(12) Patent Application Publication (10) Pub. No.: US 2009/0042279 A1 YAMAKOSH Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2009/0042279 A1 YAMAKOSH Et Al US 20090042279A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0042279 A1 YAMAKOSH et al. (43) Pub. Date: Feb. 12, 2009 (54) METHOD OF DETECTING MILD IMPAIRED Related U.S. Application Data St.RE.N E OR INSULIN (62) Division of application No. 10/509,120, filed on Nov. 29, 2004, now Pat. No. 7,452,687, filed as application No. PCT/JP03/03771 on Mar 27, 2003. (75) Inventors: Masaru YAMAKOSHI, (30) Foreign Application Priority Data Mishima-shi (JP); Takuji Kouzuma, Mishima-shi (JP) Mar. 22, 2002 (JP) ................................... 2002-97.121 Publication Classification (51) Int. Cl. Correspondence Address: CI2P I/00 (2006.01) BRCH STEWARTKOLASCH & BRCH (52) U.S. Cl. ........................................................ 435/262 PO BOX 747 FALLS CHURCH, VA 22040-0747 (US) (57) ABSTRACT It is intended to provide a noninvasive method of conve niently detecting mild impaired glucose tolerance and/or (73) Assignee: Asahi Kasei Pharma Corporation, insulin hyposecretion at the early stage with the use of an Tokyo (JP) enzyme. Namely, mild impaired glucose tolerance and/or insulin hyposecretion at the early stage are detected by quan tifying myoinositol Secreted into the urine before loading glucose and after loading glucose for a definite period of time (21) Appl. No.: 12/248,876 with the use of a reagent and comparing the increase (or the increase ratio) in the myoinositol content thus measured with a characteristic level which has been preliminarily deter (22) Filed: Oct. 9, 2008 mined in normal Subjects. 200 y = 3.4753x + 477.1 1000 g 3. 2 600 2. 400 A 200 -50 O 50 OO 50 200 A myo-inositol (ug/mg Cre) Patent Application Publication Feb. 12, 2009 Sheet 1 of 7 US 2009/0042279 A1 Fig. 1 O 500 OOO 500 2000 2500 3000 myo-inositol (LLM) Fig. 2 -- Tris -- Tricine - A - Bicine -e-TAPS -e- CHES --TEA -A-AMPSO Patent Application Publication Feb. 12, 2009 Sheet 2 of 7 US 2009/0042279 A1 Fig. 3 O 2 4. 6 8 O glucose (g/dL) Fig. 4 4500 400.0 () 350.0 300.0 250.0 2000 50.0 100.0 500 O.O O OOO 2000 3000 4000 myo-inositol (uM) Patent Application Publication Feb. 12, 2009 Sheet 3 of 7 US 2009/0042279 A1 Fig. 5 200 y = 3.4753x + 477.1 1000 S., 800 S. a 600 . 8. 400 (t) A 200 O -50 O 50 OO 150 200 A myo-inositol (ug/mg Cre) Fig. 6 200 80 t g 60 (> O 140 Sd 120 %€b 9 Ae st UU S 80 {& 3 8 60 4. S 40 e > () 20 e -100 000 1.00 2.00 3.00 4.00 5.00 AIRlso-o/APGso-o Patent Application Publication Feb. 12, 2009 Sheet 4 of 7 US 2009/0042279 A1 Fig. 7 400 1 200 000 800 600 400 200 myo-inositol myo-inositol + myo-inositol + urinary glucose - urinary glucose - urinary glucose + Fig. 8 P = 5 x 10 - 4.80 P K 0.0 - 440 -p g 0.05 - 4.00 3.60 3.20 2.80 N 2.40 k 2.00 1.60 20 0.80 0.40 0.00 myo-inositol myo-inositol + myo-inositol + urinary glucose urinary glucose urinary glucose + Patent Application Publication Feb. 12, 2009 Sheet 5 of 7 US 2009/0042279 A1 Fig. 9 A group Fig. 10 30 2 A group Patent Application Publication Feb. 12, 2009 Sheet 6 of 7 US 2009/0042279 A1 Fig. 11 300 Y - 1.044X-2.0 250 r 0.83 200 P K 0.0001 50 100 50 -50 O 50 OO 150 200 250 300 75g OGTT A myo-inositol (ug/mg Cr) Fig. 12 80 60 P< O.OOO P & O.OOO5 40 A 80 60 40 20 75gOGTT Meal Load Patent Application Publication Feb. 12, 2009 Sheet 7 of 7 US 2009/0042279 A1 Fig. 13 11 OO OOO 9 OO 8OO 7OO 5OO XPG=530 3OO A myo-inositol ( x8 ) ( -- ) nF22 E10 US 2009/0042279 A1 Feb. 12, 2009 METHOD OF DETECTING MILD IMPARED 0006. The term “impaired glucose tolerance' or “glucose GLUCOSE TOLERANCE OR INSULIN tolerance failure' refers to the condition of an increase in SECRETORY DEFECT blood glucose level caused by insufficient uptake of blood