Assortative Mating in Animals. Author(S): Yuexin Jiang, Daniel I

Total Page:16

File Type:pdf, Size:1020Kb

Assortative Mating in Animals. Author(S): Yuexin Jiang, Daniel I The University of Chicago Assortative Mating in Animals. Author(s): Yuexin Jiang, Daniel I. Bolnick, and Mark Kirkpatrick Source: The American Naturalist, Vol. 181, No. 6 (June 2013), pp. E125-E138 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/10.1086/670160 . Accessed: 11/05/2015 17:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.83.205.78 on Mon, 11 May 2015 17:41:51 PM All use subject to JSTOR Terms and Conditions vol. 181, no. 6 the american naturalist june 2013 E-Article Assortative Mating in Animals Yuexin Jiang,1,* Daniel I. Bolnick,2 and Mark Kirkpatrick1 1. Section of Integrative Biology, University of Texas, Austin, Texas 78712; 2. Howard Hughes Medical Institute and Section of Integrative Biology, University of Texas, Austin, Texas 78712 Submitted June 2, 2012; Accepted January 7, 2013; Electronically published April 26, 2013 Online enhancement: appendixes. Dryad data: http://dx.doi.org/10.5061/dryad.r706v. garding its behavioral mechanism or evolutionary role abstract: Assortative mating occurs when there is a correlation (Lewontin et al. 1968; Kondrashov and Shpak 1998). (positive or negative) between male and female phenotypes or ge- notypes across mated pairs. To determine the typical strength and Adopting this general view, assortative mating can be mea- direction of assortative mating in animals, we carried out a meta- sured as a correlation between the values of a homologous analysis of published measures of assortative mating for a variety of phenotypic or genotypic trait across members of mated phenotypic and genotypic traits in a diverse set of animal taxa. We pairs (Wright 1921; Lipsey and Wilson 2001; Redden and focused on the strength of assortment within populations, excluding Allison 2006). Assortative mating may be either positive, reproductively isolated populations and species. We collected 1,116 implying a tendency to mate with phenotypically similar published correlations between mated pairs from 254 species (360 individuals, or negative (also called disassortative), imply- unique species-trait combinations) in five phyla. The mean corre- lation between mates was 0.28, showing an overall tendency toward ing the converse (Partridge 1983; Hooper and Miller positive assortative mating within populations. Although 19% of the 2008). There are many empirical examples of both positive correlations were negative, simulations suggest that these could rep- and negative assortative mating (Johnston and Johnson resent type I error and that negative assortative mating may be rare. 1989; Follett et al. 2007; Pryke and Griffth 2007; Lu et al. We also find significant differences in the strength of assortment 2009), but it remains unclear what the distribution of the among major taxonomic groups and among trait categories. We dis- strength of assortative mating is in nature, especially cuss various possible reasons for the evolution of assortative mating whether there is a systematic tendency toward assortment, and its implications for speciation. random mating, or disassortment. Keywords: disassortative mating, distribution of assortment strength, Assortative mating has several important evolutionary mate choice, meta-analysis, nonrandom mating, sexual selection, consequences. Positive assortment increases homozygosity sympatric speciation. within loci, promotes linkage disequilibrium between loci, and consequently inflates the variance of quantitative traits (Lynch and Walsh 1998). The resulting deviations from Introduction Hardy-Weinberg equilibrium can cause statistical biases in Assortative mating is used to describe a variety of patterns association mapping studies (Redden and Allison 2006) of nonrandom mating. In the speciation literature, assor- and estimates of quantitative genetic parameters (Gimel- tative mating is treated as a mechanism of premating re- farb 1986). Assortative mating also plays a key role in productive isolation between distinct species or divergent speciation, contributing to premating isolation