Instructions for Use Title Geochemical Studies of Volcanic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Instructions for Use Title Geochemical Studies of Volcanic Rocks Geochemical studies of volcanic rocks from the northern part Title of Kuril-Kamchatka arc: Tectonic and structural constraints on the origin and evolution of arc magma Author(s) Bergal-Kuvikas, Olga Citation Issue Date 2015-09-25 DOI Doc URL http://hdl.handle.net/2115/60073 Right Type theses (doctoral) Additional Information File Information Bergal-Kuvikas_Olga.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Thesis for Doctor of Philosophy in Petrology and Volcanology research group, Division of Earth and Planetary Science, Department of Natural History Sciences, Graduate School of Science, Hokkaido University Geochemical studies of volcanic rocks from the northern part of Kuril-Kamchatka arc: Tectonic and structural constraints on the origin and evolution of arc magma (クリル・カムチャッカ弧北部の火山岩に関する地球化学的研究: 深部構造が島弧マグマの起源および進化に与える影響について) Bergal-Kuvikas Olga Hokkaido University August 2015 Acknowledgement I am wishing to thank Japanese government for the chance to study at Japan. Scholarship for research students (Monbukagakusho: MEXT) was spent at Hokkaido University under guided by Prof. Mitsuhiro Nakagawa since October 2010 to September 2015. Especially thanks for all members of Petrology and Volcanology research group at Hokkaido University. I am grateful to Dr. Mizuho Amma-Miyasaka, Dr. Akiko Matsumoto, Ms. Ayumi Kosugi, Prof. Takeshi Kuritani for assistance and support in analytical experiences. Thanks for Mr. K. Nakamura for helpful recommendation in making thin sections. My dissertation is a part of Japanese-Russian project of study Klyuchevskoy volcano. I grateful to geologists and volcanologists of this project. For many years cooperation, I gratitude to Dr. Ya. Muravev, Ms. N. Malik, Mr. A. Ovsyannikov, Dr. Y. Ishizuka, Dr. T. Hasegawa, Dr. S. Uesawa. Geological team of project wish thanks to Mr. S. Chirkov, Mr. Y. Demyanschuk, Mr. S. Serovetnikov, Ms. E. Klimenko, Mr. Shimada, Mr. I. Kosuke, Ms. E. Nikonova, Ms. O. Muravyeva and geophysical team of project for support in field works on Kamchatka. I am indebted to my first teacher Prof. Gennady Avdeiko for many years assistance. Thanks to him I made first steps in petrology and geodynamic. Prof. G. Avdeiko is a main source for me of knowledge about geodynamic, tectonic setting of Kamchatka. I was a glad to work together with Prof. G. Avdeiko as a highly professional specialist truly dedicated to passion. Colleagues from Russian Academy of science, especially Prof. V. Ponomareva, Dr. M. Portnyagin, Dr. T. Churikova. Dr. N. Gorbach are thanked for their constructive discussion and critical comments of my research. Sincere appreciation to my parents, Kuvikas Luidmila and Valery, for belief me and development of my personality. Thanks for my brother Maxim Kuvikas for encouragement. 2 My graduation will be impossible without moral support and everyday aid from my husband Bergal Valdemar. I wish to thank my lovely sons Valdis and Algis for everyday happiness and smiles. For me they are main sources of forces for study and work. 3 Contents Acknowledgements ............................................................................................................... 2 Contents ................................................................................................................................. 4 General introduction ............................................................................................................ 9 Part I. Geochemical studies on time-series samples from the Klyuchevskoy volcano, Kamchatka arc Abstract ............................................................................................................................... 16 Chapter 1. Introduction ..................................................................................................... 18 Chapter 2. Tectonic setting and general geology of Klyuchevskoy volcano 2.1. Tectonic setting of Central Kamchatka Depression ............................................ 22 2.2. Volcanoes of Central Kamchatka Depression and their temporal evolution ...... 24 2.3. Geology of Klyuchevskoy volcano and characteristics of activities .................. 26 2.3.1. General geology ..................................................................................... 26 2.3.2. Prehistorical activities ............................................................................ 28 2.3.3. Historical activities ................................................................................. 31 Chapter 3. Samples and analytical procedures ............................................................... 36 Chapter 4. Petrography ..................................................................................................... 38 Chapter 5. Geochemistry ................................................................................................... 41 5.1. Major and trace element compositions ................................................................ 41 4 5.2. Radiogenic isotopes ............................................................................................. 45 5.3. Comparison of Klyuchevskoy volcano with other volcanoes in Central Kamchatka Depression ........................................................................................................... 