UG ETD Template

Total Page:16

File Type:pdf, Size:1020Kb

UG ETD Template The underestimated taxa: the role of non-bee pollinators in temperate vegetable crops, experimental research in strawberry (Fragaria spp.) crops by Ellen Richard A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in School of Environmental Sciences Guelph, Ontario, Canada © Ellen Richard, September, 2019 ABSTRACT THE UNDERESTIMATED TAXA: THE ROLE OF NON-BEE POLLINATORS IN TEMPERATE VEGETABLE CROPS, EXPERIMENTAL RESEARCH IN STRAWBERRY (Fragaria spp.) CROPS Ellen Richard Advisor(s): University of Guelph, 2019 Dr. Nigel E. Raine Dr. Dirk Steinke Pollination services are critical to agricultural systems, providing a third of global food production. Non-bee pollinators have received little recognition with regards to their role in commercial agricultural pollination. Diverse pollinator communities often provide better pollination services, and non-bee pollinators represent 95% of this diversity. Additionally, research demonstrates that many non-bee pollinators are more resilient to land use intensification and climate change due to their nomadic life-history and tolerance to inclement weather. The aim of this thesis is two-fold. It demonstrates the diversity of non-bee insects that visit temperate vegetable crops in a comprehensive review. Secondly, it presents research on the non-bee floral visiting community of day- neutral strawberries in Southern-Ontario. Using barcoding methods as well as quantitative analysis it characterises flower visitor communities, their foraging preferences and levels of floral fidelity. Hoverflies were found to be important non-bee flower visitors, carrying comparable amounts of pollen to bees. ACKNOWLEDGEMENTS I would like to thank the members of the Raine lab that were present for the duration of my master’s degree, providing support and help when they could, in particular, Dr. Elizabeth Franklin, Leah Blechschmidt and Hayley Tompkins. Additional thank you to members of the Steinke lab for their training and patience, special thanks to Dr. Thomas Braukmann. Finally, thank you to Dr. Dirk Steinke for being available; for your help, support and guidance during the second half of my thesis and giving me the opportunity to attend the 8th iBOL conference in Norway. Thank you to the growers that allowed me access to their properties and allowed me to sample in their fields. I would also like thank the financial support I received to support my research. The Natural Sciences and Engineering Research Council (NSERC: Discovery grant 2015-06783 awarded to N.E.R.), the Food from Thought: Agricultural Systems for a Healthy Planet Initiative, by the Canada First Research Excellent Fund (grant 000054), and W.G. Matthewman Scholarship awarded to me in 2017. iii AUTHOR’S DECLARATION OF WORK COMPLETED I declare that all work presented in this thesis is my own, with the following exceptions: Dr. Thomas Braukmann assisted with development of protocol for pollen metabarcoding. iv TABLE OF CONTENTS Abstract ............................................................................................................................ii Acknowledgements ......................................................................................................... iii Author’s Declaration of Work Completed ........................................................................iv Table of Contents ............................................................................................................ v List of Tables .................................................................................................................. vii List of Figures ................................................................................................................ viii List of Appendices ...........................................................................................................ix 1 Chapter 1: General Introduction ............................................................................... 1 1.1 Importance of non-bee pollinators ...................................................................... 3 2 Chapter 2: The underestimated taxa: the role of non-bee pollinators in temperate crops ............................................................................................................................... 7 2.1 Introduction ........................................................................................................ 7 2.2 Methods ............................................................................................................. 9 2.3 Crop Assessments ........................................................................................... 12 2.3.1 Fruits.......................................................................................................... 12 2.3.2 Vegetables ................................................................................................. 24 2.3.3 Nuts ........................................................................................................... 42 2.4 Discussion ........................................................................................................ 46 3 Chapter 3: Assessing non-bee flower visiting community of strawberries .............. 48 3.1 Introduction ...................................................................................................... 48 3.2 Methods ........................................................................................................... 51 3.2.1 Experimental Fields ................................................................................... 51 v 3.2.2 Field Sampling ........................................................................................... 52 3.2.3 Pollen Removal and Quantification ............................................................ 53 3.2.4 Molecular Identification .............................................................................. 54 3.2.5 Data Analysis ............................................................................................. 58 3.3 Results ............................................................................................................. 60 3.3.1 Diversity and Pollen Loads ........................................................................ 