Geochemical Studies of Volcanic Rocks from the Northern Part of Kuril-Kamchatka

Total Page:16

File Type:pdf, Size:1020Kb

Geochemical Studies of Volcanic Rocks from the Northern Part of Kuril-Kamchatka Geochemical studies of volcanic rocks from the northern part of Kuril-Kamchatka arc: Tectonic and structural Title constraints on the origin and evolution of arc magma Author(s) Bergal-Kuvikas, Olga Citation 北海道大学. 博士(理学) 甲第11991号 Issue Date 2015-09-25 DOI 10.14943/doctoral.k11991 Doc URL http://hdl.handle.net/2115/60073 Type theses (doctoral) File Information Bergal-Kuvikas_Olga.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Thesis for Doctor of Philosophy in Petrology and Volcanology research group, Division of Earth and Planetary Science, Department of Natural History Sciences, Graduate School of Science, Hokkaido University Geochemical studies of volcanic rocks from the northern part of Kuril-Kamchatka arc: Tectonic and structural constraints on the origin and evolution of arc magma (クリル・カムチャッカ弧北部の火山岩に関する地球化学的研究: 深部構造が島弧マグマの起源および進化に与える影響について) Bergal-Kuvikas Olga Hokkaido University August 2015 Acknowledgement I am wishing to thank Japanese government for the chance to study at Japan. Scholarship for research students (Monbukagakusho: MEXT) was spent at Hokkaido University under guided by Prof. Mitsuhiro Nakagawa since October 2010 to September 2015. Especially thanks for all members of Petrology and Volcanology research group at Hokkaido University. I am grateful to Dr. Mizuho Amma-Miyasaka, Dr. Akiko Matsumoto, Ms. Ayumi Kosugi, Prof. Takeshi Kuritani for assistance and support in analytical experiences. Thanks for Mr. K. Nakamura for helpful recommendation in making thin sections. My dissertation is a part of Japanese-Russian project of study Klyuchevskoy volcano. I grateful to geologists and volcanologists of this project. For many years cooperation, I gratitude to Dr. Ya. Muravev, Ms. N. Malik, Mr. A. Ovsyannikov, Dr. Y. Ishizuka, Dr. T. Hasegawa, Dr. S. Uesawa. Geological team of project wish thanks to Mr. S. Chirkov, Mr. Y. Demyanschuk, Mr. S. Serovetnikov, Ms. E. Klimenko, Mr. Shimada, Mr. I. Kosuke, Ms. E. Nikonova, Ms. O. Muravyeva and geophysical team of project for support in field works on Kamchatka. I am indebted to my first teacher Prof. Gennady Avdeiko for many years assistance. Thanks to him I made first steps in petrology and geodynamic. Prof. G. Avdeiko is a main source for me of knowledge about geodynamic, tectonic setting of Kamchatka. I was a glad to work together with Prof. G. Avdeiko as a highly professional specialist truly dedicated to passion. Colleagues from Russian Academy of science, especially Prof. V. Ponomareva, Dr. M. Portnyagin, Dr. T. Churikova. Dr. N. Gorbach are thanked for their constructive discussion and critical comments of my research. Sincere appreciation to my parents, Kuvikas Luidmila and Valery, for belief me and development of my personality. Thanks for my brother Maxim Kuvikas for encouragement. 2 My graduation will be impossible without moral support and everyday aid from my husband Bergal Valdemar. I wish to thank my lovely sons Valdis and Algis for everyday happiness and smiles. For me they are main sources of forces for study and work. 3 Contents Acknowledgements ............................................................................................................... 2 Contents ................................................................................................................................. 4 General introduction ............................................................................................................ 9 Part I. Geochemical studies on time-series samples from the Klyuchevskoy volcano, Kamchatka arc Abstract ............................................................................................................................... 16 Chapter 1. Introduction ..................................................................................................... 18 Chapter 2. Tectonic setting and general geology of Klyuchevskoy volcano 2.1. Tectonic setting of Central Kamchatka Depression ............................................ 22 2.2. Volcanoes of Central Kamchatka Depression and their temporal evolution ...... 24 2.3. Geology of Klyuchevskoy volcano and characteristics of activities .................. 26 2.3.1. General geology ..................................................................................... 26 2.3.2. Prehistorical activities ............................................................................ 28 2.3.3. Historical activities ................................................................................. 31 Chapter 3. Samples and analytical procedures ............................................................... 36 Chapter 4. Petrography ..................................................................................................... 38 Chapter 5. Geochemistry ................................................................................................... 41 5.1. Major and trace element compositions ................................................................ 41 4 5.2. Radiogenic isotopes ............................................................................................. 45 5.3. Comparison of Klyuchevskoy volcano with other volcanoes in Central Kamchatka Depression ........................................................................................................... 