Imaging and Analysis of Research Cores from the Ainsa and Tabernas Basins, Spain. Entitat Finançadora: ExxonMobil Upstream Research Company Nº Projecte: FBG310261 Durada: 01/02/2019 a 31/01/2021 Import Concedit: 140.091,73 % Investigador Principal: Miguel López Blanco.

Títol: GEO-URBAN: Identification and Assessment of Deep Geothermal Heat Resources in Challenging Urban Environments Entitat finançadora: GEOTHERMICA. ERANET COFUND Nº de Projecte: 170151-44011 Durada: 2018-2020 Investigador Principal: Sarah Blake Participant: Pilar Neus Queralt Capdevila

Títol: Structural setting of the frontal NCA units: Aderklaa-Strasshoff Project Entitat Finançadora: OMV AUSTRIA EXPLORATION AND PRODUCTION GmbH Nº de Projecte: FBG309754 Durada: 2018-2020 Import Concedit: 237.180, -% Investigador Principal: Josep Anton Muñoz de la Fuente

Títol: Treballs de prospecció geofísica (magnetotel·lúrica) per a la caracterització de la vall de Joan (Fons de les Terradelles, Garraf) Entitat Finançadora: GEOSERVEI – PROJECTES I GESTIÓ AMBIENTAL, S.L. Nº de Projecte: FBG310473-FBG310670 Durada: 2019-2020 Import Concedit: 27.256,10 % Investigador Principal: Anna Martí Castells

Títol: Desarrollo de modelos predictivos para propiedades de Petrofísica Digital y Petrografía Digital en muestras de cuttings. Entitat Finançadora: Repsol S.A. Nº de Projecte: FBG310199 Durada: 2019-2020 Import Concedit: 34.220,- % Investigador Principal: Telm Bover Arnal, Juan Diego Martín Martín

Títol: Desarrollo de modelos predictivos para propiedades de Petrofísica Digital y Petrografía Digital en muestras de cuttings. Entitat Finançadora: Repsol S.A. Nº de Projecte: FBG310690 Durada: 2020-2021 Import Concedit: 41.159,- % Investigador Principal: Telm Bover Arnal, Juan Diego Martín Martín

Títol: Recopilació d'informació, cartografia geològica, recollida i anàlisi de mostres i elaboració de capes d'informació de base del Mapa Geològic de Catalunya 1:25.000. ICGC-2019-00109 Entitat finançadora: ICGC - Institut Cartogràfic i Geològic de Catalunya Durada: 2019-2020 Import concedit: 27.300,00 Investigador responsable: Miguel Lopez Blanco

Títol: New CGPS sites in Georgia (Caucasus) Entitat Finançadora: UNAVCO (USA) Nº de Projecte: PSR-4508P; Durada: 2019-2020; Import concedit: 6.000 $ Investigador responsable: Giorgi Khazaradze

Títol: Caracterització litostratigràfica i estructural i cartografia geològica del Paleogen dels fulls de Sarral (67-31) i Montblanc (67-32) del Mapa Geològic de Catalunya 1:25.000. Entitat Finançadora: Institut Cartogràfic i Geològic de Catalunya Nº de Projecte: ICGC-2019-00109 / FBG 310505 Durada: 11/11/2019 a 10/07/2020 Import Concedit: 33.033,00 % Investigador Principal: Miguel López Blanco.

Títol: Millora de les superfícies estructurals modelitzades en tres dimensions del model geològic 3D de Catalunya a la zona de la fossa del rosselló. Entitat Finançadora: Institut Cartogràfic i Geològic de Catalunya Nº de Projecte: FBG 310706 Durada: 01/01/2020 a 31/12/2020 Import Concedit: 12.682,93 % Investigador Principal: Òscar Gratacós i Josep Anton Muñoz.

113

Resum activitats 2020

114

MEMÒRIA anual Institut de Recerca Geomodels

6. TESIS Thesis

115

Resum activitats 2020

116

MEMÒRIA anual Institut de Recerca Geomodels

6.1 Tesis defensades

Es recullen les tesis defen sades durant l'any 2020, i les que han estat defensades durant el 2019 però no van ser contemplades en la pertinent memòria degut a que no va ser realitzada (en substitució es va realitzar l'avaluació de l'Institut).