glucose into peripheral tissues such as skeletal muscle, liver, FIELD OF THE INVENTION and adipocyte after glucose is introduced into the blood through meals. In addition, the term "mild impaired glucose 0001. The present invention relates to a method of exam tolerance' refers to that the increment is slightly higher than ining mild impaired glucose tolerance or insulin secretory that of healthy individuals. defect using a sample such as urine. In addition, the present 0007 Insulin is a hormone secreted from beta cells of invention can be applied to a method for predicting or diag pancreas and acts on skeletal muscle, liver and adipose tissue nosing a disease that stems from mild impaired glucose tol to lower the blood glucose level. The term “insulin secretory erance or insulin secretory defect, such as diabetes mellitus, defect” refers to the condition of insufficient insulin secretion arteriosclerosis, or hypertension; a method of determining to uptake a Sufficient amount of blood glucose into peripheral effects of prevention of treatment of, or medical advice on tissues such as skeletal muscle, liver, and adipocyte after those diseases; and a method of evaluating therapeutic agents glucose is introduced into the blood through meals or the like. for treatment of those diseases. Among the insulin secretory defect the condition of insuffi cient insulin secretion to uptake the blood glucose into BACKGROUND OF THE INVENTION peripheral tissues just after glucose is introduced into the 0002. A final goal of diabetic treatment is to prevent the blood is referred to as “impaired early insulin secretion'. onset of diabetic complications and to inhibit the develop According to the guideline of the Japan Diabetes Society, the ment thereof. As demonstrated by clinical tests for achieving term “impaired early insulin secretion” refers to the condition this goal, it is important to find any abnormality and start in which the insulinogenic index I.I is less than 0.4. Insulino treatment thereof at the earliest possible stage e.g., Diabetes genic index II is defined as AIRI (30-0)/APG (30-0) wherein Research and Clinical Practice, 28, 103 (1995). AIRI (30-0) means between the difference between the blood 0003. Further, it is considered effective as a more insulin levels at 30 min after glucose load and before glucose advanced preventive method to find individuals with predia load; and APG (30-0) means the difference between the blood betes or at prestage of diabetes, or individuals with mild glucose levels at 30 min after glucose load and before glucose impaired glucose tolerance or insulin Secretory defect, who load. are not prediabetic at present but are highly likely to develop 0008 Assays of blood glucose levels and insulin levels for diabetes or prediabetes in the near future, and give them those diagnoses are invasive procedures that require blood treatment or advice for exercise and dietary. Clinical tests drawing more than once within a short time, giving the Sub have been conducted to Scientifically demonstrate this e.g., jects considerable pains. Therefore, there is a need for a Diabetes Care, 21, 1720 (1998). Therefore, detecting indi simple assay with lower invasiveness, which can solve these viduals with prediabetes will be important for prevention of disadvantages, preferably a noninvasive assay. diabetes mellitus and also complications thereof. Further 0009. On the other hand, the quantitative determination of more, diagnosing individuals with mild impaired glucose myo-inositol in a biological sample has been considered use tolerance or insulin secretory defect, who are not prediabetic ful for the diagnosis of diabetes mellitus and the following at present but are highly likely to develop diabetes or predia reports have been