46 Chapter 6. Spatial and geochemical variations of cinder cones .................................... 49 6.1. Spatial variations of cinder cones ........................................................................ 49 6.2. Geochemical variations of historic magma ......................................................... 52 Chapter 7. Discussion ........................................................................................................ 57 7.1. Classification of magma types ............................................................................ 57 7.2. Origin of low-K and high-K primary magmas .................................................... 61 7.2.1. Factors controlling primary magma compositions ................................. 61 7.2.2. Difference of source compositions ......................................................... 62 7.2.3. Degrees of melting ................................................................................. 64 7.2.3. Generation conditions ............................................................................ 65 7.3. Origin of evolved magmas .................................................................................. 67 7.4. Temporal evolutions of Klyuchevkskoy magmas ............................................... 69 7.5. Schematic model of magma genesis and evolution of Klyuchevskoy volcano during last 4000 years .......................................................................................... 72 Chapter 8. Conclusions ...................................................................................................... 74 Part II. Origin of spatial compositional variations of volcanic rocks from the Northern Kurile Islands, Russia: Geochemical studies of active volcanoes on the Paramushir, Atlasov, Antsiferov islands and adjacent submarine volcanoes Abstract ............................................................................................................................... 75 5 Chapter 1. Introduction ..................................................................................................... 79 1.1. Overview of previous works for Kurile Arc and southern Kamchatka .............. 80 1.2. Purpose of this study ........................................................................................... 84 Chapter 2. Tectonic setting and general geology of Kurile Island Arc ......................... 85 2.1. Tectonic setting of Kurile islands ........................................................................ 85 2.2. General geology of northern Kurile Islands ........................................................ 89 2.3. Quaternary volcanoes in the studied area ............................................................ 91 2.3.1. Paramushir island ................................................................................... 91 a) Chikurachki, Tatarinova, Lomonosava volcanoes ................ 91 b) Fuss volcano .......................................................................... 93 c) Ebeko volcanic group ............................................................ 94 2.3.2. Atlasova island ....................................................................................... 96 a) Alaid volcano ......................................................................... 96 2.3.3. Antsiferov island .................................................................................... 98 a) Shirinki volcano ..................................................................... 98 2.3.4. Submarine volcanoes .............................................................................. 99 a) Grigoreva volcano .................................................................. 99 b) Submarine volcano 1.4 .......................................................... 99 c) Submarine volcano 1.3 .......................................................... 99 Chapter 3. Sampling and analytical procedures ........................................................... 101 Chapter 4. Petrography ................................................................................................... 103 Chapter 5. Zonation of the volcanoes ............................................................................
Recommended publications
  • Alaska Interagency Operating Plan for Volcanic Ash Episodes
    Alaska Interagency Operating Plan for Volcanic Ash Episodes MAY 1, 2008 Cover: A plume of volcanic gas and water vapor rises above the summit crater and growing lava dome at Augustine Volcano in southern Cook Inlet. A mantle of light brown ash discolors the snow on the upper flanks. View is towards the southwest. Photograph taken by C. Read, U.S. Geological Survey, January 24, 2006. Alaska Volcano Observatory database image from http://www.avo.alaska.edu/image.php?id=7051. Alaska Interagency Operating Plan for Volcanic Ash Episodes May 1, 2008 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Distribution and Dissemination.................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 ALASKA DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) .............................................................................. 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO)........................................................... 6 2.2.1 Organization.....................................................................................................
    [Show full text]
  • MAY 21 to 25, 2018
    Abstracts Volume MAY 21 to 25, 2018 7th international OLOT - CATALONIA - SPAIN DL GI 743-2018 ISBN 978-84-09-01627-3 Cover Photo: ACGAX. Servei d’Imatges. Fons Ajuntament d’Olot. Autor: Eduard Masdeu Authors: Xavier Bolós and Joan Martí Abstracts Volume MAY 21 to 25, 2018 Scientific Committee Members IN ALPHABETICAL ORDER Patrick BACHÈLERY Károly NÉMETH Observatoire de Physique du Globe de Clermont-Ferrand Massey University (New Zealand) and Laboratoire Magmas et Volcans (France) Oriol OMS Pierre BOIVIN Universitat Autònoma de Barcelona (Spain) Laboratoire Magmas et Volcans (France) Michael ORT Xavier BOLÓS Northern Arizona University (USA) Univesidad Nacional Autónoma de México (Mexico) Pierre-Simon ROSS Gerardo CARRASCO Institut National de la Recherche Scientifique (Canada) Universidad Nacional Autónoma de México (Mexico) Dmitri ROUWET Shane CRONIN Istituto Nazionale di Geofisica e Vulcanologia (Italy) The University of Auckland (New Zealand) Claus SIEBE Gabor KERESZTURI Universidad Nacional Autónoma de México (Mexico) Massey University (New Zealand) Ian SMITH Jiaqi LIU The University of Auckland (New Zealand) Chinese Academy of Sciences (China) Giovanni SOSA Didier LAPORTE Universidad Nacional Autónoma de México (Mexico) Laboratoire Magmas et Volcans (France) Gregg VALENTINE Volker LORENZ University at Buffalo (USA) University of Wuerzburg (Germany) Benjamin VAN WYK DE VRIES José Luís MACÍAS Observatoire de Physique de Globe de Clermont- Ferrand Universidad Nacional Autónoma de México (Mexico) and Laboratoire Magmas et Volcans (France)
    [Show full text]
  • Volcanic Arc of Kamchatka: a Province with High-␦18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust
    Geochimica et Cosmochimica Acta, Vol. 68, No. 4, pp. 841–865, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2003.07.009 Volcanic arc of Kamchatka: a province with high-␦18O magma sources and large-scale 18O/16O depletion of the upper crust 1, 2 3 1 ILYA N. BINDEMAN, *VERA V. PONOMAREVA, JOHN C. BAILEY, and JOHN W. VALLEY 1Department of Geology and Geophysics, University of Wisconsin, Madison, WI, USA 2Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, Russia 3Geologisk Institut, University of Copenhagen, Copenhagen, Denmark (Received March 20, 2003; accepted in revised form July 16, 2003) Abstract—We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera- forming centers. The ␦18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for ␦18O(magma). Magmatic ␦18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-␦18O basaltic magmas (sampling mantle to lower crustal high-␦18O sources), and low-␦18O silicic volcanism (sampling low-␦18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-␦18O magmas (ϩ4 to 5‰). Most low-␦ 18O magmas are voluminous silicic ignimbrites related to large Ͼ10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas.
    [Show full text]
  • Explosive Basaltic Volcanism of the Chikurachki Volcano (Kurile Arc
    Journal of Volcanology and Geothermal Research 147 (2005) 203–232 www.elsevier.com/locate/jvolgeores Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses A.A. Gurenkoa,b,*, A.B. Belousovc,d, R.B. Trumbullb, A.V. Soboleva,e aMax Planck Institute for Chemistry, Geochemistry, P.O. Box 3060, 55020 Mainz, Germany bGeoForschungsZentrum Potsdam, Section 4.2, Telegrafenberg, 14473 Potsdam, Germany cInstitute of Marine Geology and Geophysics, 693022 Yuzno-Sakhalinsk, Russia dInstitute of Volcanic Geology and Geochemistry, 683006 Petropavlovsk-Kamchatsky, Russia eVernadsky Institute of Geochemistry and Analytical Chemistry, 117975 Moscow, Russia Received 13 December 2004; accepted 6 April 2005 Abstract Highly explosive eruptions of basaltic composition are relatively rare and poorly understood, yet they may be quite important in terms of atmospheric impact because of the generally much higher concentrations of S in basaltic systems compared with the typical explosive felsic eruptions. We have determined concentrations of H2O, major, trace and volatile (S, Cl) elements by EPMA and SIMS from melt inclusions and groundmass glasses of the 1986, 1853 and prehistoric explosive eruptions of basaltic magmas from the Chikurachki volcano, northern Kurile arc. Melt inclusions are hosted by olivine (Fo72–78), orthopyroxene (mg#=72–75), clinopyroxene (mg#=71–77) and plagioclase (An74–96) phenocrysts. Estimated crystallization conditions were in the range from 910 to 1180 8C at less than 400 MPa total pressure and oxygen fugacity of NNO+1 to +2 log units. Inclusion glasses are basaltic to andesitic in composition.
    [Show full text]
  • Testing the Efficacy of the Glacial Buzzsaw: Insights from the Sredinny Mountains, Kamchatka Iestyn D. Barr * , Matteo Spagnolo
    Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka Iestyn D. Barra,*,, Matteo Spagnolob,l aSchool of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, BT7 1NN, Belfast, UK. bSchool of Geosciences, University of Aberdeen, Elphinstone Road, AB243UF, Aberdeen, UK. *Corresponding author. Tel.: +44 (0)2890 975146; E-mail: [email protected]. lTel.: +44 (0)1224 273034; Fax: +44 (0)1224 278585; E-mail: [email protected]. This is an author produced version of a paper published in Geomorphology Published paper: Barr. I.D., Spagnolo, M. (2014) Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka, Geomorphology 206, 230-238. doi: 10.1016/j.geomorph.2013.09.026 http://www.sciencedirect.com/science/article/pii/S0169555X13005084 1 Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka Iestyn D. Barra,*,, Matteo Spagnolob,l aSchool of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, BT7 1NN, Belfast, UK. bSchool of Geosciences, University of Aberdeen, Elphinstone Road, AB243UF, Aberdeen, UK. *Corresponding author. Tel.: +44 (0)2890 975146; E-mail: [email protected]. lTel.: +44 (0)1224 273034; Fax: +44 (0)1224 278585; E-mail: [email protected]. Abstract Peak altitudes, hypsometry, geology, and former equilibrium-line altitudes (ELAs) are analyzed across the Sredinny Mountains (Kamchatka). Overall, evidence is found to suggest that the glacial buzzsaw has operated to shape the topography of this mountain range, but the strength of this signature is not spatially uniform. In the southern sector of the mountains, we see evidence that an efficient glacial buzzsaw has acted to impose constraints upon topography, limiting peak altitudes, and concentrating land-surface area (hypsometric maxima) close to palaeo-ELAs.
    [Show full text]
  • The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations
    remote sensing Article The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations Thomas R. Walter 1,* , Alexander Belousov 2, Marina Belousova 2, Tatiana Kotenko 2 and Andreas Auer 3 1 Department of Geophysics, GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany 2 Institute of Volcanology and Seismology, FED RAS, 683006 Petropavlovsk, Russia; [email protected] (A.B.); [email protected] (M.B.); [email protected] (T.K.) 3 Department of Geoscience, Shimane University, Matsue 690-8504, Japan; [email protected] * Correspondence: [email protected] Received: 20 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: Vulcanian explosions are hazardous and are often spontaneous and direct observations are therefore challenging. Ebeko is an active volcano on Paramushir Island, northern Kuril Islands, showing characteristic Vulcanian-type activity. In 2019, we started a comprehensive survey using a combination of field station records and repeated unoccupied aircraft system (UAS) surveys to describe the geomorphological features of the edifice and its evolution during ongoing activity. Seismic data revealed the activity of the volcano and were complemented by monitoring cameras, showing a mean explosion interval of 34 min. Digital terrain data generated from UAS quadcopter photographs allowed for the identification of the dimensions of the craters, a structural architecture and the tephra deposition at cm-scale resolution. The UAS was equipped with a thermal camera, which in combination with the terrain data, allowed it to identify fumaroles, volcano-tectonic structures and vents and generate a catalog of 282 thermal spots. The data provide details on a nested crater complex, aligned NNE-SSW, erupting on the northern rim of the former North Crater.
    [Show full text]
  • 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory by Christina A
    2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory by Christina A. Neal, Robert G. McGimsey, and Olga Girina Open-File Report 2004-1058 U.S. Department of the Interior U.S. Geological Survey 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory By Christina A. Neal1, Robert G. McGimsey1, and Olga Girina2 1Alaska Volcano Observatory, 4200 University Dr., Anchorage, AK 99508-4664 2Kamchatka Volcanic Eruptions Response Team, Institute of Volcanic Geology and Geochemistry, Piip Blvd, 9 Petropavlovsk- Kamchatsky, 683006, Russia AVO is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys. AVO is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2004-1058 U.S. Department of the Interior U.S. Geological Survey TABLE OF CONTENTS Introduction..................................................................................................................................1 Volcanic.Activity.in.Alaska..........................................................................................................4 Wrangell.Volcano.........................................................................................................................4
    [Show full text]
  • 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory
    The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys . The Alaska Volcano Observtory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey Cover: Southeast flank of Augustine Volcano showing summit steaming, superheated fumarole jet, and ash dusting on snow. View is toward the northwest with Iniskin Bay in the distance. Photograph taken by Chris Waythomas, AVO/USGS, December 20, 2005. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory By R.G. McGimsey, C.A. Neal, J.P. Dixon, U.S. Geological Survey, and Sergey Ushakov, Institute of Volcanology and Seismology The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophuysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Michael Z. Vinokouroff: a Profile and Inventory of His Papers And
    MICHAEL Z. VINOKOUROFF: A PROFILE AND INVENTORY OF HIS PAPERS (Ms 81) AND PHOTOGRAPHS (PCA 243) in the Alaska Historical Library Louise Martin, Ph.D. Project coordinator and editor Alaska Department of Education Division ofState Libraries P.O. Box G Juneau Alaska 99811 1986 Martin, Louise. Michael Z. Vinokouroff: a profile and inventory of his papers (MS 81) and photographs (PCA 243) in the Alaska Historical Library / Louise Martin, Ph.D., project coordinator and editor. -- Juneau, Alaska (P.O. Box G. Juneau 99811): Alaska Department of Education, Division of State Libraries, 1986. 137, 26 p. : ill.; 28 cm. Includes index and references to photographs, church and Siberian material available on microfiche from the publisher. Partial contents: M.Z. Vinokouroff: profile of a Russian emigre scholar and bibliophile/ Richard A. Pierce -- It must be done / M.Z.., Vinokouroff; trans- lation by Richard A. Pierce. 1. Orthodox Eastern Church, Russian. 2. Siberia (R.S.F.S.R.) 3. Russian Orthodox Greek Catholic Church of America--Diocese of Alaska--Archives-- Catalogs. 4. Vinokour6ff, Michael Z., 1894-1983-- Library--Catalogs. 5. Soviet Union--Emigrationand immigration. 6. Authors, Russian--20th Century. 7. Alaska Historical Library-- Catalogs. I. Alaska. Division of State Libraries. II. Pierce, Richard A. M.Z. Vinokouroff: profile of a Russian emigre scholar and bibliophile. III. Vinokouroff, Michael Z., 1894- 1983. It must be done. IV. Title. DK246 .M37 Table of Contents Introduction ............................................. 1 “M.Z. Vinokouroff: Profile of a Russian Émigré Scholar and Bibliophile,” by Richard A. Pierce................... 5 Appendix: “IT MUST BE DONE!” by M.Z. Vinokouroff; translation by Richard A.
    [Show full text]
  • The Active Volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007 O
    ISSN 0742-0463, Journal of Volcanology and Seismology, 2009, Vol. 3, No. 1, pp. 1–17. © Pleiades Publishing, Ltd., 2009. Original Russian Text © O.A. Girina, S.V. Ushakov, N.A. Malik, A.G. Manevich, D.V. Mel’nikov, A.A. Nuzhdaev, Yu.V. Demyanchuk, L.V. Kotenko, 2009, published in Vul- kanologiya i Seismologiya, 2009, No. 1, pp. 3–20. The Active Volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007 O. A. Girina, S. V. Ushakov, N. A. Malik, A. G. Manevich, D. V. Mel’nikov, A. A. Nuzhdaev, Yu. V. Demyanchuk, and L. V. Kotenko Institute of Volcanology and Seismology of the Far East Division of the Russian Academy of Sciences, 9 Piipa Boulevard, Petropavlovsk-Kamchatskii, 683006 Russia Received March 6, 2008 Abstract—Eight strong eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoi, Shiveluch, and Karymskii) and Chikurachki Volcano on Paramushir Island, North Kurils took place in 2007. In addition, an explosive event occurred on Mutnovskii Volcano and increased fumarole activity was recorded on Avacha and Gorelyi volcanoes in Kamchatka and Ebeko Volcano on Paramushir Island, North Kurils. Thanks to close coop- eration with colleagues involved in the Kamchatkan Volcanic Eruption Response Team (KVERT) project from the Elizovo Airport Meteorological Center and volcanic ash advisory centers in Tokyo, Anchorage, and Wash- ington (Tokyo VAAC, Anchorage VAAC, and Washington VAAC), all necessary precautions were taken for flight safety near Kamchatka. DOI: 10.1134/S0742046309010011 INTRODUCTION two months in 2005–2006 the volcano remained rela- tively quiet, up to December 4, 2006. The extrusive– The comprehensive monitoring of active volcanoes explosive eruption of Molodoi (Young) Shiveluch Vol- in Kamchatka and North Kurils is carried out under the cano commenced on that date, with a strong ash ejec- KVERT project [2, 4, 5] in close cooperation with col- tion, and continued during all of 2007.