60 3.3.2 Pollen Metabarcoding and Pollinator Networks ......................................... 72 3.3.3 Environmental Variance on Community Structure ..................................... 77 3.4 Discussion ........................................................................................................ 81 3.5 General Conclusions ........................................................................................ 85 References .................................................................................................................... 87 Appendices ................................................................................................................. 114 vi LIST OF TABLES Table 2.1: List of temperate crops assessed in this review, the degree of pollination dependence and assessment of whether non-bee pollination is likely, based on the literature reviewed. ........................................................................................................ 11 Table 3.1: Primers used for barcoding .......................................................................... 58 Table 3.2: Insect visitors collected from day-neutral strawberries ................................. 63 Table 3.3: Insect visitors observed on day-neutral strawberries .................................... 69 Table 3.4: A generalized linear model representing non-bee pollen count data at the genus level (n=53). ........................................................................................................ 71 vii LIST OF FIGURES Figure 2.1: Pollinator papers assessed during literature review of non-bee pollinators, presenting trends across the years 1930 to present........................................................ 9 Figure 3.1: Total pollen load on non-bee strawberry visitors ......................................... 66 Figure 3.2: Abundance of strawberry flower visiting species ......................................... 67 Figure 3.3: Average pollen carried by species visiting strawberry ................................. 68 Figure 3.4: Plant-flower visitor network at the family level ............................................. 75 Figure 3.5: Plant-syrphid network at the plant family level ............................................ 76 Figure 3.6: Triplot of redundancy analysis with species scaling .................................... 79 Figure 3.7: Boxplot representation of observed abundance .......................................... 80 viii LIST OF APPENDICES Appendix 1: List of species recorded visiting flowers of the focal crops assessed. ..... 114 Appendix 2: Species-level identification of specimens caught in strawberry fields, accompanied by the number of individuals caught and their average pollen load count. .................................................................................................................................... 154 Appendix 3: Plant genera and families of pollen found on insect visitors of strawberry crops ........................................................................................................................... 157 Appendix 4: Triplot of redundancy analysis coloured by site ....................................... 160
Recommended publications
  • An Evaluation of Latent Dirichlet Allocation in the Context of Plant-Pollinator Networks by Liam Callaghan a Thesis Presented To
    An evaluation of latent Dirichlet allocation in the context of plant-pollinator networks by Liam Callaghan A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Mathematics and Statistics Guelph, Ontario, Canada c Liam Callaghan, December, 2012 ABSTRACT An evaluation of latent Dirichlet allocation in the context of plant-pollinator networks Liam Callaghan Advisors: University of Guelph, 2012 Dr. A. Ali Dr. G. Umphrey There may be several mechanisms that drive observed interactions between plants and pollinators in an ecosystem, many of which may involve trait matching or trait complementarity. Hence a model of insect species activity on plant species should be represented as a mixture of these linkage rules. Unfortunately, ecologists do not always know how many, or even which, traits are the main contributors to the observed interactions. This thesis proposes the Latent Dirichlet Allocation (LDA) model from artificial intelligence for modelling the observed interactions in an ecosys- tem as a finite mixture of (latent) interaction groups in which plant and pollinator pairs that share common linkage rules are placed in the same interaction group. Sev- eral model selection criteria are explored for estimating how many interaction groups best describe the observed interactions. This thesis also introduces a new model se- lection score called \penalized perplexity". The performance of the model selection criteria, and of LDA in general, are evaluated through a comprehensive simulation study that consider networks of various size along with varying levels of nesting and numbers of interaction groups. Results of the simulation study suggest that LDA works well on networks with mild-to-no nesting, but loses accuracy with increased nestedness.
    [Show full text]
  • Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) Author(S): Brechann V
    Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) Author(s): Brechann V. McGoey Kelvin Chau Timothy A. Dickinson Source: Madroño, 61(2):177-193. 2014. Published By: California Botanical Society DOI: http://dx.doi.org/10.3120/0024-9637-61.2.177 URL: http://www.bioone.org/doi/full/10.3120/0024-9637-61.2.177 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. MADRON˜ O, Vol. 61, No. 2, pp. 177–193, 2014 STOMATA SIZE IN RELATION TO PLOIDY LEVEL IN NORTH AMERICAN HAWTHORNS (CRATAEGUS,ROSACEAE) BRECHANN V. MCGOEY Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2 [email protected] KELVIN CHAU Canadian Food Inspection Agency, 1124 Finch Ave. W, Unit 2, Toronto, ON, Canada M3J 2E2 TIMOTHY A. DICKINSON Green Plant Herbarium (TRT), Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON, Canada M5S 2C6, and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2 ABSTRACT The impacts of ploidy level changes on plant physiology and ecology present interesting avenues of research, and many questions remain unanswered.