46 Chapter 6. Spatial and geochemical variations of cinder cones .................................... 49 6.1. Spatial variations of cinder cones ........................................................................ 49 6.2. Geochemical variations of historic magma ......................................................... 52 Chapter 7. Discussion ........................................................................................................ 57 7.1. Classification of magma types ............................................................................ 57 7.2. Origin of low-K and high-K primary magmas .................................................... 61 7.2.1. Factors controlling primary magma compositions ................................. 61 7.2.2. Difference of source compositions ......................................................... 62 7.2.3. Degrees of melting ................................................................................. 64 7.2.3. Generation conditions ............................................................................ 65 7.3. Origin of evolved magmas .................................................................................. 67 7.4. Temporal evolutions of Klyuchevkskoy magmas ............................................... 69 7.5. Schematic model of magma genesis and evolution of Klyuchevskoy volcano during last 4000 years .......................................................................................... 72 Chapter 8. Conclusions ...................................................................................................... 74 Part II. Origin of spatial compositional variations of volcanic rocks from the Northern Kurile Islands, Russia: Geochemical studies of active volcanoes on the Paramushir, Atlasov, Antsiferov islands and adjacent submarine volcanoes Abstract ............................................................................................................................... 75 5 Chapter 1. Introduction ..................................................................................................... 79 1.1. Overview of previous works for Kurile Arc and southern Kamchatka .............. 80 1.2. Purpose of this study ........................................................................................... 84 Chapter 2. Tectonic setting and general geology of Kurile Island Arc ......................... 85 2.1. Tectonic setting of Kurile islands ........................................................................ 85 2.2. General geology of northern Kurile Islands ........................................................ 89 2.3. Quaternary volcanoes in the studied area ............................................................ 91 2.3.1. Paramushir island ................................................................................... 91 a) Chikurachki, Tatarinova, Lomonosava volcanoes ................ 91 b) Fuss volcano .......................................................................... 93 c) Ebeko volcanic group ............................................................ 94 2.3.2. Atlasova island ....................................................................................... 96 a) Alaid volcano ......................................................................... 96 2.3.3. Antsiferov island .................................................................................... 98 a) Shirinki volcano ..................................................................... 98 2.3.4. Submarine volcanoes .............................................................................. 99 a) Grigoreva volcano .................................................................. 99 b) Submarine volcano 1.4 .......................................................... 99 c) Submarine volcano 1.3 .......................................................... 99 Chapter 3. Sampling and analytical procedures ........................................................... 101 Chapter 4. Petrography ................................................................................................... 103 Chapter 5. Zonation of the volcanoes ............................................................................
Recommended publications
  • Alaska Interagency Operating Plan for Volcanic Ash Episodes
    Alaska Interagency Operating Plan for Volcanic Ash Episodes MAY 1, 2008 Cover: A plume of volcanic gas and water vapor rises above the summit crater and growing lava dome at Augustine Volcano in southern Cook Inlet. A mantle of light brown ash discolors the snow on the upper flanks. View is towards the southwest. Photograph taken by C. Read, U.S. Geological Survey, January 24, 2006. Alaska Volcano Observatory database image from http://www.avo.alaska.edu/image.php?id=7051. Alaska Interagency Operating Plan for Volcanic Ash Episodes May 1, 2008 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Distribution and Dissemination.................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 ALASKA DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) .............................................................................. 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO)........................................................... 6 2.2.1 Organization.....................................................................................................
    [Show full text]
  • MAY 21 to 25, 2018
    Abstracts Volume MAY 21 to 25, 2018 7th international OLOT - CATALONIA - SPAIN DL GI 743-2018 ISBN 978-84-09-01627-3 Cover Photo: ACGAX. Servei d’Imatges. Fons Ajuntament d’Olot. Autor: Eduard Masdeu Authors: Xavier Bolós and Joan Martí Abstracts Volume MAY 21 to 25, 2018 Scientific Committee Members IN ALPHABETICAL ORDER Patrick BACHÈLERY Károly NÉMETH Observatoire de Physique du Globe de Clermont-Ferrand Massey University (New Zealand) and Laboratoire Magmas et Volcans (France) Oriol OMS Pierre BOIVIN Universitat Autònoma de Barcelona (Spain) Laboratoire Magmas et Volcans (France) Michael ORT Xavier BOLÓS Northern Arizona University (USA) Univesidad Nacional Autónoma de México (Mexico) Pierre-Simon ROSS Gerardo CARRASCO Institut National de la Recherche Scientifique (Canada) Universidad Nacional Autónoma de México (Mexico) Dmitri ROUWET Shane CRONIN Istituto Nazionale di Geofisica e Vulcanologia (Italy) The University of Auckland (New Zealand) Claus SIEBE Gabor KERESZTURI Universidad Nacional Autónoma de México (Mexico) Massey University (New Zealand) Ian SMITH Jiaqi LIU The University of Auckland (New Zealand) Chinese Academy of Sciences (China) Giovanni SOSA Didier LAPORTE Universidad Nacional Autónoma de México (Mexico) Laboratoire Magmas et Volcans (France) Gregg VALENTINE Volker LORENZ University at Buffalo (USA) University of Wuerzburg (Germany) Benjamin VAN WYK DE VRIES José Luís MACÍAS Observatoire de Physique de Globe de Clermont- Ferrand Universidad Nacional Autónoma de México (Mexico) and Laboratoire Magmas et Volcans (France)
    [Show full text]
  • Volcanic Arc of Kamchatka: a Province with High-␦18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust
    Geochimica et Cosmochimica Acta, Vol. 68, No. 4, pp. 841–865, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2003.07.009 Volcanic arc of Kamchatka: a province with high-␦18O magma sources and large-scale 18O/16O depletion of the upper crust 1, 2 3 1 ILYA N. BINDEMAN, *VERA V. PONOMAREVA, JOHN C. BAILEY, and JOHN W. VALLEY 1Department of Geology and Geophysics, University of Wisconsin, Madison, WI, USA 2Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, Russia 3Geologisk Institut, University of Copenhagen, Copenhagen, Denmark (Received March 20, 2003; accepted in revised form July 16, 2003) Abstract—We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera- forming centers. The ␦18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for ␦18O(magma). Magmatic ␦18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-␦18O basaltic magmas (sampling mantle to lower crustal high-␦18O sources), and low-␦18O silicic volcanism (sampling low-␦18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-␦18O magmas (ϩ4 to 5‰). Most low-␦ 18O magmas are voluminous silicic ignimbrites related to large Ͼ10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas.
    [Show full text]
  • Explosive Basaltic Volcanism of the Chikurachki Volcano (Kurile Arc
    Journal of Volcanology and Geothermal Research 147 (2005) 203–232 www.elsevier.com/locate/jvolgeores Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses A.A. Gurenkoa,b,*, A.B. Belousovc,d, R.B. Trumbullb, A.V. Soboleva,e aMax Planck Institute for Chemistry, Geochemistry, P.O. Box 3060, 55020 Mainz, Germany bGeoForschungsZentrum Potsdam, Section 4.2, Telegrafenberg, 14473 Potsdam, Germany cInstitute of Marine Geology and Geophysics, 693022 Yuzno-Sakhalinsk, Russia dInstitute of Volcanic Geology and Geochemistry, 683006 Petropavlovsk-Kamchatsky, Russia eVernadsky Institute of Geochemistry and Analytical Chemistry, 117975 Moscow, Russia Received 13 December 2004; accepted 6 April 2005 Abstract Highly explosive eruptions of basaltic composition are relatively rare and poorly understood, yet they may be quite important in terms of atmospheric impact because of the generally much higher concentrations of S in basaltic systems compared with the typical explosive felsic eruptions. We have determined concentrations of H2O, major, trace and volatile (S, Cl) elements by EPMA and SIMS from melt inclusions and groundmass glasses of the 1986, 1853 and prehistoric explosive eruptions of basaltic magmas from the Chikurachki volcano, northern Kurile arc. Melt inclusions are hosted by olivine (Fo72–78), orthopyroxene (mg#=72–75), clinopyroxene (mg#=71–77) and plagioclase (An74–96) phenocrysts. Estimated crystallization conditions were in the range from 910 to 1180 8C at less than 400 MPa total pressure and oxygen fugacity of NNO+1 to +2 log units. Inclusion glasses are basaltic to andesitic in composition.
    [Show full text]
  • Testing the Efficacy of the Glacial Buzzsaw: Insights from the Sredinny Mountains, Kamchatka Iestyn D. Barr * , Matteo Spagnolo
    Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka Iestyn D. Barra,*,, Matteo Spagnolob,l aSchool of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, BT7 1NN, Belfast, UK. bSchool of Geosciences, University of Aberdeen, Elphinstone Road, AB243UF, Aberdeen, UK. *Corresponding author. Tel.: +44 (0)2890 975146; E-mail: [email protected]. lTel.: +44 (0)1224 273034; Fax: +44 (0)1224 278585; E-mail: [email protected]. This is an author produced version of a paper published in Geomorphology Published paper: Barr. I.D., Spagnolo, M. (2014) Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka, Geomorphology 206, 230-238. doi: 10.1016/j.geomorph.2013.09.026 http://www.sciencedirect.com/science/article/pii/S0169555X13005084 1 Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka Iestyn D. Barra,*,, Matteo Spagnolob,l aSchool of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, BT7 1NN, Belfast, UK. bSchool of Geosciences, University of Aberdeen, Elphinstone Road, AB243UF, Aberdeen, UK. *Corresponding author. Tel.: +44 (0)2890 975146; E-mail: [email protected]. lTel.: +44 (0)1224 273034; Fax: +44 (0)1224 278585; E-mail: [email protected]. Abstract Peak altitudes, hypsometry, geology, and former equilibrium-line altitudes (ELAs) are analyzed across the Sredinny Mountains (Kamchatka). Overall, evidence is found to suggest that the glacial buzzsaw has operated to shape the topography of this mountain range, but the strength of this signature is not spatially uniform. In the southern sector of the mountains, we see evidence that an efficient glacial buzzsaw has acted to impose constraints upon topography, limiting peak altitudes, and concentrating land-surface area (hypsometric maxima) close to palaeo-ELAs.
