Development of New Matrix and Interfacial Materials for Ceramic Matrix Composites Gavin C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE EFFECTS of DEPOSITION CONDITIONS on the MECHANICAL PROPERTIES of TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS by SUO
THE EFFECTS OF DEPOSITION CONDITIONS ON THE MECHANICAL PROPERTIES OF TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS by SUO LIU Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirement for the Degree of MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON MAY 2015 Copyright © by Suo Liu 2015 All Rights Reserve ii Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Dr. Efstathios I. Meletis for the continuous support of my graduate study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Fuqiang Liu and Dr. Harry F. Tibbals, for their generous help. My sincere thanks also go to Dr. Jessica Mooney for preparation of the samples used in this study, as well as for training me on the optical profilometer. I thank each and every one of my group members for their advice, their help and their friendship. I thank Yishu Wang for his help with XPS. Last but not least, I would like to thank my family: my parents Dao Feng Xiang and Aiping Liu, for supporting me spiritually throughout my life. April 28, 2015 iii Abstract THE EFFECTS OF DEPOSITION CONDITIONS ON THE MECHANICAL PROPERTIES OF TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS Suo Liu, M.S. The University of Texas at Arlington, 2015 Supervising Professor: Efstathios I. -
Fabrication and Characterization of Heat Flux Sensor Using Polymer Derived Ceramics
FABRICATION AND CHARACTERIZATION OF HEAT FLUX SENSOR USING POLYMER DERIVED CERAMICS A Dissertation Presented to The Faculty of the Graduate School University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy In Mechanical and Aerospace Engineering By SUNGHOON JUNG Dr. Frank Z. Feng, Dr. Jinn-Keun Chen, Dissertation Supervisors December 2011 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled FABRICATION AND CHARACTERIZATION OF HEAT FLUX SENSOR USING POLYMER DERIVED CERAMICS Presented by SUNGHOON JUNG A candidate for the degree of Doctor of Philosophy And hereby certify that in their opinion it is worthy of acceptance Professor Dr. Frank Feng, Dissertation Supervisor Professor Dr. Jinn-Kuen Chen, Dissertation Supervisor Professor Dr. Robert Tzou Professor Dr. Yuwen Zhang Professor Dr. Tushar Ghosh ACKNOWLEDGEMENTS With all my heart, I would like to express big appreciation to my advisors, Dr. Frank Feng and Dr. JK Chen. Throughout our project, they have been supporting me with generosity, patience and kind encouragement. In spite of difficulties encountered, their patience and encouragement were crucial for me to finish my PhD degree successfully. I am grateful to Dr. Hao Li and his students for their cooperation regarding laboratory sharing. Most of my experiment results are obtained from the equipments in his laboratory. Without his allowing me to use them, our work would have been tougher than it was. I also thank Dr. Lombardo for the journal paper work and technician Richard for his help on my experiment setup. Also I would like to say ―thank you‖ to my committee members, Dr. -
Highly Selective Modification of Silicon Oxide Structures Fabricated by an AFM Anodic Oxidation
Korean J. Chem. Eng., 25(2), 386-389 (2008) SHORT COMMUNICATION Highly selective modification of silicon oxide structures fabricated by an AFM anodic oxidation Inhee Choi and Jongheop Yi† School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Korea (Received 25 June 2007 • accepted 24 July 2007) Abstract−Anodic oxidation via atomic force microscopy is a promising method for creating submicron-sized silicon dioxide patterns on a local surface. The area patterned by AFM anodic oxidation (AAO) has different chemical prop- erties from the non-patterned area, and thus site-selective modification of patterned surfaces is quite possible. In this study, we combined the AAO with self-assembly method and/or wet chemical etching method for the fabrication of positive and/or negative structures. These locally modified surfaces could be used to the site-selective arrangement and integration of various materials based on a pre-described pattern. Key words: AFM, Anodic Oxidation, Etching, Pattern, Self-assembly