    [Show full text]
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • Production, Pomological and Nutraceutical Properties of Apricot
    1 Production, pomological and nutraceutical properties of apricot Khaled Moustafa1* and Joanna Cross2 1Editor of ArabiXiv (arabixiv.org), Paris, France 2Nigde Omer Halisdemir University, Nigde, Turkey Correspondence: [email protected] Abstract Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity. Keywords Apricot kernel oil, plum pox virus, prunus armeniaca, spring frost, stone fruit, sharka.
    [Show full text]
  • A Preliminary Invertebrate Survey
    Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ CONTENTS Summary . 2 Introduction . 3 Methods . 3 Site visits . 3 Site compartments . 3 Location and collection of specimens . 4 Taxonomic coverage . 4 Survey results . 4 General . 4 Noteworthy species . 5 Discussion . 9 Woodlands . 9 Open grassland . 10 River bank . 10 Compartment breakdown . 10 Conclusion . 11 References . 12 Species list . 13 Page 1 Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ SUMMARY An invertebrate survey of Crane Park in Twickenham was commissioned by the London Borough of Richmond to establish a baseline fauna list. Site visits were made on 12 May, 18 June, 6 and 20 September 2010. Several unusual and scarce insects were found. These included: Agrilus sinuatus, a nationally scarce jewel beetle that breeds in hawthorn Argiope bruennichi, the wasp spider, recently starting to spread in London Dasytes plumbeus, a nationally scarce beetle found in grassy places Ectemnius ruficornis, a nationally scarce wasp which nests in dead timber Elodia ambulatoria, a nationally rare fly thought to be a parasitoid of tineid moths breeding in bracket fungi Eustalomyia hilaris, a nationally rare fly that breeds in wasp burrows in dead timber
    [Show full text]
  • Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription
    Hindawi BioMed Research International Volume 2018, Article ID 7627191, 10 pages https://doi.org/10.1155/2018/7627191 Research Article Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription Jiahui Sun ,1,2 Shuo Shi ,1,2,3 Jinlu Li,1,4 Jing Yu,1 Ling Wang,4 Xueying Yang,5 Ling Guo ,6 and Shiliang Zhou 1,2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of the Chinese Academy of Sciences, Beijing 100043, China 3College of Life Science, Hebei Normal University, Shijiazhuang 050024, China 4Te Department of Landscape Architecture, Northeast Forestry University, Harbin 150040, China 5Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 6Beijing Botanical Garden, Beijing 100093, China Correspondence should be addressed to Ling Guo; [email protected] and Shiliang Zhou; [email protected] Received 21 September 2017; Revised 11 December 2017; Accepted 2 January 2018; Published 19 March 2018 Academic Editor: Fengjie Sun Copyright © 2018 Jiahui Sun et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia isthemostbasalcladeofMaleae,followedbyKageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable.
    [Show full text]
  • Litteratura Coleopterologica (1758–1900)
    A peer-reviewed open-access journal ZooKeys 583: 1–776 (2016) Litteratura Coleopterologica (1758–1900) ... 1 doi: 10.3897/zookeys.583.7084 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes Yves Bousquet1 1 Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada Corresponding author: Yves Bousquet ([email protected]) Academic editor: Lyubomir Penev | Received 4 November 2015 | Accepted 18 February 2016 | Published 25 April 2016 http://zoobank.org/01952FA9-A049-4F77-B8C6-C772370C5083 Citation: Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1–776. doi: 10.3897/zookeys.583.7084 Abstract Bibliographic references to works pertaining to the taxonomy of Coleoptera published between 1758 and 1900 in the non-periodical literature are listed. Each reference includes the full name of the author, the year or range of years of the publication, the title in full, the publisher and place of publication, the pagination with the number of plates, and the size of the work. This information is followed by the date of publication found in the work itself, the dates found from external sources, and the libraries consulted for the work. Overall, more than 990 works published by 622 primary authors are listed. For each of these authors, a biographic notice (if information was available) is given along with the references consulted. Keywords Coleoptera, beetles, literature, dates of publication, biographies Copyright Her Majesty the Queen in Right of Canada.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
    Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L.
    [Show full text]
  • The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
    Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification.
    [Show full text]
  • 423 Genus Neocoenyra Butler
    AFROTROPICAL BUTTERFLIES. MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Updated 1 December 2019 Genus Neocoenyra Butler, 1886 Round Ringlets Proceedings of the Zoological Society of London 1885: 758 (756-776). Type-species: Neocoenyra duplex Butler, by monotypy. The genus Neocoenyra belongs to the Family Nymphalidae Rafinesque, 1815; Subfamily Satyrinae Boisduval, 1833; Tribe Satyrini Boisduval, 1833; Subtribe Ypthimina, Reuter, 1896. The other genera in the Subtribe Ypthimina in the Afrotropical Region are Ypthima, Ypthimomorpha, Mashuna, Mashunoides, Strabena, Coenyropsis, Coenyra, Physcaeneura, Neita, Melampius, Cassionympha, Pseudonympha, Paternympha and Stygionympha. Neocoenyra (Round Ringlets) is an Afrotropical genus containing 15 species, centred on Tanzania-Malawi-Zambia. This is a genus of savanna and grassland habitats (Larsen, 1991c). *Neocoenyra bioculata Carcasson, 1964 Neocoenyra bioculata Carcasson, 1964. Journal of the East Africa Natural History Society & Coryndon Museum 24 (4): 68 (67- 72). Type locality: [Malawi]: “Tsenga Mountains, Mwanza, southern Nyasaland”. Distribution: Malawi, Mozambique (Congdon & Bampton, 2009). Early stages: Nothing published. Larval food: Nothing published. Neocoenyra bioculata bioculata Carcasson, 1964 Neocoenyra bioculata Carcasson, 1964. Journal of the East Africa Natural History Society & Coryndon Museum 24 (4): 68 (67- 72). Type locality: [Malawi]: “Tsenga Mountains, Mwanza, southern Nyasaland”. Distribution: Malawi, Mozambique (Congdon & Bampton, 2009). Specific localities: Malawi – Tsenga Mountains, Mwanza (TL). Mozambique – Mount Mabu (Congdon & Bampton, 2009); Mt Inago (Congdon et al., 2010); Mt Namuli (Congdon et al., 2010). Neocoenyra bioculata murphyi Collins, 1997 Neocoenyra bioculata murphyi Collins, 1997. In: D’Abrera, 1997. Butterflies of the Afrotropical region. Part 1: 246. Type locality: Malawi: Dzelanyama, Kasitu Rock. Distribution: Malawi. 1 Specific localities: Malawi – Dzelanyama, Kasitu Rock (TL).
    [Show full text]
  • Family Genus Outgroup: Chalcidoidea Pteromalidae
    Title Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes) Authors Klopfstein, S; Langille, B; Spasojevic, T; Broad, G; Cooper, SJB; Austin, AD; Niehuis, O Date Submitted 2020-09-01 Supplementary File S2. Taxon sampling including detailed collection data. From Klopfstein et al. - Hybrid capture data unravels a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes). Systematic Entomology. Higher grouping (Sub)family Genus Outgroup: Chalcidoidea Pteromalidae Thaumasura Outgroup: Evanioidea Gasteruptiidae Gasteruption Outgroup: Braconidae Alysiinae Dacnusa Outgroup: Braconidae Aphidiinae Aphidius Outgroup: Braconidae Aphidiinae Diaeretus Outgroup: Braconidae Homolobinae Homolobus Outgroup: Braconidae Macrocentrinae Macrocentrus Outgroup: Braconidae Microgastrinae Cotesia Outgroup: Braconidae Rogadinae Aleiodes Xoridiformes Xoridinae Xorides Ophioniformes Anomaloninae Heteropelma Ophioniformes Banchinae Apophua Ophioniformes Campopleginae Campoplex Ophioniformes Campopleginae Hyposoter Ophioniformes Cremastinae Dimophora Ophioniformes Ctenopelmatinae Xenoschesis Ophioniformes Mesochorinae Astiphromma Ophioniformes Metopiinae Colpotrochia Ophioniformes Ophioninae Leptophion Ophioniformes Tersilochinae Diaparsis Ophioniformes Tryphoninae Netelia Ophioniformes Tryphoninae Netelia Labeniformes Labeninae Poecilocryptus Ichneumoniformes Alomyinae Alomya Ichneumoniformes Cryptinae Buathra Ichneumoniformes Ichneumoninae Ichneumon Pimpliformes Acaenitinae
    [Show full text]