provided. betes in the near future, is considered most important for 0010 (a) In diabetes mellitus, there was an increase in the purpose of preventing diabetes mellitus at an earlier date. urinary myo-inositol level Lamer J. et al., New Eng.J.Med., 0004 An example of the diagnostic method for diabetes 323,373-378 (1990). mellitus is an oral glucose tolerance test. After a 75 gram oral (0011 (b) No difference was found between NGT and the glucose load, a group of individuals with the fasting blood borderline type with respect to the urinary myo-inositol level glucose level being less than 110 mg/dl and the 2-hour post Susumu Suzuki, Diabetes Care, Vol. 17, No. 12 (1994) 1465 load blood glucose level being less than 140 mg/dl is defined 1468. as normal glucose tolerance (NGT). In addition, a group of (0012 (c) The borderline type (IFG, IGT) and diabetes individuals with the fasting blood glucose level being not less mellitus showed higher urinary myo-inositol level than that of than 110 mg/dl but less than 126 mg/dl and the 2-hour post NGT (JP 2001-190299A). load blood glucose level being less than 140 mg/dl is defined 0013 The above reports (a) and (b) show the results as impaired fasting glycemia (IFG); and a group of individu obtained by determining the urinary myo-inositol levels with als with the fasting blood glucose level being less than 126 GC/MS. Nevertheless, the data are problematic in reproduc mg/dl and the 2-hour postloadblood glucose level being not ibility and reliability because they varied among different less than 140 mg/dl but less than 200 mg/dl is defined as examiners. On the other hand, in the report (c), the results are impaired glucose tolerance (IGT); and both groups IFG+IGT more precise and reliable than those obtained by GC/MS are defined as borderline type.
Recommended publications
  • Yangxin Tongmai Formula Ameliorates Impaired Glucose Tolerance in Children with Graves’ Disease Through Upregulation of the Insulin Receptor Levels
    Acta Pharmacologica Sinica (2018) 39: 923–929 © 2018 CPS and SIMM All rights reserved 1671-4083/18 www.nature.com/aps Article Yangxin Tongmai Formula ameliorates impaired glucose tolerance in children with Graves’ disease through upregulation of the insulin receptor levels Yan-hong LUO1, Min ZHU1, Dong-gang WANG1, Yu-sheng YANG1, Tao TAN2, Hua ZHU2, Jian-feng HE1, * 1Children’s Hospital Chongqing Medical University, Chongqing 400000, China; 2Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Abstract Graves’ disease (GD) is the leading cause of hyperthyroidism, and the majority of GD patients eventually develop disorders of glucose handling, which further affects their quality of life. Yangxin Tongmai formula (YTF) is modified from a famous formula of traditional Chinese medicine for the treatment of cardiovascular diseases. In this study we investigated the potential effects of YTF in the treatment of pediatric GD patients with impaired glucose tolerance. Forty pediatric GD patients and 20 healthy children were recruited for this clinical study. Based on the glucose tolerance, the GD patients were divided into two groups: 20 patients displayed impaired glucose tolerance, while the other 20 patients displayed normal glucose tolerance. YTF was orally administered for 60 days. YTF administration significantly ameliorated the abnormal glucose tolerance and insulin sensitivity in the GD patients with impaired glucose tolerance. To determine the molecular mechanisms of this observation, the number of plasma insulin receptors was determined by ELISA. Before treatment, the fasting and postprandial levels of the insulin receptor were significantly lower in patients with impaired glucose tolerance compared with those in patients with normal glucose tolerance and healthy children.