INTRODUCTION ification of pre-fabricated silicon oxide structures were successfully achieved by the treatments of organosilanes and etchants. The fabrication of submicron-sized structures, especially those that are silicon-based, has attracted considerable attention due to EXPERIMENTAL the potential applications of such structures, including micro/nano- 1. Materials electromechanical systems (MEMS and NEMS) [1] and miniaturized The following materials and chemicals were used: p-type and devices [2]. For this purpose, a wide variety of fabrication methods <100>-oriented silicon wafers with LPCVD (low pressure chemical have been developed to generate patterns on the nano- and micros- vapor deposition) silicon nitride as a resist, and KOH, IPA (isopropyl cales. -
Ceramic Matrix Composites Taking Flight at GE Aviation Featuring
AMERICAN CERAMIC SOCIETY bullemerginge ceramicstin & glass technology APRIL 2019 Ceramic matrix composites taking flight at GE Aviation Featuring: April 30 – May 1, 2019 Ceramic science in the skies: Electrification, EBCs, and PDCs | New Ohio partnership for technician training FIRING YOUR IMAGINATION FOR 100 YEARS Ads from the 1940’s and 1950’s www.harropusa.com ACerS Anniversary Ad 2.indd 1 2/13/19 3:44 PM contents April 2019 • Vol. 98 No.3 feature articles Ceramic matrix composites taking flight at 30 GE aviation The holy grail for jet engines is efficiency, and the improved high-temperature capability of CMC systems is giving General Electric a great advantage. department News & Trends . 4 by Jim Steibel Spotlight . 10 Ceramics in Energy . 19 cover story Research Briefs . 21 Nonoxide polymer-derived CMCs for 34 “super” turbines The melting point of single-crystal blades limits further columns advancement in operating temperature of gas turbines with metallic materials. Ceramics, which have much higher melt- All about aircraft . 29 ing points, hold the promise for future “super” turbines. Infographic by Lisa McDonald by Zhongkan Ren and Gurpreet Singh Deciphering the Discipline . 64 Ultra-high temperature oxidation of high entropy UHTCs Taking off: Advanced materials contribute by Lavina Backman 40 to the evolution of electrified aircraft Commercial electrified aircraft are expected to take off within the next decade—and advanced materials are play- ing an increasingly critical role in solving key technical challenges that will push the boundaries even higher. meetings 25th International Congress on by Ajay Misra Glass (ICG 2019) . 56 GFMAT-2/Bio-4 . -
Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007
A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL Technical Monitor: R. Matson/F. Posey-Eddy Prepared under Subcontract No. AAT-2-31605-01 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates
applied sciences Article In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates Elia Marin 1,2 , Matteo Zanocco 1,3 , Francesco Boschetto 1,2, Toshiro Yamamoto 2, Narisato Kanamura 2, Wenliang Zhu 1, Bryan J. McEntire 4 , Bhajanjit Sonny Bal 4, Ryutaro Ashida 5, Osam Mazda 3 and Giuseppe Pezzotti 1,3,6,7,* 1 Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; [email protected] (E.M.); [email protected] (M.Z.); [email protected] (F.B.); [email protected] (W.Z.) 2 Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; [email protected] (T.Y.); [email protected] (N.K.) 3 Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan; [email protected] 4 SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, USA; [email protected] (B.J.M.); [email protected] (B.S.B.) 5 Shinsei, Co., Shijohei Kawanishi Rikobo, Kyoto 610-0101, Japan; [email protected] 6 Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan 7 The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan * Correspondence: [email protected] Received: 9 November 2020; Accepted: 14 December 2020; Published: 17 December 2020 Abstract: The performance, durability, and bio-integration of functional biomedical coatings can be enhanced by changing or improving their substrate properties. -
Powder Injection Moulding International September 2020 Vol
