Amphibian Husbandry Resource Guide, Edition 2.0

Total Page:16

File Type:pdf, Size:1020Kb

Amphibian Husbandry Resource Guide, Edition 2.0 Amphibian Husbandry Resource Guide Edited by: Vicky A. Poole, National Aquarium – Baltimore Shelly Grow, Association of Zoos & Aquariums Edition 2.0, 4 April 2012 For more information about AZA and its amphibian programs, visit http://www.aza.org/ConScience/Amphibians_Intro/ Table of Contents Foreword………………………………………………………………………………………………………………………………..….3 Chapter 1: General Amphibian Husbandry……………………..……………………………………………….….4 Chapter 2: Assisted Reproductive Technologies (ART) for Amphibians………………….60 Chapter 3: Hygiene and Disease Management: Field and Captivity…………………………..119 Chapter 4: Amphibian Quarantine and Isolation Guidelines……………………………………….129 Chapter 5: Creating Isolation Spaces for Amphibian Programs ……...……………..………..143 Chapter 6: Amphibian Population Management Guidelines*…………………………………….200 Chapter 7: Amphibian Data Entry Guidelines **……………………………………………………………232 * This chapter has been previously published. The recommended citation is: Schad, K., (ed.). 2008. Amphibian Population Management Guidelines. Amphibian Ark Amphibian Population Management Workshop; 2007 December 10-11; San Diego, CA, USA. Amphibian Ark. 31 p. ** This chapter has been previously published. The recommended citation is: Schad, K., (ed.). 2010. Amphibian Data Entry Guidelines. Population Management Center, Lincoln Park Zoo. Chicago, IL, USA. 7 p. Acknowledgements: The editors would like to thank the following people for their assistance in editing and reviewing this document: Daniel Beckwith (John G. Shedd Aquarium), Joseph R. Mendelson III, Ph.D. (Zoo Atlanta), Nathanial Nelson (Sedgwick County Zoo), Allan Pessier, D.V.M. (San Diego Zoo – Institute for Conservation Research), and Andrew T. Snider. Recommended citation: Poole, V.A. and S. Grow (eds.). 2012. Amphibian Husbandry Resource Guide, Edition 2.0. Association of Zoos and Aquariums, Silver Spring, MD. pp. 238. Amphibian Husbandry Resource Guide, Edition 2.0 2 A publication of AZA’s Amphibian Taxon Advisory Group, 2012 Foreword The Association of Zoos and Aquarium (AZA) Amphibian Taxon Advisory Group (ATAG) created the first version of the Amphibian Husbandry Resource Guide in response to the global amphibian crisis as a user-friendly source to aid in the development of successful amphibian conservation programs. As the zoological community continues to employ resources and expand amphibian capacity, ex situ management of amphibians remains a crucial component to aid species whose threats in the wild cannot be alleviated in time to halt their extinction. With over 6,900 species of amphibians in the world, there is still much to be learned about their natural history and captive husbandry requirements.1 This lack of information and expertise can impede the urgent action needed for the 500+ threatened species in risk of disappearing within the immediate future. The zoological community and private sector have made great strides within the last two decades regarding amphibian husbandry and reproduction techniques, and we continue to develop new and innovative methods each year. However, as amphibian populations wane, we must quickly and effectively pool our resources, share our expertise, and learn from our experiences to effectively remain ahead of the extinction tide. Hopefully this second edition of the Amphibian Husbandry Resource Guide will not only serve as a resource for amphibian husbandry and management, but will help others solve challenges and create additional space for species in need of immediate conservation. In addition to this resource guide, the ATAG has produced numerous materials over the past few years to help develop successful amphibian conservation and/or research programs (either in situ or ex situ; internationally or domestically). These publications include the Action Plan for Ex Situ Amphibian Conservation in the AZA Community (2007), a detailed description of current amphibian collections and spaces within the AZA community; the Conservation Resource Manual (2007) to aid in the development of successful amphibian conservation programs that fit into institution’s collection plans, which are appropriate for different levels of resources, and provides species specific action plans and husbandry manuals; the ATAG Regional Collection Plan (2008) to guide AZA institutions in collection planning, species management, research and educational outreach; and Taxon Management Plans for North American and Caribbean species that have been identified as priority species for conservation action. The AZA has also published Amphibian Conservation: 2010 Highlights and Accomplishments, which provides excellent examples of in situ and ex situ amphibian programs/techniques which could be applied to new programs in the future. All of these resources can be accessed at: www.aza.org/amphibian-population-planning or www.saveamphibians.org. In addition, the ATAG recommends the AZA Professional Development Committee’s Amphibian Biology, Conservation, and Management course (www.aza.org/prodev/) to improve amphibian husbandry techniques and to benefit from interacting with other amphibian herpetologists, as well as participate in networking opportunities at the annual ATAG meetings. The contributors to the above-mentioned resources are talented individuals who are always willing to share their expertise and dedicate time and resources to the world in which we happily share with amphibians. For their generosity, I thank them. The ATAG is here to help. Please feel free to contact me, Diane Barber, ATAG Chair, at [email protected], or (817) 759-7180 for any question or challenge, large or small. Sincerely, Diane Barber 1 The taxonomy of amphibians is always changing; however, the ATAG uses the taxonomy presented by the Amphibian Species of the World website (http://research.amnh.org/vz/herpetology/amphibia/). Amphibian Husbandry Resource Guide, Edition 2.0 3 A publication of AZA’s Amphibian Taxon Advisory Group, 2012 Chapter 1 General Amphibian Husbandry Jennifer B. Pramuk1 and Ron Gagliardo2 1 Woodland Park Zoo 601 N. 59th Street Seattle, WA 98103 [email protected] 2 Amphibian Ark [email protected] A “red eft” phase eastern newt (Notopthalmus viridescens) (photo courtesy of Brad Wilson, DVM) Introduction Enclosures Water Environmental Conditions Food Natural History and Behavior Veterinary Medicine Literature Cited Additional Recommended Literature Additional Internet and Product Supplier Resources Chapter 1: General Amphibian Husbandry INTRODUCTION There are many reasons to keep amphibians in captivity including for purposes of exhibition, education, conservation, preservation, and for hobby and personal interests. Historically, zoos have included amphibians within their herpetology programs and displays; however, as they become more conservation-oriented (versus the menageries of the past), zoos will have to alter their collections to reflect their resources and capacities to carry out this work (Rabb, 2004). The financial and spatial requirements necessary to meet conservation goals and propagate critically endangered amphibians are significantly less than those required for larger species (e.g., elephants); be prepared to commit sufficient resources and plan properly for long-term success. The Amphibian Ark (www.AmphibanArk.org) has estimated that approximately 500 species of amphibians are in need of carefully managed ex situ help; yet, today likely fewer than 31 species are in managed programs (K. Zippel, pers. comm.). Amphibians comprise a group of vertebrates that display an enormous diversity of natural histories. Within the three orders, anurans (frogs and toads), salamanders, and caecilians, there are more than 6,900 species (www.amphibiaweb.org) with potentially many hundreds more awaiting discovery and description. To give the reader an idea of how many amphibians remain to be described by science, approximately one quarter of all known amphibian diversity has been described in the past 20 years, with the rate of species discovery not yet having reached a plateau. Within the class Amphibia, lifestyles run the gamut from terrestrial to fully aquatic as adults, with some species even adapting and thriving in arid regions of the world. Reproductive modes range from the “typical” amphibian that is terrestrial as an adult but lays aquatic eggs that hatch into aquatic larvae, to species that brood their eggs within their vocal slits or special pouches on their backs, to females that are viviparous (give live birth). Within vertebrates, only fishes rival this wide range of reproductive modes. Because the ecological characteristics and husbandry requirements of amphibians are so diverse, it is impossible to cover specific guidelines for all groups in this document. This short guide provides very basic information on how to maintain captive amphibians. Good husbandry practices can circumvent many of the health problems encountered in amphibian collections. Where possible, materials and suggested suppliers are listed and in some cases, alternatives are offered for items that may not be available in all areas. At the end of the chapter, an extensive list of Additional Recommended Literature is provided for those who want to fortify their knowledge of amphibian natural history and husbandry techniques. It is recommended to communicate with others who have worked with that species (or closely related species or genera) in captivity and employ their proven techniques and avoid repeating less fruitful methods. If husbandry experience is unavailable for the target
Recommended publications
  • Predation Upon Mantella Aurantiaca in the Torotorofotsy Wetlands, Central-Eastern Madagascar