Títol: Formation and subsequent inversion of extensional salt-detached ramp-syncline basins developed above ramp-flat-ramp faults Doctorand: Maria Roma Directors: Josep Anton Muñoz i Josep Oriol Ferrer Universitat: Universitat de Barcelona. Facultat de Ciències de la Terra Any defensa: 2020 Qualificació: Excel!lent cum laude Menció doctorat Internacional? Si

Títol: Rift-inheritance, segmentation and reactivation of the North Iberian rift system in the Basque-Cantabrian Pyrenees Doctorand: Jordi Miró Padrisa Directors: Josep Anton Muñoz i Gianreto Manastchal Universitat: Université de Strasbourg Any defensa: 2020 Qualificació: Excel!lent cum laude Menció doctorat Internacional? No

Títol: Static modelling of a shallow-marine carbonate reservoir analogue: prediction of facies distribution, sequence stratigraphy and fault-associated dolostone geometry Doctorand: Shuqing Yao Directors: Enrique Gómez Rivas, Juan Diego Martín Martín i John Howell Universitat: University of Aberdeen Any defensa: 2019 Qualificació: Menció doctorat Internacional? No

Títol: Sequential Fluid Migration Along a Fold and Thrust Belt: SE Pyrenees from Late Cretaceous to Oligocene. Doctorand: David Cruset Director/s: Anna Travé (UB) i el Jaume Vergés (ICTJA-CSIC). Universitat: Universitat de Barcelona Any defensa: 2019 Qualificació: excel!lent amb menció Cum Laude. Menció doctorat Internacional: --

Títol: Salt contractional fold belts, the Kuqa Foreland Basin and thrust belt case (Tarim Basin, China) Doctorand: Oriol Pla de Casacuberta Director/s: Eduard Roca Abella Universitat: Universitat de Barcelona Any defensa: 2019 Qualificació: Excel!lent cum laude Menció doctorat Internacional? -

117

Resum activitats 2020

Títol: Extensional Development and Contractional Reactivation of Salt Walls Autor/a: Frederic Oriol Escosa Bernal Director/s: Eduard Roca Abella Universitat: Universitat de Barcelona Any defensa: 2019 Qualificació: Excel!lent cum laude Menció doctorat Internacional? -

6.2 Tesis en curs

ARBUÉS, Pau: Estratigrafia del Campanià terminal-Maastrichtià de la part oriental de la làmina del Montsec. Relacions amb la tectònica. (Dirs.: Josep Anton Muñoz; Mariano Marzo). Universitat de Barcelona. BELLO, Daniel Adolfo: Modelo geológico estructural 3D del sinclinal de Ripoll y el antepaís deformado (Pirineo Oriental). (Dir: Josep Anton Muñoz). Universitat de Barcelona. BLANCO, Laura: Software development to the study and characterization of rock fractures. Application in hydrology, slope instability and reservoris analogues. (Dirs: Josep Anton Muñoz, Òscar Gratacós). Universitat de Barcelona. COFRADE, Gabriel: "Fluid Migration in contractional reactivated diapirs: example from the SE Pyrenees" (Dirs. Òscar Gratacós, Irene Cantarero). Universitat de Barcelona. DAL MOLIN, Carlos: Estudio Geológico y sedimentologico del mioceno superior de la zona de los Antiguos (Santa Cruz. Argentina). (Dir.: F. Colombo). Universitat de Barcelona. DE RIESE, Tamara: Veins, fractures and stylolites: dynamics and anisotropy of fluid flow in reservoirs. (Dirs.: Paul Bons; Enrique Gómez Rivas). Universitat de Tübingen. GARCÍA VERÓN, Jacqueline: Interpretación y modelado geológico de la sísmica marina 2D de la Cuenca de Colombia (Caribe colombiano) y potencial de hidrocarburos. (Dirs. Josep Anton Muñoz; Josep Oriol Ferrer). Universitat de Barcelona. GIL ORTIZ, Marc: Sedimentology and sedimentary architecture of the Hawaz Fm. in the subsurface of the Central Murzuq Basin (Libya). (Dirs. Patricia Cabello López; Neil McDougall). Universitat de Barcelona. GÓMEZ NOVELL, Octavi: Integració de dades paleosísmiques en la perillositat sísmica a les Bètiques Orientals (SE Espanya) (Dirs. María Ortuño Candela; Julián García Mayordomo). Universitat de Barcelona. GÓRRIZ IBÁÑEZ, Estefanía: Caracterización estructural y geofísica de reservorios asociados a estructuras de Tectónica Salina de carácter contractivo. (Dirs. Eduard Roca Abella; Alejandro Marcuello Pascual). Universitat de Barcelona. HAO, Baoqin: Dynamic behaviour of salt rocks: exploring the interplay between deformation, recrystallisation and trace element transport with full-field numerical simulations. (Dirs.: Enrique Gómez; Albert Griera; María-Gema Llorens). Universitat de Barcelona. HEEB, Johanna: Listening through rock salt: quantifying petrofabrics and seismic velocity anisotropy of evaporites to improve seismic imaging. (Dirs.: Nick Timms; Dave Healy; Enrique Gómez Rivas; Chris Elders). Curtin University of Technology.