0 FOR THE MIM, CIM AND SINTER-BASED AM INDUSTRIES 2 0 2 R E B M E C E D 4 . o N 4 1 . l o V in this issue Ceramic Injection Moulding ElementPlus: Ti-MIM for 3C MIM-Master Neo Published by Inovar Communications Ltd www.pim-international.com Publisher & Editorial Offices ® Inovar Communications Ltd CataMIM 11 Park Plaza Battlefield Enterprise Park • A direct replacement for all current Shrewsbury SY1 3AF United Kingdom commercially available catalytic debind Tel: +44 (0)1743 211991 feedstocks Fax: +44 (0)1743 469909 www.pim-international.com • Improved flow Managing Director & Editor • Stronger green and brown parts Nick Williams [email protected] For the MIM, CIM and sinter-based AM industries • More materials available and better Publishing Director Paul Whittaker surface finish [email protected] • Custom scale-up factors available Deputy Editor Emily-Jo Hopson-VandenBos Simulating sintering www.ryerinc.com • Faster cycle times [email protected] • 65°C / 150°F mold temperature Assistant Editor Kim Hayes distortion: Can MIM get a [email protected] Consulting Editors boost from Binder Jetting? ® Prof Randall M German AquaMIM Former Professor of Mechanical Engineering, San Diego State University, USA • Water Debind As I wrote in the introduction to Desktop Metal’s article on its Dr Yoshiyuki Kato Live Sinter simulation package, published in the September 2020 Kato Professional Engineer Office, Yokohama, Japan • Custom scale-up factors available issue of PIM International, sintering distortion is a fact of life Professor Dr Frank Petzoldt • Large selection of available materials Deputy Director, Fraunhofer IFAM, Bremen, to which we are accustomed in the Metal Injection Moulding Germany industry. -
Optimization of Wear Loss in Silicon Nitride (Si3n4)–Hexagonal Boron Nitride (Hbn) Composite Using Doe–Taguchi Method
Ghalme et al. SpringerPlus (2016) 5:1671 DOI 10.1186/s40064-016-3379-7 CASE STUDY Open Access Optimization of wear loss in silicon nitride (Si3N4)–hexagonal boron nitride (hBN) composite using DoE–Taguchi method Sachin Ghalme1,2*, Ankush Mankar3 and Y. J. Bhalerao4 *Correspondence: [email protected] Abstract 2 Mechanical Engineering Introduction: The contacting surfaces subjected to progressive loss of material Department, Manoharbhai Patel Institute of Engineering known as ‘wear,’ which is unavoidable between contacting surfaces. Similar kind of and Technology, Gondia, phenomenon observed in the human body in various joints where sliding/rolling Maharashtra, India contact takes place in contacting parts, leading to loss of material. This is a serious issue Full list of author information is available at the end of the related to replaced joint or artificial joint. article Case description: Out of the various material combinations proposed for artificial joint or joint replacement Si3N4 against Al2O3 is one of in ceramic on ceramic category. Minimizing the wear loss of Si3N4 is a prime requirement to avoid aseptic loosening of artificial joint and extending life of joint. Discussion and evaluation: In this paper, an attempt has been made to investigate the wear loss behavior of Si3N4–hBN composite and evaluate the effect of hBN addition in Si3N4 to minimize the wear loss. DoE–Taguchi technique is used to plan and analyze experiments. Conclusion: Analysis of experimental results proposes 15 N load and 8 % of hBN addi- tion in Si3N4 is optimum to minimize wear loss against alumina. Keywords: Silicon nitride (Si3N4), Hexagonal boron nitride (hBN), Alumina (Al2O3), Design of experiment (DoE), Taguchi technique Background Mechanical behavior of various machine elements, such as gears, cams, wheels, rails and sealing parts are influenced by the interaction between contact elements and surfaces. -
Yttria-Doped Silicon Nitride
7"A7-.2/.._--z 3 1176 00162 3579 NASA Technical Memorandum 8152q NASA-TM-8152919800018982 EFFECT OF W AND WC ON THE OXIDATION RESISTANCE OF YTTRIA-DOPED SILICON NITRIDE Susan Schuon Lewis Research Center Cleveland, Ohio • - • • ' b _r • . .. __Tf" , . , , tl, Prepared for the ........ _...." Annual Meeting of the American Ceramic Society f Chicago, Illinois, April 28-30, 1980 N/ A ERRATA NASA Technical Memorandum 81528 EFFECT OF W AND WC ON THE OXIDATION RESISTANCE OF YTTRIA-DOPED SILICON NITRIDE Susan Schuon 1980 The report number should be NASA Technical Memorandum 81529, not 81528. Issued 1-28-81 EFFECT OF W AND WUON THE OXIDATION RESISTANCE OF YTTRIA-DOPED SILICON NITRIDE by Susan Schuon National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 ABSTRACT The effect of W and WCcontamination on the oxidation and cracking in air of sintered Si3N4 - 8 wlo Y203 ceramics was studied at 500° , 750°, and 1350° C. A mixture of Si3N4 - 8 Y203, milled with alumina balls, was divided into four portions. Three portions were doped with 2 wlo WU, Z wlo W, and 4 wlo W respectively,in order to simulatecontaminationduring milling. The fourth portion was undoped and used on a control. The addition of W or of , WCdid not affect the phase relationships in the system, as all bars with or without additions contained melilite as the major Si-Y-O-N phase after sinter- ing. At 750° C, instability (rapid oxidation and cracking) of W-doped bars ap- pears to have occurred as a result of oxidation of the tungsten-containing melilite phase. -
3-;0-Y1 E^'Oob
3-;0-Y1 E^'oob NASA Technical Memorandum 103777 Thermal Shock of Fiber Reinforced Ceramic Matrix Composites Andrew J. Eckel Lewis Research Center Cleveland, Ohio John Z. Gyekenyesi Cleveland State University Cleveland, Ohio Thomas P. Herbell and Edward R. Generazio Lewis Research Center Cleveland, Ohio Prepared for the 15th Annual Conference on Composites and Advanced Ceramics sponsored by the American Ceramic Society Cocoa Beach, Florida, January 13-16, 1991 NASA Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. THERMAL SHOCK OF FIBER REINFORCED CERAMIC MATRIX COMPOSITES Andrew J. Eckel National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 John Z. Gyekenyesi Cleveland State University Cleveland, Ohio 44115 Thomas P. Herbell and Edward R. Generazio National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 ABSTRACT Monolithic silicon carbide and silicon nitride and a Nicalon fiber reinforced silicon carbide composite were subjected to severe thermal shock conditions via impingement of a hydrogen/oxygen flame. Surface heating rates of 1000 'C/sec to 2500 'C/sec were generated. The performance of the monolithic reference materials are compared and contrasted with the significantly greater thermal shock CD resistance of the composite. Ultrasonic and radiographic NDE techniques were used to evaluate integrity Q0 `1J of the composite subsequent to thermal shock. Tensile tests were performed to determine the residual tensile strength and modulus. Physical property changes are discussed as a function of number and severity of thermal shock cycles. -
Carbon Fiber /Reaction-Bonded Carbide Matrix For
Carbon fiber /reaction-bonded carbide matrix for composite materials -Manufacture and characterization Jérôme Magnant, Laurence Maillé, René Pailler, Jean-Christophe Ichard, Alain Guette, Francis Rebillat, Eric Philippe To cite this version: Jérôme Magnant, Laurence Maillé, René Pailler, Jean-Christophe Ichard, Alain Guette, et al.. Carbon fiber /reaction-bonded carbide matrix for composite materials -Manufacture and charac- terization. Journal of the European Ceramic Society, Elsevier, 2012, 32 (16), pp.4497 - 4505. 10.1016/j.jeurceramsoc.2012.06.009. hal-01845172 HAL Id: hal-01845172 https://hal.archives-ouvertes.fr/hal-01845172 Submitted on 20 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carbon fiber /reaction-bonded carbide matrix for composite materials - Manufacture and characterization Jérôme Magnant1; Laurence Maillé1*; René Pailler1; Jean-Christophe Ichard1; Alain Guette1; Francis Rebillat1; Eric Philippe2 1 University of Bordeaux, Laboratory for Thermostructural Composites (LCTS), Pessac, France. 2 SAFRAN - Snecma Propulsion Solide, Le Haillan, France. ABSTRACT The processing of self-healing Ceramic Matrix Composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual interphases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. -
Advanced Measurements of Silicon Carbide Ceramic Matrix Composites
INL/EXT-12-27032 Advanced Measurements of Silicon Carbide Ceramic Matrix Composites David Hurley Farhad Fazbod Zilong Hua Stephen Reese Marat Khafizov August 2012 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-12-27032 Advanced Measurements of Silicon Carbide Ceramic Matrix Composites David Hurley Farhad Farzbod Zilong Hua Stephen Reese Marat Khafizov August, 2012 Idaho National Laboratory Materials Science and Engineering Department Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ii iii ABSTRACT Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy.