User Network Interface (UNI) Requirements and Framework

Total Page:16

File Type:pdf, Size:1020Kb

User Network Interface (UNI) Requirements and Framework Technical Specification MEF 11 User Network Interface (UNI) Requirements and Framework November 2004 MEF 11 © The Metro Ethernet Forum 2005. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of the Metro Ethernet Forum." No user of this document is authorized to modify any of the information contained herein. UNI Requirements and Framework Disclaimer The information in this publication is freely available for reproduction and use by any recipient and is believed to be accurate as of its publication date. Such information is subject to change without notice and the Metro Ethernet Forum (MEF) is not responsible for any errors. The MEF does not assume responsibility to update or correct any information in this publication. No representation or warranty, expressed or implied, is made by the MEF concerning the completeness, accuracy, or applicability of any information contained herein and no liability of any kind shall be assumed by the MEF as a result of reliance upon such information. The information contained herein is intended to be used without modification by the recipient or user of this document. The MEF is not responsible or liable for any modifications to this document made by any other party. The receipt or any use of this document or its contents does not in any way create, by implication or otherwise: (a) any express or implied license or right to or under any patent, copyright, trademark or trade secret rights held or claimed by any MEF member company which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor (b) any warranty or representation that any MEF member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor (c) any form of relationship between any MEF member companies and the recipient or user of this document. Implementation or use of specific Metro Ethernet standards or recommendations and MEF specifications will be voluntary, and no company shall be obliged to implement them by virtue of participation in the Metro Ethernet Forum. The MEF is a non-profit international organization accelerating industry cooperation on Metro Ethernet technology. The MEF does not, expressly or otherwise, endorse or promote any specific products or services. © The Metro Ethernet Forum 2005. All Rights Reserved. MEF 11 © The Metro Ethernet Forum 2005. Any reproduction of this document, or any portion thereof, shall Page 1 contain the following statement: "Reproduced with permission of the Metro Ethernet Forum." No user of this document is authorized to modify any of the information contained herein. UNI Requirements and Framework Table of Contents ABSTRACT .......................................................................................................................................................................4 1. TERMINOLOGY (NORMATIVE) .........................................................................................................................4 2. SCOPE ........................................................................................................................................................................6 3. COMPLIANCE LEVELS .........................................................................................................................................6 4. UNI REFERENCE POINT .......................................................................................................................................7 5. UNI REFERENCE MODEL ....................................................................................................................................9 5.1 UNI DATA PLANE ................................................................................................................................................9 5.1.1 Ethernet Frames at the UNI ....................................................................................................................... 10 5.1.2 Tagging ...................................................................................................................................................... 10 5.1.3 Traffic Management ................................................................................................................................... 10 5.2 UNI CONTROL PLANE ........................................................................................................................................ 10 5.3 UNI MANAGEMENT PLANE ................................................................................................................................ 11 5.3.1 Provisioning and Static Service Discovery ................................................................................................ 11 5.3.2 Protection and Restoration ........................................................................................................................ 12 5.3.3 Operation, Administration and Maintenance (OAM) ................................................................................ 12 6. RELATIONSHIP TO FUNCTIONAL ELEMENTS IN THE MEN ARCHITECTURE ................................. 12 6.1 RELATIONSHIP TO TRAN LAYER(S) ................................................................................................................... 13 6.1.1 Ethernet PHY as a TRAN component in the ETH Access Link .................................................................. 13 6.1.2 TMF as a TRAN component in the ETH Access Link ................................................................................ 14 7. UNI TYPES .............................................................................................................................................................. 15 7.1 UNI TYPE 1 ........................................................................................................................................................ 15 7.2 UNI TYPE 2 ........................................................................................................................................................ 15 7.3 UNI TYPE 3 ........................................................................................................................................................ 16 8. UNI SERVICE ATTRIBUTES............................................................................................................................... 16 9. EVC SERVICE ATTRIBUTES ............................................................................................................................. 17 10. UNI REQUIREMENTS ...................................................................................................................................... 17 10.1 UNI TYPE 1 REQUIREMENTS .............................................................................................................................. 18 10.1.1 General UNI Type 1 Requirements ............................................................................................................ 18 MEF 11 © The Metro Ethernet Forum 2005. Any reproduction of this document, or any portion thereof, shall Page 2 contain the following statement: "Reproduced with permission of the Metro Ethernet Forum." No user of this document is authorized to modify any of the information contained herein. UNI Requirements and Framework 10.1.2 UNI Type 1 Physical layer Requirements .................................................................................................. 18 10.1.3 UNI Type 1 Data Plane Requirements ....................................................................................................... 19 10.1.4 UNI Type 1 Management Plane Requirements .......................................................................................... 21 10.2 UNI TYPE 2 REQUIREMENTS .............................................................................................................................. 21 10.2.1 General 2.0 UNI Requirements .................................................................................................................. 21 10.2.2 UNI Type 2 Physical layer Requirements .................................................................................................. 22 10.2.3 UNI Type 2 Data Plane Requirements ....................................................................................................... 22 10.2.4 UNI Type 2 Management Plane Requirements .......................................................................................... 22 10.3 UNI TYPE 3 REQUIREMENTS .............................................................................................................................. 23 10.3.1 General 3.0 UNI Requirements .................................................................................................................. 23 10.3.2 UNI Type 3 Control Plane Requirements .................................................................................................. 23 11. REFERENCES .................................................................................................................................................... 23 APPENDIX A: UNI EXAMPLES .................................................................................................................................. 25 APPENDIX B: PHYSICAL
Recommended publications
  • Alternatív Valóság Kovács Ákos Hálózatok 10+ Tb/S 6,4 Tb/S 1,6 Tb/S 1 Tb/S
    Számítógép hálózatok Alternatív valóság Kovács Ákos Hálózatok 10+ Tb/s 6,4 Tb/s 1,6 Tb/s 1 Tb/s 800 Gb/s 400 Gb/s 2017? • A jelen és a jövő 200 Gb/s 2018-2020? • Egyre nagyobb informatikai átviteli 50 Gb/s sebesség kell, jó minőségben 100 Gb/s 2018-2020? 2010 • Switchek minden hálózat alapjai 25 Gb/s 40 Gb/s 2016? 2010 5 Gb/s 10 Gb/s 2016? 2002 2,5 Gb/s 2016? 1 Gb/s 1998 100 Mb/s 1995 10 Mb/s 1983 Switchek • Switch-ekről általában • HUB, Bridge, L2 Switch, L3 Switch, Router • 10/100/1000/10GE switch-ek 2,5GE, 5GE (multiGIG switchek) • Néhány fontosabb működési paraméter • Hátlap (backplane) sávszélesség (Gbps) • Csomag továbbítási sebesség (packet forwarding rate, Mpps) • Switch-elési módok (switching methods, forwarding modes) • Fast Forward (cut-through, fragment-free) • Store-and-Forward • Adaptive (intelligent) L2 Switchek • L2 kommunikációra • Csak a MAC cím alapján (lokális hálózatokhoz LAN) MAC cím (48 bit) 24 bit 24 bit Organizationally Unique Identifier A gyártó osztja ki (OUI) L2 Switchek • A switch nem kérdezi meg a MAC címeket, csak megjegyzi • Ha nem tudja merre kellene menni akkor jön a flood (minden portjára elküldi kivéve amin kapta) • Ha erre válaszolnak, akkor azt MAC-PORT párost megjegyzi L2 Switchek döntési lánca • Layer 2 • CAM Content Addressable memory MAC címek • TCAM (ACL, QoS táblák) 3 értéke lehet, 0,1,X ahol x a „don’t care” bit • Kérdések melyekre válaszolni kell: • Merre továbbítsam a csomagot? • Továbbítsam a csomagot? • Milyen QoS értékekkel továbbítsam a csomagot? • InLine sebesség (ASIC) L3 switchek • Más néven Multi-layer switchek • További döntési lehetőségek a magasabb rétegek alapján mint pl.
    [Show full text]
  • Networking Tutorial
    EDUCATION Ethernet Technology Allen Light, Broadcom Corp. SNIA Legal Notice EDUCATION • The material contained in this tutorial is copyrighted by the SNIA. • Member companies and individuals may use this material in presentations and literature under the following conditions: – Any slide or slides used must be reproduced without modification – The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations. • This presentation is a project of the SNIA Education Committee. SNIA© 2007 Storage Networking Industry Association. All Rights Reserved. Ethernet Technology 2 Abstract EDUCATION Ethernet, the standard local area network (LAN) access method. A specification for "LAN," "LAN connection" or "network card" automatically implies Ethernet without saying so. This session provides an overview of Ethernet technology, with an emphasis on the evolution of the standards from the original implementation of Ethernet on coax cable to the latest 10Gb Ethernet implementations. SNIA© 2007 Storage Networking Industry Association. All Rights Reserved. Ethernet Technology 3 Agenda EDUCATION • The Original Standard • Evolution of Ethernet • Elements of Ethernet • The Frame / Addressing • Media Access Controller • Physical Media SNIA© 2007 Storage Networking Industry Association. All Rights Reserved. Ethernet Technology 4 'net-"w&rk EDUCATION • A system of computers, terminals, and databases connected by communications lines Local Area Network (LAN) • A network of personal computers in a small area (like an office) that are linked by cable, can communicate directly with other devices in the network and can share resources (from Merriam Webster) • So why is this guy talking about a LAN technology at a storage networking conference? SNIA© 2007 Storage Networking Industry Association.
    [Show full text]
  • IEEE Std 802.3-2005, Section
    IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications IEEE Computer Society Sponsored by the LAN/MAN Standards Committee I E E E IEEE Std 802.3™-2005 3 Park Avenue (Revision of IEEE Std 802.3-2002 New York, NY 10016-5997, USA including all approved amendments) 9 December 2005 IEEE Std 802.3™-2005 (Revision of IEEE Std 802.3-2002) IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications LAN/MAN Standards Committee of the IEEE Computer Society Approved 9 June 2005 IEEE-SA Standards Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 10 Gb/s using a common media access control (MAC) specification, management infor- mation base (MIB), and capability for Link Aggregation of multiple physical links into a single logi- cal link. The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected physical layer (PHY) interfaces for operation over coxial, twisted pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters which are defined for operational speeds up to 1000 Mb/s.
    [Show full text]
  • Ethernet PHY Information Model
    Ethernet PHY Information Model Version 1.0.0-2 7th of March 2019 ONF TR‑541 Ethernet PHY Information Model Version 1.0.0-12 ONF TR‑541 FebruaryMarch 2019 ONF Document Type: Technical Recommendation ONF Document Name: Ethernet PHY Information Model Version 1.0 Disclaimer THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERW ISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Any marks and brands contained herein are the property of their respective owners. Open Networking Foundation 1000 El Camino Real, Suite 100, Menlo Park, CA 94025 www.opennetworking.org ©2017 Open Networking Foundation. All rights reserved. Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the Open Networking Foundation, in the United States and/or in other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their respective owners. Page 2 of 64 © Open Networking Foundation Ethernet PHY Information Model Version 1.0.0-12 ONF TR‑541 FebruaryMarch 2019 Table of Contents Disclaimer .................................................................................................................................................... 2 Open Networking Foundation .................................................................................................................... 2 Table of Contents .......................................................................................................................................
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • Industrial Ethernet
    Industrial Ethernet Main Catalog 2008 Some errors can be really expensive. What good are the greatest technical inventions if you are going to save on the smallest details later? That man today is capable of great technical nowadays to ensure the greatest possible safety development is a sufficiently proven fact. Regard- and reliability for even the smallest system com- less of whether in production, process and traffic ponents. control technology or in building automation: from the packing industry and logistics through From the product quality through engineering conveyor and robot technology, assembly machines and the associated service. Hirschmann™ offers a and machine tools, presses and punching machines comprehensive package: with a high degree of right up to machine and system control. intelligence, they not only set the latest techni- cal standards but, with their high flexibility, When it’s a question of reliability, operating safe- ensure individual and absolutely reliable solutions ty and availability, the slightest errors count. And at the heart of the automation – in computer these can be very expensive in the worst case. and measuring technology. This minimizes risks Because, especially in economically difficult times, in the system and a high system availability is a trouble-free automation contributes considerably built in from the start. to productivity and competitiveness – and protects jobs in the long term. Safety at the press of button for us means leaving nothing to chance. Therefore every Hirschmann™ Therefore it is becoming increasingly important switch is rigorously tested before leaving the factory. 2 www.hirschmann.com After all, constantly rising transmission speed Switches from Hirschmann™ will certainly increase In this modern industrial age, with high clock frequencies demand appropriate the availability of your networks and guarantee one can no longer afford failures.
    [Show full text]
  • Ethernet Interconnection Point (EIP): an ENNI Implementation Agreement
    Service Operations Specification MEF 54 Ethernet Interconnection Point (EIP): An ENNI Implementation Agreement March 2016 MEF 54 © MEF Forum 2016. Any reproduction of this document, or any portion thereof, shall contain the follow- ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein. Disclaimer The information in this publication is freely available for reproduction and use by any re- cipient and is believed to be accurate as of its publication date. Such information is sub- ject to change without notice and the MEF Forum (MEF) is not responsible for any er- rors. The MEF does not assume responsibility to update or correct any information in this publication. No representation or warranty, expressed or implied, is made by the MEF concerning the completeness, accuracy, or applicability of any information contained herein and no liability of any kind shall be assumed by the MEF as a result of reliance upon such information. The information contained herein is intended to be used without modification by the re- cipient or user of this document. The MEF is not responsible or liable for any modifica- tions to this document made by any other party. The receipt or any use of this document or its contents does not in any way create, by im- plication or otherwise: a) any express or implied license or right to or under any patent, copyright, trade- mark or trade secret rights held or claimed by any MEF member company which are or may be associated with the ideas, techniques, concepts or expressions con- tained herein; nor b) any warranty or representation that any MEF member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor c) any form of relationship between any MEF member companies and the recipient or user of this document.
    [Show full text]
  • Optical Transport Networks & Technologies Standardization Work
    Optical Transport Networks & Technologies Standardization Work Plan Issue 24, February 2018 GENERAL ........................................................................................................................... 3 PART 1: STATUS REPORTS AS OF JANUARY 2018 ...................................................... 4 1 HIGHLIGHT OF ITU-T SG15 ........................................................................................ 4 2 REPORTS FROM OTHER ORGANIZATIONS ............................................................ 4 PART 2: STANDARD WORK PLAN ................................................................................... 8 1 INTRODUCTION TO PART 2 ...................................................................................... 8 2 SCOPE ......................................................................................................................... 8 3 ABBREVIATIONS ........................................................................................................ 8 4 DEFINITIONS AND DESCRIPTIONS .......................................................................... 9 4.1 Optical and other Transport Networks & Technologies (OTNT) ....................................................... 9 4.2 Optical Transport Network (OTN) (largely revised in 09/2016 reflecting B100G) ............................ 9 4.2.1 FlexE in OIF (updated in June-2017) .......................................................................................... 11 4.3 Support for mobile networks (reference to ITU-R M2375 added
    [Show full text]
  • Industrial ETHERNET
    Hirschmann. Simply a good Connection. Industrial ETHERNET Edition 5 Some errors can be really expensive. What good are the greatest technical inventions if you are going to save on the smallest details later? That man today is capable of great Therefore it is becoming increasingly technical development is a sufficiently important nowadays to ensure the proven fact. Regardless of whether in greatest possible safety and reliability for production, process and traffic control even the smallest system components. technology or in building automation: from the packing industry and logistics From the product quality through through conveyor and robot technology, engineering and the associated service. assembly machines and machine tools, Hirschmann offers a comprehensive presses and punching machines right package: with a high degree of up to machine and system control. intelligence, they not only set the latest technical standards but, with their high When it’s a question of reliability, operating flexibility, ensure individual and absolutely safety and availability, the slightest errors reliable solutions at the heart of the count. And these can be very expensive automation – in computer and measuring in the worst case. Because, especially in technology. This minimizes risks in the economically difficult times, a trouble-free system and a high system availability is automation contributes considerably to built in from the start. productivity and competitiveness – and protects jobs in the long term. Safety at the press of button for us means leaving nothing to chance. Therefore every Hirschmann switch is rigorously tested before leaving the factory. After all, constantly rising transmission speed 2 with high clock frequencies demand Don’t miss your connection: Hirschmann In this modern industrial age, one appropriate designed high-performance offers you flexible, highly available and can no longer afford failures.
    [Show full text]
  • Les Réseaux Ethernet
    Reso6 Livre Page 337 Jeudi, 2. ao t 2007 3:57 15 16 Les réseaux Ethernet Les premiers réseaux Ethernet ont été développés au tout début des années 1980 par le triumvirat DEC, Intel et Xerox puis par une grande partie des constructeurs informati- ques. Aujourd’hui, le monde Ethernet représente 98 % des connexions terminales dans le monde, et tous les postes de travail des entreprises sont connectés par des cartes Ethernet, à l’exception encore de quelques connexions sur le Token-Ring, le réseau local initié par IBM. La grande révolution du monde Ethernet a été de passer en mode commuté et non plus partagé, comme nous allons le voir. Ce chapitre examine les caractéristiques des techniques partagées et commutées, ainsi que les grandes solutions proposées par les réseaux Ethernet, que ce soit sur les réseaux locaux, métropolitains ou longue distance. Les modes partagé et commuté Ethernet fonctionne selon deux modes très différents mais totalement compatibles, le mode partagé et le mode commuté, qui permettent tous deux de transporter des trames Ethernet. Nous avons déjà introduit ces dernières au chapitre 7 à l’occasion de la description des protocoles de niveau trame. Le mode partagé indique que le support physique est partagé entre les terminaux munis de cartes Ethernet. Dans ce mode, deux stations qui émettraient en même temps verraient leurs signaux entrer en collision. Dans le mode commuté, les terminaux sont connectés à un commutateur, et il ne peut y avoir de collision puisque le terminal est seul sur la liaison connectée au commutateur. Le commutateur émet vers la station sur la même liaison mais en full-duplex, c’est-à-dire en parallèle mais dans l’autre sens.
    [Show full text]
  • The Ethernet Evolution
    The Ethernet Evolution The 180 Degree Turn (C) Herbert Haas 2010/02/15 “Use common sense in routing cable. Avoid wrapping coax around sources of strong electric or magnetic fields. Do not wrap the cable around flourescent light ballasts or cyclotrons, for example.” Ethernet Headstart Product Information and Installation Guide, Bell Technologies, pg. 11 History: Initial Idea Shared media Î CSMA/CD as access algorithm COAX Cables Half duplex communication Low latency Î No networking nodes (except repeaters) One collision domain and also one broadcast domain 10 Mbit/s shared by 5 hosts Î 2 Mbit/s each !!! (C) Herbert Haas 2010/02/15 3 History: Multiport Repeaters Demand for structured cabling (voice-grade twisted-pair) 10BaseT (Cat3, Cat4, ...) Multiport repeater ("Hub") created Still one collision domain ("CSMA/CD in a box") (C) Herbert Haas 2010/02/15 4 History: Bridges Store and forwarding according destination MAC address Separated collision domains Improved network performance Still one broadcast domain Three collision domains in this example ! (C) Herbert Haas 2010/02/15 5 History: Switches Switch = Multiport Bridges with HW acceleration Full duplex Î Collision-free Ethernet Î No CSMA/CD necessary anymore Different data rates at the same time supported Autonegotiation VLAN splits LAN into several broadcast domains Collision-free 1000 Mbit/s plug & play scalable Ethernet ! 100 Mbit/s 100 Mbit/s 10 Mbit/s (C) Herbert Haas 2010/02/15 6 VLAN Operation (1) VLAN A A1A2 A3 A4 A5 A1 -> A3 A5 -> broadcast trunk untagged frames
    [Show full text]
  • Fast Ethernet
    Computernetze 1 (CN1) 2.5 Fast Ethernet Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications Steffen/Stettler, 26.09.2013, 2a-Fast_Ethernet.ppt 1 Lesestoff im Ethernet Buch • Kapitel 3 Fast Ethernet, Seiten 85-111 3.1 Der Reconciliation Layer und das MII 3.2 100Base-X-Erweiterungen im Ethernet-Standard 3.3 Das 4B/5B-Kodierungsverfahren 3.4 100Base-TX 3.7 100Base-FX • Kapitel 4 Gigabit-Ethernet, Seiten 115-155 4.1 1000Base-X-Erweiterungen im Ethernet-Standard 4.2 Der Physical Layer von 1000Base-X 4.3 1000Base-SX 4.4 1000Base-LX 4.6 1000Base-T • Kapitel 5 10Gigabit-Ethernet, Seiten 157-188 5.1 10Gigabit-Ethernet für Glasfaser 5.2 PHY-Details 5.4 10GBase-T 5.5 Die Ethernet-Zukunft Steffen/Stettler, 26.09.2013, 2a-Fast_Ethernet.ppt 2 Selbststudium • Selbststudium Erarbeiten Sie als Vorbereitung für die Übung 3 selbständig das Thema “Ethernet Frame” mit Hilfe von Kapitel 2.10 des Ethernet Buchs und des Kapitels 2.9 des CN1 Foliensatzes. Steffen/Stettler, 26.09.2013, 2a-Fast_Ethernet.ppt 3 Fast Ethernet • In 1995 Fast Ethernet was standardized by the IEEE 802.3u group in competition with FDDI (Fibre Distributed Data Interface) and ATM (Asynchronous Transfer Mode). • Because of the simplicity (and low cost) of Fast Ethernet, it quickly became the dominant LAN technology for trunks and servers. • The Ethernet MAC layer is retained without modification • CSMA/CD stays, but full-duplex connections are supported, too. -> 2x100 Mbit/s, collision free. • Two new physical layer technologies were introduced: • 100 Base-TX: 100 Mbps over Cat.
    [Show full text]