118

MEMÒRIA anual Institut de Recerca Geomodels

HUMPHREY, Elliot: Determining the main controls on fault-associated dolomitisation and their influence on reservoir quality distribution. (Dirss: Enrique Gómez Rivas; Joyce Neilson; Juan Diego Martín). Universitat d’Aberdeen. JUVANY, Philemon, Sediment flux across the south-Pyrenean foreland Basin (Dir. Miguel Garcés Crespo). Universitat de Barcelona. LÓPEZ, Roberto: Slip-rates en la falla de Carboneras: resultados paleosísmicos y geodeticos (GPS). (Dirs: Eulàlia Masana, Giorgi Khazaradze. Universitat de Barcelona. MARIN, Miquel Angel: Tectonoestratigrafia del sistema al!luvial de Sant Miquel del Montclar, marge sud-central de la Conca de l’Ebre. Implicacions sobre l’evolució paleògena del marge Mediterrani Nord-Occidental. (Dirs. Lluis Cabrera; Josep Oriol Ferrer). Universitat de Barcelona. MUÑOZ LOPEZ, Daniel: Fluid flow from the basement to the sedimentary cover: an example of the Southern Pyrenees. (Dirs.: Anna Travé and Gemma Alías). Universitat de Barcelona NAAMAN, Isaac: Crustal-scale fluid flow and hydrothermal ore deposits. (Dirs.: Paul Bons and Enrique Gómez Rivas). Universitat de Tübingen. OLLER FIGUERAS, Pere: Caracterització espai temporal de la dinàmica d’allaus majors al Pirineu Català. (Dirs. Glòria Furdada; Cristina Baeza). Universitat de Barcelona. OSORIO SERRANO, Rodrigo: Impacto de la Oscilación del Atlántico Norte/Oscilación del Ártico sobre la vegetación del NE de Groenlandia durante el Holoceno. (Dirs. Alberto Sáez; Santiago Giralt). Universitat de Barcelona. PEIGNEY, Charlotte: Aplicació del Paleomagnetisme a l’estudi de la cinemàtica d’estructures salines en cinturons orogènics contractius (Dirs: Eduard Roca, Elisabet Beamud). Universitat de Barcelona. PÉREZ CANO, Jordi: Evolució paleoambiental del Barremià de la conca del Maestrat (Cadena Ibèrica oriental). Dos casos d'estudi: els foraminífers bentònics i els caròfits (Dirs: Carles Martín Closas, Telm Bover Arnal). Universitat de Barcelona. PIRIS, Guillem: Development of methodologies applied to risk management on induced seismicity during fluid injection in geothermal reservoirs. (Dirs.: Albert Griera; Enrique Gómez Rivas). Universitat Autònoma de Barcelona. RODRIGUEZ, Fernando: Structural styles and evolution of the Western Gulf of Mexico. (Dirs.: Josep Anton Muñoz, Mark G. Rowan). Universitat de Barcelona. ROIG, Pere: Identification of snow avalanche release areas and flow characterization based on seismic data studies. (Dir.: E. Suriñach). Universitat de Barcelona. STRAUSS, Philip: Salt Tectonics as principal element of the Northern Calcareous Alps (Austria). (Dirs. Josep Anton Muñoz, Pablo Martínez Granado). Universitat de Barcelona. SUN, Xiaolong: Prediction of structural damage, fracture cementation and fluid flow in folds associated with thrusts: application to CO2 storage and hydrocarbon reservoris. (Dirs.: Enrique Gómez; Juan Alcalde; Anna Travé). Universitat de Barcelona. URANGA, Rodolfo: “Salt Tectonics of the Tarfaya Basin, Moroccan Atlantic Margin” (Dirs.: Josep Anton Muñoz, Josep Oriol Ferrer). Universitat de Barcelona. VALERA PRIETO, Llanos: Respuesta bio-geomorfodinámica a las avenidas: avances en la evaluación de la peligrosidad de inundación (río Francolí, cuenca del Mediterráneo occidental) (Dirs. Glòria Furdada; Virginia Ruiz Villanueva) Universitat de Barcelona.

119

Resum activitats 2020

VINYOLES, Andreu: “Sediment routing systems of the Eocene TrempJaca basin: stratigraphic analysis and numerical models”. (Dir. Miguel López Blanco, Miguel Garcés Crespo). Universitat de Barcelona. WILSON, Elizabeth P.: Structural setting of the frontal Northern Calcareous Alps units (Austria) – Insights from Pyrenean Analogues. (Dirs. Josep Anton Muñoz, Pablo Martínez Granado). Universitat de Barcelona.

120

MEMÒRIA anual Institut de Recerca Geomodels

7. MEMBRES INSTITUT DE RECERCA Geomodels Personnel

121

Resum activitats 2020

122

MEMÒRIA anual Institut de Recerca Geomodels

Fins a Desembre del 2020, un total de 57 persones pertanyen a l'Institut de Recerca Geomodels, dsitribuides segons:

17 PhD Students

31 Lecturers 5 Technicians 4 PostDoc

De les quals:

14 Geòlegs estructurals 22 Sedimentòlegs - Petròlegs

12 Lecturers 5 PhD Students 7 Lecturers 4 PhD Students

1 Technician 2 PostDoc 3 Technicians

2 PostDoc

9 Geofísics 12 Geomorfòlegs - Neotectònics

2 PhD Students 5 Lecturers 6 PhD Students

7 Lecturers

1 Technician

123

Resum activitats 2020

Arbues Cazo, Pau Marzo Carpio, Mariano Beamud Amoros, Isabel Masana Closa, Eulalia Beamud Amoros, Teresa Maria Mitjanas Colls, Gemma Blanch Górriz, Xavier Moreno Bedmar, Josep Anton Blanco Núñez, Laura Muñoz De La Fuente, Josep Antoni Bordonau Ibern, Jaume Muñoz Lopez, Daniel Bover Arnal, Telm Ortuño Candela, Maria Cabello Lopez, Patricia Pallas Serra, Raimon Cabrera Perez, Luis Peigney Sesto, Charlotte Cantarero Abad, Irene Pous Fabregas, Jaume Cofrade Rivas, Gabriel Prieto Valera, Llanos Colombo Piñol, Fernando Queralt Capdevila, Pilar Neus Cuevas Martinez, Jose Luis Roca Abella, Eduard De Matteis , Marco Roig Lafon, Pere Ferrer Garcia, Jose Oriol Saez Ruiz, Alberto Furdada Bellavista, Gloria Salas Roig, Ramon Garces Crespo, Miguel Santolaria Otin, Pablo Garcia Selles, David Snidero , Marco Gil Ortiz, Marc Suriñach Cornet, Emma Gomez Novell, Octavi Trave Herrero, Anna Maria Gomez Rivas, Enrique Ureña Morán , Rodolfo Gorriz Ibañez, Estefania Vinyoles Busquets, Andreu Gratacos Torra, Oscar Wilson, Elizabeth P. Guimera Roso, Joan Josep Guinau Selles, Marta Hardy , Stuart Khazaradze Tsilosani, Giorgi Ledo Fernandez, Juan Jose Lopez Blanco, Miguel Lopez Escudero, Robert Marcuello Pascual, Alejandro Marti Castells, Anna Martin Martin, Juan Diego Martinez Granado, Pablo

124