    [Show full text]
  • Various Method of Glucose Estimation , Gtt and Principal of Carbohydrates Chemistry Test
    VARIOUS METHOD OF GLUCOSE ESTIMATION , GTT AND PRINCIPAL OF CARBOHYDRATES CHEMISTRY TEST Subject : Biochemistry Student name : 1)Jignasha Surti. 2)Mitali Rana. 3)Arpita Kataria. 4)Priya Patel. 5)Vipra Patel. Content : • Introduction • Entry of glucose into cell • Blood collection • Method for glucose estimation 1) Enzymatic method 2) Chemical method • Estimation of glucose in urine sample • Estimation of glucose in CSF sample • Normal values • GTT • Principle of carbohydrate chemistry INTRODUCTION •Glucose is a monosaccharide. • It is central molecule in carbohydrate metabolism. • Stored as glycogen in liver and skeletal muscle. Entry of glucose into the cell Two specific transport system are used : • Insulin –independent transport system: •Carrier mediated uptake of glucose •Not dependent on insulin. •Present in hepatocytes, erythrocytes & brain. • Insulin dependent transport system : • Present in Skeletal muscle. ENTRY OF GLUCOSE INTO CELL : Insulin - dependent GLUT 4 –mediated • Insulin/GLUT4 is not only pathway. • cellular uptake of glucose into muscle and adipose tissue (40%). Insulin – independent glucose disposal (60%) - GLUT 1 -3 in the Brain, Placenta, Kidney -SGLT 1 and 2 (sodium glucose symporter) -intestinal epithelium, kidney. Blood collection for glucose estimation : •Fluoride containing vials are used. •Fluoride inhibit glycolysis by inhibiting enolase enzyme. •2-phosphoglycerate is converted into phosphoenol pyruvate by enzyme enolase by removing one water molecule. FLUORIDE •Fluoride irreversibly inhibit enolase there by stop the whole glycolysis. •Therefor, fluoride is added to blood during estimation of blood sugar. Normal ranges : [Reference: American Diabetes Association(ADA) ] Random blood glucose test : • It is a blood sugar test taken from a non-fasting subject. • Normal range is 79-160 mg/dl.
    [Show full text]
  • For the Quantitative Measurement of 1,5-Anhydroglucitol (1,5AG ) in Serum Or Plasma for in Vitro Diagnostic Use
    For the quantitative measurement of 1,5-anhydroglucitol (1,5AG ) in serum or plasma For in vitro diagnostic use Intended Use The GlycoMark® test provides quantitative measurement of 1,5-anhydroglucitol 3. As microbial contamination and residues from decomposed reagents are (1,5AG) in serum or plasma. The test is for professional use, and is indicated for possible, reagents should not be replenished while a procedure is in process. the intermediate term monitoring of glycemic control in people with diabetes. 4. The reagents should not be used if occulation or discoloration occurs. 5. Do not use reagents past their expiration dating. Summary and Explanation of Test 6. Reagents are to be stored at refrigerated temperatures (2-8˚C) until expiration. As early as 1981, Akanuma, et al. observed diminished plasma concentrations of Opened vials are usable for one month past the date they are opened if stored 1,5AG in patients with insulin-dependent diabetes mellitus (IDDM) in comparison at 2-8˚C. to healthy controls1. This observation was conrmed in a 1983 study by Yoshioka 7. Do not combine dierent lots of Reagent 1 and Reagent 2. et al2. In the 1983 study, plasma 1,5AG was measured by GC-LC in 21 diabetic 8. Do not dilute the reagents. patients prior to initiation of insulin therapy and 13 patients receiving insulin. 9. As with all biological specimens, care should be taken to avoid exposure to 1,5AG was generally undetectable in the patients not receiving insulin, but was infectious diseases. measurable in the population on therapy. At the time, Yoshioka hypothesized 10.
    [Show full text]
  • Glucose Transporter 2 Concentrations in Hyper- and Hypothyroid Rat Livers
    285 Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers T Mokuno, K Uchimura, R Hayashi, N Hayakawa, M Makino, M Nagata, H Kakizawa, Y Sawai, M Kotake, N Oda, A Nakai, A Nagasaka and M Itoh Department of Internal Medicine, Fujita Health University School of Medicine, Toyoake, Aichi 470–1192, Japan (Requests for offprints should be addressed to A Nagasaka) Abstract The deterioration of glucose metabolism frequently An oral glucose tolerance test revealed an oxyhyper- observed in hyperthyroidism may be due in part to glycemic curve (impaired glucose tolerance) in hyperthy- increased gluconeogenesis in the liver and glucose efflux roid rats (n=7) and a flattened curve in hypothyroid rats through hepatocyte plasma membranes. Glucose trans- (n=7). GLUT 2 levels in hepatocyte plasma membranes porter 2 (GLUT 2), a facilitative glucose transporter were significantly increased in hyperthyroid rats and were localized to the liver and pancreas, may play a role in this not decreased in hypothyroid rats compared with euthy- distorted glucose metabolism. roid rats. The same results were obtained with a densito- We examined changes in the levels of GLUT 2 in livers metric assay. These findings suggest that changes in the from rats with -thyroxine-induced hyperthyroidism or liver GLUT 2 concentration may contribute to abnormal methimazole-induced hypothyroidism by using Western glucose metabolism in thyroid disorders. blotting to detect GLUT 2. Journal of Endocrinology (1999) 160, 285–289 Introduction by glucose transporter 2 (GLUT 2), a facilitative glucose transporter (Elbrink & Bihler 1975). Thus, GLUT 2, The homeostasis of glucose metabolism is maintained by which is localized to the liver and pancreas (Fukumoto many factors, including intestinal glucose absorption, liver et al.
    [Show full text]
  • Glycomark Compendium of Evidence
    GlycoMark Compendium of Evidence Glycemic Control No. Title Institute Department First Author Citation 1 Variations of 1-Deoxyglucose (1,5-Anhydroglucitol) National Defense Pediatrics Yoshioka S Clin.Chem 1983; 29(7): 1396-1398 content in patients with insulin-dependent diabetes Medical College mellitus 2 Reduction and recovery of plasma 1,5-anhydro-D-glucitol University of Teikyo Internal Medicine Yamanouchi T Diabetes 1987; 36(6): 709-715 level in diabetes mellitus 3 Reduction of plasma 1,5-AG(1,5-Anhydroglucitol) levels in Saitama Medical Internal Medicine Kawazu S J. Japan Diab. Soc. 1988; 31(8): diabetes mellitus and renal glycosuria School 715-718 4 Urinary excretion of 1,5-Anhydro-D-glucitol Institute for Diabetes Akanuma Y Diabetologia 1988; 31: 831-835 accompanying glucose excretion in diabetic patients Care and Research, Asahi Life Foundation 5 Reduction of plasma 1,5-anhydroglucitol concentration in University of Teikyo Internal Medicine Yamanouchi T Diabetologia 1988; 31:41-45 diabetic patients 6 Plasma 1,5-anhydro-D-glucitol as new clinical marker of University of Teikyo Internal Medicine Yamanouchi T Diabetes 1989; 38(6): 723-729 glycemic control in NIDDM patients 7 Clinical significance of serum 1,5-anhydroglucitol University of Teikyo Internal Medicine Yamanouchi T J. Japan Diab. Soc. 1990; 33(1): measurements in diabetes mellitus 41-48 8 Serum 1,5-Anhydroglucitol level in patients with non- Jichi Medical School Endocrinology and Iwamoto Y Korea Japan Symp.D.M. 1991; insulin-dependent diabetes Mellitus Metabolism 117-120 9 1,5-anhydroglucitol as a marker of glycemic control in Jichi Medical School Endocrinology and Ohwada N Clinical Endocrinology 1991; diabetes mellitus.
    [Show full text]
  • Glucose Variability Before and After Treatment of a Patient with Graves’ Disease Complicated by Diabetes Mellitus: Assessment by Continuous Glucose Monitoring
    Endocrine Journal 2014 ORIGINAL Advance Publication doi: 10.1507/endocrj. EJ13-0410 Glucose variability before and after treatment of a patient with Graves’ disease complicated by diabetes mellitus: Assessment by continuous glucose monitoring Keiichi Torimoto, Yosuke Okada, Tadashi Arao, Hiroko Mori, Sunao Yamamoto, Manabu Narisawa, Akira Kurozumi and Yoshiya Tanaka First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushyu 807-8555, Japan Abstract. A 48-year-old woman was diagnosed and treated for Graves’ disease (GD) in 1999 but she discontinued treatment at her own discretion. In 2011, she was admitted to a local hospital for management of thyrotoxic crisis. Treatment with propylthiouracil, iodide potassium (KI), and prednisolone (PSL) was started, which resulted in improvement of the general condition. PSL and KI were discontinued before she was transferred to our hospital. At the local hospital, fasting plasma glucose (FPG) was 212 mg/dL and hemoglobin A1c concentration was 11.2%; intensive insulin therapy had been instituted. Upon admission to our hospital, FPG level was 122 mg/dL, but insulin secretion was compromised, suggesting aggravation of thyroid function and deterioration of glycemic control. The FPG level increased to 173 mg/dL; continuous glucose monitoring (CGM) identified dawn phenomenon at approximately 0400 h. Resumption of KI resulted in improvement of FPG and disappearance of the dawn phenomenon, as assessed by CGM. These results indicate that in patients with compromised insulin secretion, hyperthyroidism can induce elevation of not only postprandial blood glucose, but also FPG level due to the dawn phenomenon and that the dawn phenomenon can be alleviated with improvement in thyroid function.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • Glucose and Insulin Metabolism in Patients with Hyperthyroidism Due to Graves' Disease
    Nagoya J. Med. Sci. 57. 61 - 68, 1994 GLUCOSE AND INSULIN METABOLISM IN PATIENTS WITH HYPERTHYROIDISM DUE TO GRAVES' DISEASE TOSHIKI MANO, AKITOSHI KAwAKUBO, and MASAHIRO YAMAMOTO Department of Internal Medicine, Anjo Kosei Hospital, Anjo, Aichi 446, Japan ABSTRACT To clarify the impairment of carbohydrate metabolism in hyperthyroidism, we performed the oral glucose tolerance test (OGTT) and glucagon tolerance test in ten patients with hyperthyroidism due to Graves' dis­ ease (GD) and in ten normal subjects. During OGTT, glucose and insulin values in the GD patients were twice as high as those in the normals. The ratio of cumulative net plasma glucose [:LPG (0-120 minutes)] and insulin [:LIRI (0-120 minutes)] was 0.83±0.14 and 1.14±0.25 in the GD patients and normals, respec­ tively. During the glucagon tolerance test, plasma glucose showed lower peaks in the GD patients than in the normals. C-peptide reached a peak value at 6 min in the GD patients and at 10 min in the normals. Cyclic AMP response in the GD patients was three times greater than that in the normals. A smaller insulinogenic index and a smaller :LPGI:LIRI ratio in the GD patients suggest that the secre­ tion of insulin in GD patients does not meet the demand despite the higher insulin values observed during OGTT. Greater response of cAMP, smaller and earlier peaks of C-peptide and smaller response of glucose to glucagon in the GD patients may suggest a rapid insulin turnover and a reduction of glycogen storage in the liver with hyperthyroidism.
    [Show full text]
  • Glucose Variability Before and After Treatment of a Patient with Graves’ Disease Complicated by Diabetes Mellitus: Assessment by Continuous Glucose Monitoring
    Endocrine Journal 2014, 61 (4), 321-328 ORIGINAL Glucose variability before and after treatment of a patient with Graves’ disease complicated by diabetes mellitus: Assessment by continuous glucose monitoring Keiichi Torimoto, Yosuke Okada, Tadashi Arao, Hiroko Mori, Sunao Yamamoto, Manabu Narisawa, Akira Kurozumi and Yoshiya Tanaka First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushyu 807-8555, Japan Abstract. A 48-year-old woman was diagnosed and treated for Graves’ disease (GD) in 1999 but she discontinued treatment at her own discretion. In 2011, she was admitted to a local hospital for management of thyrotoxic crisis. Treatment with propylthiouracil, iodide potassium (KI), and prednisolone (PSL) was started, which resulted in improvement of the general condition. PSL and KI were discontinued before she was transferred to our hospital. At the local hospital, fasting plasma glucose (FPG) was 212 mg/dL and hemoglobin A1c concentration was 11.2%; intensive insulin therapy had been instituted. Upon admission to our hospital, FPG level was 122 mg/dL, but insulin secretion was compromised, suggesting aggravation of thyroid function and deterioration of glycemic control. The FPG level increased to 173 mg/dL; continuous glucose monitoring (CGM) identified dawn phenomenon at approximately 0400 h. Resumption of KI resulted in improvement of FPG and disappearance of the dawn phenomenon, as assessed by CGM. These results indicate that in patients with compromised insulin secretion, hyperthyroidism can induce elevation of not only postprandial blood glucose, but also FPG level due to the dawn phenomenon and that the dawn phenomenon can be alleviated with improvement in thyroid function.
    [Show full text]
  • Oxyhyperglycemiaと 糖尿 病 との関 係 に つ い て 第1報 胃切除者における
    Oxyhyperglycemiaと 糖 尿 病 と の 関 係 に つ い て 第1報 胃切 除 者 にお け る検討* 大 西 泰 憲** 著 者 は 胃切 除 者 に お け る ブ ドウ糖 お よびtolbutamide I. 緒 言 負 荷 時 の 血 糖 な らび に そ の さい の血 中 イ ン ス リン の動 態 胃切 除 者 で は,糖 の経 口負 荷 後血 糖 が 初 期 著 明 に上 昇, に つ い て,胃 切 除 前 後 に お け る変 化 お よび術 後 の 経 過 年 つ づ い て急 速 に下 降 し,Lawrence1)(1936)の い うoxy- 数 との 関 係 を検 討 し,胃 切 除 者 に み ら れ るoxyhyper- hyperglycemia型 の 耐 糖 曲 線 を 示 す こ とが 特 徴 と され て glycemiaと 糖 尿 病 との 関 係 につ い て2,3の 考 察 を試 み い る.胃 切 除 者 に お い て この よ うな耐糖 曲 線 の み られ る た. 理 由 と して,Lawrence以 来 一 般 に,負 荷 した 糖 が 急 速 に腸 管 に移 行 し,そ の 吸 収 が 促 進 され る こ とに よ る もの II. 研 究 対 象 な ら び に 方 法 で,糖 代 謝 の 異常 で は な い と理 解 さ れ て お り2~4) ,従 来 1. 研 究 対 象 胃切 除 者 に お け る糖 負荷 後 の血 糖 の変 動 につ い て の研 究 対 象 は,1964年 よ り1967年 の間 に,岡 山大 学 医 学 部 第 は,主 と して 胃切 除 後 の ダ ン ピ ン グ症 候 群 に 関 係 す る も 一 内 科 に お い て ,ブ ドウ糖 負 荷 試 験(以 下GTTと 略 す) の で5~7),糖尿 病 との 関連 を検 討 した もの は ほ とん ど み を行 な った 胃切 除 者(原 疾 患 は 全 例 胃 ま た は十 二 指 腸 潰 あ た ら ない.