    [Show full text]
  • 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory by Christina A
    2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory by Christina A. Neal, Robert G. McGimsey, and Olga Girina Open-File Report 2004-1058 U.S. Department of the Interior U.S. Geological Survey 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory By Christina A. Neal1, Robert G. McGimsey1, and Olga Girina2 1Alaska Volcano Observatory, 4200 University Dr., Anchorage, AK 99508-4664 2Kamchatka Volcanic Eruptions Response Team, Institute of Volcanic Geology and Geochemistry, Piip Blvd, 9 Petropavlovsk- Kamchatsky, 683006, Russia AVO is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. AVO is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2004-1058 U.S. Department of the Interior U.S. Geological Survey TABLE OF CONTENTS Introduction..................................................................................................................................1 Volcanic.Activity.in.Alaska..........................................................................................................4 Wrangell.Volcano.........................................................................................................................4
    [Show full text]
  • Michael Z. Vinokouroff: a Profile and Inventory of His Papers And
    MICHAEL Z. VINOKOUROFF: A PROFILE AND INVENTORY OF HIS PAPERS (Ms 81) AND PHOTOGRAPHS (PCA 243) in the Alaska Historical Library Louise Martin, Ph.D. Project coordinator and editor Alaska Department of Education Division ofState Libraries P.O. Box G Juneau Alaska 99811 1986 Martin, Louise. Michael Z. Vinokouroff: a profile and inventory of his papers (MS 81) and photographs (PCA 243) in the Alaska Historical Library / Louise Martin, Ph.D., project coordinator and editor. -- Juneau, Alaska (P.O. Box G. Juneau 99811): Alaska Department of Education, Division of State Libraries, 1986. 137, 26 p. : ill.; 28 cm. Includes index and references to photographs, church and Siberian material available on microfiche from the publisher. Partial contents: M.Z. Vinokouroff: profile of a Russian emigre scholar and bibliophile/ Richard A. Pierce -- It must be done / M.Z.., Vinokouroff; trans- lation by Richard A. Pierce. 1. Orthodox Eastern Church, Russian. 2. Siberia (R.S.F.S.R.) 3. Russian Orthodox Greek Catholic Church of America--Diocese of Alaska--Archives-- Catalogs. 4. Vinokour6ff, Michael Z., 1894-1983-- Library--Catalogs. 5. Soviet Union--Emigrationand immigration. 6. Authors, Russian--20th Century. 7. Alaska Historical Library-- Catalogs. I. Alaska. Division of State Libraries. II. Pierce, Richard A. M.Z. Vinokouroff: profile of a Russian emigre scholar and bibliophile. III. Vinokouroff, Michael Z., 1894- 1983. It must be done. IV. Title. DK246 .M37 Table of Contents Introduction ............................................. 1 “M.Z. Vinokouroff: Profile of a Russian Émigré Scholar and Bibliophile,” by Richard A. Pierce................... 5 Appendix: “IT MUST BE DONE!” by M.Z. Vinokouroff; translation by Richard A.
    [Show full text]
  • The Active Volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007 O
    ISSN 0742-0463, Journal of Volcanology and Seismology, 2009, Vol. 3, No. 1, pp. 1–17. © Pleiades Publishing, Ltd., 2009. Original Russian Text © O.A. Girina, S.V. Ushakov, N.A. Malik, A.G. Manevich, D.V. Mel’nikov, A.A. Nuzhdaev, Yu.V. Demyanchuk, L.V. Kotenko, 2009, published in Vul- kanologiya i Seismologiya, 2009, No. 1, pp. 3–20. The Active Volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007 O. A. Girina, S. V. Ushakov, N. A. Malik, A. G. Manevich, D. V. Mel’nikov, A. A. Nuzhdaev, Yu. V. Demyanchuk, and L. V. Kotenko Institute of Volcanology and Seismology of the Far East Division of the Russian Academy of Sciences, 9 Piipa Boulevard, Petropavlovsk-Kamchatskii, 683006 Russia Received March 6, 2008 Abstract—Eight strong eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoi, Shiveluch, and Karymskii) and Chikurachki Volcano on Paramushir Island, North Kurils took place in 2007. In addition, an explosive event occurred on Mutnovskii Volcano and increased fumarole activity was recorded on Avacha and Gorelyi volcanoes in Kamchatka and Ebeko Volcano on Paramushir Island, North Kurils. Thanks to close coop- eration with colleagues involved in the Kamchatkan Volcanic Eruption Response Team (KVERT) project from the Elizovo Airport Meteorological Center and volcanic ash advisory centers in Tokyo, Anchorage, and Wash- ington (Tokyo VAAC, Anchorage VAAC, and Washington VAAC), all necessary precautions were taken for flight safety near Kamchatka. DOI: 10.1134/S0742046309010011 INTRODUCTION two months in 2005–2006 the volcano remained rela- tively quiet, up to December 4, 2006. The extrusive– The comprehensive monitoring of active volcanoes explosive eruption of Molodoi (Young) Shiveluch Vol- in Kamchatka and North Kurils is carried out under the cano commenced on that date, with a strong ash ejec- KVERT project [2, 4, 5] in close cooperation with col- tion, and continued during all of 2007.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • Alaska Interagency Operating Plan for Volcanic Ash Episodes
    Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 COVER PHOTO: Ash, gas, and water vapor cloud from Redoubt volcano as seen from Cannery Road in Kenai, Alaska on March 31, 2009. Photograph by Neil Sutton, used with permission. Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Warning Dissemination ............................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) ......................................................................................................... 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO) ........................................................... 6 2.2.1 Organization ...................................................................................................... 7 2.2.2 General Operational Procedures ...................................................................... 8
    [Show full text]
  • Russia Background
    The World Factbook Central Asia :: Russia Introduction :: Russia Background: Founded in the 12th century, the Principality of Muscovy, was able to emerge from over 200 years of Mongol domination (13th-15th centuries) and to gradually conquer and absorb surrounding principalities. In the early 17th century, a new Romanov Dynasty continued this policy of expansion across Siberia to the Pacific. Under PETER I (ruled 1682-1725), hegemony was extended to the Baltic Sea and the country was renamed the Russian Empire. During the 19th century, more territorial acquisitions were made in Europe and Asia. Defeat in the Russo-Japanese War of 1904-05 contributed to the Revolution of 1905, which resulted in the formation of a parliament and other reforms. Repeated devastating defeats of the Russian army in World War I led to widespread rioting in the major cities of the Russian Empire and to the overthrow in 1917 of the imperial household. The communists under Vladimir LENIN seized power soon after and formed the USSR. The brutal rule of Iosif STALIN (1928-53) strengthened communist rule and Russian dominance of the Soviet Union at a cost of tens of millions of lives. The Soviet economy and society stagnated in the following decades until General Secretary Mikhail GORBACHEV (1985-91) introduced glasnost (openness) and perestroika (restructuring) in an attempt to modernize communism, but his initiatives inadvertently released forces that by December 1991 splintered the USSR into Russia and 14 other independent republics. Since then, Russia has shifted its post-Soviet democratic ambitions in favor of a centralized semi-authoritarian state in which the leadership seeks to legitimize its rule through managed national elections, populist appeals by President PUTIN, and continued economic growth.
    [Show full text]
  • Tephra Layers of in the Quaternary Deposits of the Sea of Okhotsk: Distribution, Composition, Age and Volcanic Sources
    Quaternary International xxx (2016) 1e25 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Tephra layers of in the quaternary deposits of the Sea of Okhotsk: Distribution, composition, age and volcanic sources * Alexander N. Derkachev a, , Nataliya A. Nikolaeva a, Sergey A. Gorbarenko a, Maxim V. Portnyagin b, c, Vera V. Ponomareva d, Dirk Nürnberg b, Tatsuhiko Sakamoto e, Koiji Iijima e, Yanguang Liu f, Xuefa Shi f, Huahua Lv f, Kunshan Wang f a V.I. Il'ichev Pacific Oceanological Institute, FEB RAS, Baltiyskaya st., 43, Vladivostok, 690041, Russia b GEOMAR Helmholtz Centre for Ocean Research, Wischhofstrasse, 3, Kiel, Germany c V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Moscow, Russia d Institute of Volcanology and Seismology, FEB RAS, Piip Boulevard, 9, Petropavlovsk-Kamchatsky, 683006, Russia e Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan f First Institute of Oceanography, SOA, Xian-Xia-Ling Road, 6, Qingdao, 266061, China article info abstract Article history: The fullest summary on composition, age and distribution of 23 tephra layers detected and investigated Available online xxx in the Okhotsk Sea Pleistocene-Holocene deposits is presented. Seven tephra layers are surely identified with powerful explosive eruptions of volcanoes of Kamchatka, Kurile and Japanese Islands. For them, the Keywords: areas of ash falls including which weren't revealed earlier on the land are specified and established. It is Tephra estimated that explosive eruptions of volcanoes of the Kamchatka Sredinny Range were the sources for Tephrostratigraphy three tephra layers.
    [Show full text]