between populations (Johannesson et al. 1995; Seehausen et al. phenotypically divergent populations (Felsenstein 1981; 1997; Coyne and Orr 2004). In the behavioral literature, Kondrashov and Shpak 1998; Coyne and Orr 2004; Bol- assortative mating has been used to describe a particular nick and Kirkpatrick 2012). In models of adaptive spe- form of mate choice in which individuals select mates on ciation, reproductive isolation via positive assortative mat- the basis of phenotypic similarity to themselves (Crespi ing evolves in response to disruptive selection (Kirkpatrick 1989; Harari et al. 1999; Shine et al. 2001). More generally, 2000; Dieckmann et al. 2004; Gavrilets 2004; Bank et al. assortative mating can be defined as a pattern of nonran- 2011). Assortment is hypothesized to reduce the produc- dom mating, without making specific assumptions re- tion of less fit phenotypically intermediate offspring. Con- versely, stabilizing selection favors the evolution of disas- * Corresponding author; e-mail: [email protected]. sortative mating, which reduces the production of less fit Am. Nat. 2013. Vol. 181, pp. E125–E138. ᭧ 2013 by The University of Chicago. phenotypic extremes (Kondrashov and Shpak 1998; Kirk- 0003-0147/2013/18106-53880$15.00. All rights reserved. patrick and Ravigne´ 2002). Disassortative mating also in- DOI: 10.1086/670160 creases heterozygosity, decreases inbreeding depression This content downloaded from 128.83.205.78 on Mon, 11 May 2015 17:41:51 PM All use subject to JSTOR Terms and Conditions E126 The American Naturalist (Waser 1993; Pusey and Wolf 1996), and can facilitate the Sadedin et al. 2009). The typical assumption is that pop- maintenance of sexually antagonistic variation (Arnqvist ulations initially exhibit random mating, but this may not 2011). Given these multifarious evolutionary effects of as- be empirically justified. Meta-analysis can determine the sortative mating, it would be valuable to know the dis- distribution of assortment within populations, which can tribution of its strength in natural populations, as well as be treated as a range of biologically realistic initial con- its evolutionary origins. ditions in future models. Two general hypotheses could explain the occurrence Despite these needs for an overview of the strength and of assortative mating. The first asserts that the strength of direction of assortative mating, no comprehensive review assortative mating evolves adaptively in response to direct currently exists. Many studies focus on a single species or or indirect selection on mating preferences. Selection can clade and are typically based on a single phenotypic trait act directly on mate choice if fitness depends on the sim- (Olson et al. 1986; Arnqvist et al. 1996; Bernstein and ilarity of mated pairs. For example, conjugation in the Bernstein 2003; Ce´zilly 2004; Roulin 2004; Wogel et al. marine nudibranch Chromodoris zebra is facilitated when 2005). It is therefore unclear what general patterns might the partners are of similar size (Crozier 1917, 1918). Al- exist regarding the strength of assortative mating in animal ternatively, assortative mating can affect the fitness of a populations. Outstanding questions include the following: pair’s offspring, resulting in indirect selection on the par- What is the distribution of the strength of assortative mat- ents’ mating behavior. For example, Heliconius butterflies ing? How frequent is negative versus positive assortative that mate assortatively on the basis of mimetic color pat- mating? Are there differences in the strengths of assort- terns avoid producing offspring with maladaptive patterns ment among taxa and among different kinds of phenotypic (Chamberlain et al. 2009). More generally, disruptive se- traits? Are the data consistent with the hypothesis that lection will indirectly favor the evolution of positive as- assortment evolves adaptively in response to indirect ef- sortative mating to avoid producing less fit offspring; con- fects of stabilizing and disruptive selection? Here we ad- versely, stabilizing selection will favor negative assortment dress these questions using a meta-analysis of the strength (Dieckmann and Doebeli 1999; Kirkpatrick and Ravigne´ of assortative mating across diverse taxa of animals based 2002; Gavrilets 2004; De Cara et al. 2008; Otto et al. 2008). on a variety of assortment traits. For similar reasons, assortative mating can evolve in re- sponse to inbreeding or outbreeding depression (Epinat Methods and Lenormand 2009). Regardless of the type of selection involved, assortment can result from mutual mate choice We conducted a mixed-model meta-analysis of assortative or by the behavior of only males or females (McNamara mating based on phenotypic traits within natural animal and Collins
Recommended publications
  • Nezara Viridula L.) in Western Part of Romania
    Trophic Evolution of Southern Green Stink Bugs (Nezara viridula l.) in Western Part of Romania 1 1 1 1 1 Ioana GROZEA2 *, Ana Maria1 VIRTEIU , Ramona STEF , Alin CARABET , Levente MOLNAR , Teodora FLORIAN and Mihai VLAD 1 Department of Biology and Plant Protection, Banat’s University of Agricultural Sciences and Veterinary2 Medicine “King Michael I of Romania” Timisoara, Romania. *)Department of Environment and Plant Protection, University of Agricultural Science and Medicine Veterinary Cluj Napoca corresponding author, e-mail: [email protected] BulletinUASVM Horticulture 72(2) / 2015 Print ISSN 1843-5254, Electronic ISSN 1843-5394 DOI:10.15835/buasvmcn-hort:11391 Abstract Nezara viridula L. (Hemiptera:Pentatomidae) is a relative a invasive species, highly poliphagous, species of solanaceous, legumes, cruciferous, malvaceous, grasses and other plants are affected. Considering that the insect which make the subject of this scientifically paper is a species detected in our country but unregistered and un- localized as a dangerous species we want to bring to attention potential spread and adaptation to new plant species, especially legumes and ornamental plants. Observations were made in Timis countyN. viridula in the western part of Romania (Timis), during the years 2013 and 2014. It was taken under observation by three types of plants (tomato crop, green space and fruit tree plantation). TheSyringa observations vulgaris Loniceraon plants japonica, have shown Hibiscus that sp. and Magnolia affected liliiflora all four. varieties of tomatoes, especiallyPrunus on fruits,persica both and greenPrunus and persica mature var. stage. nucipersica In green made space in only adults and nymphs was observed on follow ornamental plants: N.
    [Show full text]
  • A Robust Test for Assortative Mating
    European Journal of Human Genetics (2000) 8, 119–124 © 2000 Macmillan Publishers Ltd All rights reserved 1018–4813/00 $15.00 y www.nature.com/ejhg ARTICLE A robust test for assortative mating Emmanuelle G´enin1, Carole Ober2, Lowell Weitkamp3 and Glenys Thomson1 1Department of Integrative Biology, University of California, Berkeley, CA, USA; 2Department of Human Genetics, University of Chicago, Chicago, IL, USA; 3Department of Psychiatry and Division of Genetics, University of Rochester Medical Center, Rochester, NY, USA Testing for random mating in human populations is difficult due to confounding factors such as ethnic preference and population stratification. With HLA, the high level of polymorphism is an additional problem since it is rare for couples to share the same haplotype. Focus on an ethnically homogeneous population, where levels of polymorphism at HLA loci are more limited, may provide the best situation in which to detect non-random mating. However, such populations are often genetic isolates where there may be inbreeding to an extent that is difficult to quantify and account for. We have developed a test for random mating at a multiallelic locus that is robust to stratification and inbreeding. This test relies on the availability of genotypic information from the parents of both spouses. The focus of the test is on families where there is allele sharing between the parents of both spouses, so that potential spouses could share an allele. Denoting the shared allele at the locus of interest by A, then under the assumption of random mating, heterozygous parents AX should transmit allele A equally as frequently as allele X to their offspring.
    [Show full text]
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • Discrimination Between Eggs from Stink Bugs Species in Europe Using MALDI-TOF MS
    insects Article Discrimination between Eggs from Stink Bugs Species in Europe Using MALDI-TOF MS Michael A. Reeve 1,* and Tim Haye 2 1 CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK 2 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] * Correspondence: [email protected] Simple Summary: Recent globalization of trade and travel has led to the introduction of exotic insects into Europe, including the brown marmorated stink bug (Halyomorpha halys)—a highly polyphagous pest with more than 200 host plants, including many agricultural crops. Unfortunately, farmers and crop-protection advisers finding egg masses of stink bugs during crop scouting frequently struggle to identify correctly the species based on their egg masses, and easily confuse eggs of the invasive H. halys with those of other (native) species. To this end, we have investigated using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid, fieldwork-compatible, and low-reagent-cost discrimination between the eggs of native and exotic stink bugs. Abstract: In the current paper, we used a method based on stink bug egg-protein immobilization on filter paper by drying, followed by post-(storage and shipping) extraction in acidified acetonitrile containing matrix, to discriminate between nine different species using MALDI-TOF MS. We obtained 87 correct species-identifications in 87 blind tests using this method. With further processing of the unblinded data, the highest average Bruker score for each tested species was that of the cognate Citation: Reeve, M.A.; Haye, T. reference species, and the observed differences in average Bruker scores were generally large and the Discrimination between Eggs from errors small except for Capocoris fuscispinus, Dolycoris baccarum, and Graphosoma italicum, where the Stink Bugs Species in Europe Using average scores were lower and the errors higher relative to the remaining comparisons.
    [Show full text]
  • Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management
    Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management Edited by J. E. McPherson Front Cover photographs, clockwise from the top left: Adult of Piezodorus guildinii (Westwood), Photograph by Ted C. MacRae; Adult of Murgantia histrionica (Hahn), Photograph by C. Scott Bundy; Adult of Halyomorpha halys (Stål), Photograph by George C. Hamilton; Adult of Bagrada hilaris (Burmeister), Photograph by C. Scott Bundy; Adult of Megacopta cribraria (F.), Photograph by J. E. Eger; Mating pair of Nezara viridula (L.), Photograph by Jesus F. Esquivel. Used with permission. All rights reserved. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-1508-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materi- als or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, micro- filming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Assortative Mating and Sexual Dimorphism in the Common Tern
    Wilson Bull., 98(l), 1986, pp. 93-100 ASSORTATIVE MATING AND SEXUAL DIMORPHISM IN THE COMMON TERN MALCOLM C. COULTER ’ ABSTRACT.-Although male and female Common Terns (Sterna hirundo)are almost iden- tical in plumage and in most external body measurements, males have longer, deeper, and wider bills than do females. Two patterns in the size relationships between mates are dem- onstrated. First, males tend to have larger bills than their mates. This may be explained by random mating, given the sexual dimorphism observed. Second, Common Terns mate assortatively according to bill size. This pattern may result if there is either a year-to-year component or an age component of bill size variation and if first-breeding birds return to the colony after experienced breeders have already established pairbonds and most birds retain their mates from year to year. ReceivedI I Jan. 1985, accepted30 Aug. 1985. Mating patterns may contribute significantly to the genetic structure of bird populations. When similar individuals tend to mate with each other (i.e., mating is positively assortative), progeny are more homozygous, and phenotypic variability in the population may be greater than when mating is either random or disassortative (Falconer 198 1, Halliday 1978, Par- tridge 1983; but see Lande 1977). Positive assortative mating based on the color morphs has been demonstrated for white and blue morphs of the Snow Goose (Chen cuerulescens) (Cooke et al. 1976). This involved discrimination according to a discrete variable (i.e., distinct blue and white morphs). It is more difficult to demonstrate mating patterns according to continuous variables, particularly in wild populations.
    [Show full text]
  • Natural Selection in Action During Speciation
    Natural selection in action during speciation Sara Via1 Departments of Biology and Entomology, University of Maryland, College Park, MD 20742 The role of natural selection in speciation, first described by The Spyglass Darwin, has finally been widely accepted. Yet, the nature and time A course of the genetic changes that result in speciation remain mysterious. To date, genetic analyses of speciation have focused almost exclusively on retrospective analyses of reproductive iso- lation between species or subspecies and on hybrid sterility or Intrinsic barriers to Ancestral inviability rather than on ecologically based barriers to gene flow. gene flow evolve… Population Diverged “Good Species” However, if we are to fully understand the origin of species, we Populations must analyze the process from additional vantage points. By studying the genetic causes of partial reproductive isolation be- The Magnifying Glass tween specialized ecological races, early barriers to gene flow can B be identified before they become confounded with other species differences. This population-level approach can reveal patterns that become invisible over time, such as the mosaic nature of the genome early in speciation. Under divergent selection in sympatry, Ancestral Intrinsic barriers to the genomes of incipient species become temporary genetic mo- Population gene flow evolve… Diverged “Good Species” saics in which ecologically important genomic regions resist gene Populations exchange, even as gene flow continues over most of the genome. Analysis of such mosaic genomes suggests that surprisingly large Fig. 1. Two ways to study the process of speciation, which is visualized here genomic regions around divergently selected quantitative trait loci as a continuum of divergence from a variable population to a divergent pair of populations, and on through the evolution of intrinsic barriers to gene flow can be protected from interrace recombination by ‘‘divergence to the recognition of good species.
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Sympatric Speciation As a Consequence of Male Pregnancy in Seahorses
    Sympatric speciation as a consequence of male pregnancy in seahorses Adam G. Jones†‡, Glenn I. Moore§, Charlotta Kvarnemo¶, DeEtte Walkerʈ, and John C. Aviseʈ †School of Biology, 310 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332; §Department of Zoology, University of Western Australia, Nedlands, Western Australia 6009, Australia; ¶Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; and ʈDepartment of Genetics, University of Georgia, Athens, GA 30602 Contributed by John C. Avise, April 4, 2003 The phenomenon of male pregnancy in the family Syngnathidae where he fertilizes them and enjoys complete confidence of pater- (seahorses, pipefishes, and sea dragons) undeniably has sculpted nity (21, 22). Because seahorses are monogamous (20, 22–25), the course of behavioral evolution in these fishes. Here we explore individuals of both sexes must place a high premium on finding a another potentially important but previously unrecognized conse- partner with a similar reproductive capacity. Otherwise, eggs or quence of male pregnancy: a predisposition for sympatric specia- brood pouch space will be wasted. Reproductive output is positively tion. We present microsatellite data on genetic parentage that correlated with size for both sexes (20), and selection therefore show that seahorses mate size-assortatively in nature. We then favors size-assortative mating. Our goal was to evaluate the poten- develop a quantitative genetic model based on these empirical tial importance of assortative mating to the evolutionary legacy of findings to demonstrate that sympatric speciation indeed can occur this group. Specifically, our approaches were to (i) document under this mating regime in response to weak disruptive selection genetically that assortative pairing by similarly sized adults underlies on body size.
    [Show full text]
  • Assortative Mating and Income Inequality
    NBER WORKING PAPER SERIES MARRY YOUR LIKE: ASSORTATIVE MATING AND INCOME INEQUALITY Jeremy Greenwood Nezih Guner Georgi Kocharkov Cezar Santos Working Paper 19829 http://www.nber.org/papers/w19829 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 January 2014 This paper is prepared for the 2014 American Economic Review Papers and Proceedings. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. Nezih Guner thanks the European Research Council (ERC Grant 263600) for financial support. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2014 by Jeremy Greenwood, Nezih Guner, Georgi Kocharkov, and Cezar Santos. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Marry Your Like: Assortative Mating and Income Inequality Jeremy Greenwood, Nezih Guner, Georgi Kocharkov, and Cezar Santos NBER Working Paper No. 19829 January 2014 JEL No. D31,J11,J12,J22 ABSTRACT Has there been an increase in positive assortative mating? Does assortative mating contribute to household income inequality? Data from the United States Census Bureau suggests there has been a rise in assortative mating. Additionally, assortative mating affects household income inequality. In particular, if matching in 2005 between husbands and wives had been random, instead of the pattern observed in the data, then the Gini coefficient would have fallen from the observed 0.43 to 0.34, so that income inequality would be smaller.
    [Show full text]
  • Potential of Three Trap Crops in Managing Nezara Viridula (Hemiptera: Pentatomidae) on Tomatoes in Florida
    Journal of Economic Entomology, 110(6), 2017, 2478–2482 doi: 10.1093/jee/tox267 Advance Access Publication Date: 11 October 2017 Horticultural Entomology Research Article Potential of Three Trap Crops in Managing Nezara viridula (Hemiptera: Pentatomidae) on Tomatoes in Florida T. L. Gordon,1 M. Haseeb,1,3 L. H. B. Kanga,1 and J. C. Legaspi2 1Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin L. King, Jr. Boulevard, Tallahassee, FL 32307, 2United States Department of Agriculture-Agricultural Research Service (USDA-ARS), CMAVE, 6383 Mahan Drive, Tallahassee, FL 32308, and 3Corresponding author, e-mail: [email protected] Subject Editor: Michael Furlong Received 20 January 2017; Editorial decision 1 September 2017 Abstract The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a serious insect pest of tomatoes in Florida. In this study, we examined the use of three species of trap crops to manage N. viridula in North Florida tomato crops in 2014 and 2015. We used striped sunflower Helianthus( annuus) (Asterales: Asteraceae) and wild game feed sorghum (Sorghum bicolor) (Poales: Poaceae) in both years, but different species of millet each year: browntop millet (Panicum ramosum) (Poales: Poaceae) in 2014 and pearl millet (Pennisetum glaucum) (Poales: Poaceae) in 2015. The number of stink bug adults collected from wild game feed sorghum exceeded the number from sunflower, and none were collected from either species of millet. Sorghum attracted a significantly higher number of adults than did striped sunflower; however, both sunflower and sorghum attracted the adults ofN. viridula. Adults of the pest feed on the sorghum panicle and sunflower head (inflorescence).
    [Show full text]
  • Assortative Mating at Loci Under Recent Natural Selection in Humans T Akihiro Nishia,*, Marcus Alexanderb, James H
    BioSystems 187 (2020) 104040 Contents lists available at ScienceDirect BioSystems journal homepage: www.elsevier.com/locate/biosystems Assortative mating at loci under recent natural selection in humans T Akihiro Nishia,*, Marcus Alexanderb, James H. Fowlerc, Nicholas A. Christakisb,d a Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA b Yale Institute for Network Science, Yale University, CT 06520, USA c Division of Medical Genetics and Department of Political Science, University of California, San Diego, La Jolla, CA, 92103, USA d Department of Sociology, Ecology and Evolutionary Biology, Medicine, Biomedical Engineering, and Statistics & Data Science, Yale University, New Haven, CT, USA ARTICLE INFO ABSTRACT Keywords: Genetic correlation between mates at specific loci can greatly alter the evolutionary trajectory of a species. Mate choice Genetic assortative mating has been documented in humans, but its existence beyond population stratification Assortative mating (shared ancestry) has been a matter of controversy. Here, we develop a method to measure assortative mating Positive selection across the genome at 1,044,854 single-nucleotide polymorphisms (SNPs), controlling for population stratifica- Humans tion and cohort-specific cryptic relatedness. Using data on 1683 human couples from two data sources, we find evidence for both assortative and disassortative mating at specific, discernible loci throughout the entire genome. Then, using the composite of multiple signals (CMS) score, we also show that the group of SNPs ex- hibiting the most assortativity has been under stronger recent positive selection. Simulations using realistic inputs confirm that assortative mating might indeed affect changes in allele frequency over time. These results suggest that genetic assortative mating may be speeding up evolution in humans.
    [Show full text]