    [Show full text]
  • Hba1c and Glycated Albumin Levels Are High in Gastrectomized Subjects with Iron-Deficiency Anemia
    Available online at www.annclinlabsci.org 52 Annals of Clinical & Laboratory Science, vol. 47, no. 1, 2017 HbA1c and Glycated Albumin Levels Are High in Gastrectomized Subjects with Iron-Deficiency Anemia Shinya Inada1 and Masafumi Koga2 1Department of Internal Medicine, Kawanishi City Hospital and 2Department of Internal Medicine, Hakuhokai Central Hospital, Hyogo, Japan Abstract. We report that glycated albumin (GA) is higher relative to HbA1c in non-diabetic, gastrecto- mized subjects without anemia, and thus is a sign of oxyhyperglycemia. It is known that gastrectomized subjects are prone to iron-deficiency anemia (IDA), and that the HbA1c levels of subjects with IDAare falsely high. In the present study, the HbA1c and GA levels of gastrectomized subjects with IDA were compared with gastrectomized subjects without anemia. Seven non-diabetic gastrectomized subjects with IDA were enrolled in the present study. Twenty-eight non-diabetic gastrectomized subjects without anemia matched with the subjects with IDA in terms of age, gender, and body mass index were used as the con- trols. Although there were no significant differences in fasting plasma glucose and OGTT 2-hour plasma glucose (2-h PG) between the two groups, the HbA1c and GA levels in gastrectomized subjects with IDA were significantly higher than the controls. For all of the gastrectomized subjects (n=35), ferritin exhibited a significant negative correlation with HbA1c and GA, and a significant positive correlation with2-hPG. In addition, the HbA1c and GA levels exhibited a significant negative correlation with the mean corpuscular hemoglobin and hemoglobin. The HbA1c and GA levels in gastrectomized subjects withIDA were sig- nificantly higher than those in controls.
    [Show full text]
  • Treatment with Hypoglycemia: A-Glucosidase Inhibitor for Severe
    Endocrine Journal 2000, 47 (4), 437-442 Treatment with a-Glucosidase Inhibitor for Severe Reactive Hypoglycemia: A Case Report ** SHINICHI TENO *, , YUKO NAKAJIMA-UTO*, **, KAZUTAKA NAGAI*, MADOKA SHIMIZU-SAITOH*, HIROYUKI OZU *, YASUE OMORI* AND TAKAO TAKIZAWA* * Saitamaken Saiseikai Kurihashi Hospital , Kouemon Gotanda 714-6, Kurihashi-cho, Kita-katsushika-gun, Saitama 349-1105, Japan **Diabetes Center , Tokyo Women's Medical University School of Medicine, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan Abstract. Gastrectomy or vagotomy may result in reactive hypoglycemia, which, in some cases, can reduce the plasma glucose levels to 30-40 mg/dl due to rapid digestion and absorption of food, especially carbohydrates. It also occurs sometimes in patients on hemodialysis, where it is a potentially lethal complication. Because insulin has a longer half-life due to lack of renal degradation, hypoglycemia can be induced by insulin in patients with renal failure. We treated a patient with frequent episodes of severe hypoglycemia, that were sometimes accompanied by con- vulsions. He had undergone total gastrectomy 8 years before and had been maintained on hemodialysis for 3 years. Hyperinsulinemia caused by oxyhyperglycemia associated with post-gastrectomy led to severe hypoglycemia in this patient because of the lack of renal insulin degradation. Since nutritional treatment did not successfully manage his reactive hypoglycemia, an a-glucosidase inhibitor, acarbose, was administered to treat his oxyhyperglycemia. This therapy was very effective and he has not had any recurrence of reactive hypoglycemia since the initiation of the therapy. Key words: Alimentary hypoglycemia, Post-gastrectomy, Chronic renal failure, a-Glucosidase inhibitor, Counter- regulatory hormone (Endocrine Journal 47: 437-442, 2000) SYMPTOMS of hypoglycemia, such as weakness, lized in the kidneys and liver.
    [Show full text]