    [Show full text]
  • The 2018 Fieldworks at Alaid Volcano, Atlasov Island, the Kuriles
    BULLETIN OF KAMCHATKA REGIONAL ASSOCIATION «EDUCATIONAL-SCIENTIFIC CENTER». EARTH SCIENCES. ISSUE 39. No. 3. 2018 Original Russian Text © Rashidov V.A., Anikin L.P., 2018, published in Vestnik KRAUNTs. Nauki o Zemle, Vol. 39, No 3 (2018), pp. 105−113. Original text is available at http://www.kscnet.ru/journal/kraesc/article/view/220. THE 2018 FIELDWORKS AT ALAID VOLCANO, ATLASOV ISLAND, THE KURILES In August 2018, we carried out comprehensive employee A.N. Bichenko allowed us to conclude that geological and geophysical investigation of the in August and September, 2018 Alaid Volcano was in northwestern part of island type Alaid Volcano located the stage of fumarolic activity. in the Kuril Island arc on Atlasov Island (fig. a1). These In 2018, the research area was located within the research study is a part of a continuous investigation coastal zone from the Nochnoi Cape to the Plecho resulted from field works performed on Alaid Volcano Cape, and the base camp, as in 2014, was located at in 2007, 2008, 2013−2016. (Rashidov, 2013; Rashidov, the mouth of Alaidsky Brook (fig. 1b, 1c). Anikin, 2014, 2015, 2016, 2017; Rashidov et al., Unlike the Baklan, Alaid and Severny bays 2013). Personal observations, Internet data analysis, (fig. 1b), landing on this part of Atlasov Island is information received from the Vityaz-Aero company’s difficult because of the large amount of seaweed. helicopter plane commander D.A. Zaderey and photos, Quite comfortable conditions for successful field work courtesy of the Volcanoes of Kamchatka natural park’s this year resulted from many streams and large amount Fig.
    [Show full text]
  • EGU2017-5669-3, 2017 EGU General Assembly 2017 © Author(S) 2017
    Geophysical Research Abstracts Vol. 19, EGU2017-5669-3, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License. Hydrothermal fluxes of magmatic chlorine and sulfur from volcano-hydrothermal systems of the Kuril Islands (Russia). Elena Kalacheva (1) and Yuri Taran (1,2) (1) Institute of Volcanology and Seismology, FED RAS, Petropavlovsk-Kamchatsky 683006, Russia ([email protected]), (2) Institute of Geophysics, Universidad Nacional Autónoma de México, México City 04510, México ([email protected]) The hydrothermal flux may be provided by the discharge of fluids formed at depth over the magma body and/or by acid waters, which are formed by the absorption of the ascending volcanic vapor by shallow groundwater. Thus, the anion composition (Cl and SO4) of the discharging thermal waters from a volcano-hydrothermal system in many cases originates from the volcanic vapor and should be taken into account in estimations of the magmatic volatile output and volatile recycling in subduction zones. Here we report the chemical composition of thermal waters and the measured solute fluxes from volcano-hydrothermal systems of Kuril Islands including Paramushir (Ebeko volcanic centre), Shiashkotan (volcanoes Sinarka and Kuntomintar), Ketoy (Pallas volcano), Kunashir (vol- canoes Mendeleev and Golovnin). The fluxes were estimated after measuring flow rates and water composition of streams that drain thermal fields of islands. The maximal hydrothermal flux of Cl and S within the Kuril Chain was measured for Ebeko volcano, Paramushir (drained by Yurieva River) as 82 t/d and 222 t/d of chloride and sulfate, respectively. This is comparable with output by fumaroles of Ebeko.
    [Show full text]