    Herpetology Notes, volume 2: 95-97 (2009) (published online on 10 July 2009) Predation upon Mantella aurantiaca in the Torotorofotsy wetlands, central-eastern Madagascar Olga Jovanovic1*, Miguel Vences1, Goran Safarek2, Falitiana C.E. Rabemananjara3, Rainer Dolch4 Abstract. Malagasy poisonous frogs of genus Mantella are small, diurnal frogs with skin glands containing alkaloids and characterised by aposematic colouration. Due to their noxiousness and warning colouration, it is thought that they do not have many natural predators. Until now, only one successful and one aborted predation on Mantella frogs were reported. Herein, we account about two successful predations on M. aurantiaca in Torotorofotsy wetland, in central-eastern Madagascar. The first predation was observed by lizard Zoonosaurus sp. and the second predation by a snake probably belonging to Thamnosophis lateralis. Both predators did not seem to mind the taste of the M. aurantiaca and ingested it. Keywords. Amphibia: Mantellidae, poison frogs, Thamnosophis, Zoonosaurus Only little is known about predation on poisonous genus Melanophryniscus of southeastern South America, frogs in general, in particular for those containing in Malagasy poison frogs of the genus Mantella (family skin alkaloids. Until now, there are around 30 reports Mantellidae) of Madagascar, and the myobatrachid published on predation on poisonous frogs, mostly genus Pseudophryne of Australia (Daly, Highet and belonging to the families Bufonidae and Leptodactylidae Myers, 1984; Daly et al., 2002). All of
    [Show full text]
  • Recommendations for Conservation Translocations of Australian Frogs
    Recommendations for conservation translocations of Australian frogs Dr Ben Scheele, Emily Hoffmann, Dr Matt West June 2021 Cite this publication as: Scheele, B., Hoffmann, E., West, M., 2021. Recommendations for conservation translocations of Australian frogs. NESP Threatened Sprecies Recovery Hub Project 3.3.6 report, Brisbane. Cover image: Spotted tree frog on burnt log. Image: Matt West 2 Contents Background ........................................................................................................................................................................................................ 4 Australian frog declines ......................................................................................................................................................................... 4 Role and types of conservation translocations ............................................................................................................................... 4 Translocations of Australian frogs ....................................................................................................................................................... 5 Recommendations .......................................................................................................................................................................................... 6 Step 1. Set clear, measurable translocation objectives Chytrid-specific considerations ...................................................................................................................................................
    [Show full text]
  • What Do Tadpoles Really Eat? Assessing the Trophic Status of an Understudied and Imperiled Group of Consumers in Freshwater Habitats
    Freshwater Biology (2007) 52, 386–395 doi:10.1111/j.1365-2427.2006.01694.x OPINION What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats RONALD ALTIG,* MATT R. WHILES† AND CINDY L. TAYLOR‡ *Department of Biological Sciences, Mississippi State University, Mississippi State, MS, U.S.A. †Department of Zoology and Center for Ecology, Southern Illinois University, Carbondale, IL, U.S.A. ‡Department of Biology, Austin Peay State University, Clarksville, TN, U.S.A. SUMMARY 1. Understanding the trophic status of consumers in freshwater habitats is central to understanding their ecological roles and significance. Tadpoles are a diverse and abundant component of many freshwater habitats, yet we know relatively little about their feeding ecology and true trophic status compared with many other consumer groups. While many tadpole species are labelled herbivores or detritivores, there is surprisingly little evidence to support these trophic assignments. 2. Here we discuss shortcomings in our knowledge of the feeding ecology and trophic status of tadpoles and provide suggestions and examples of how we can more accurately quantify their trophic status and ecological significance. 3. Given the catastrophic amphibian declines that are ongoing in many regions of the planet, there is a sense of urgency regarding this information. Understanding the varied ecological roles of tadpoles will allow for more effective conservation of remaining populations, benefit captive breeding programmes, and allow for more accurate predic- tions of the ecological consequences of their losses. Keywords: amphibian, assimilation, diet, feeding behaviour, omnivory Amphibians are disappearing from the planet at an of the functional roles and trophic status of general- alarming rate (Stuart et al., 2004; Lips et al., 2005).
    [Show full text]
  • Management and Breeding of Birds of Paradise (Family Paradisaeidae) at the Al Wabra Wildlife Preservation
    Management and breeding of Birds of Paradise (family Paradisaeidae) at the Al Wabra Wildlife Preservation. By Richard Switzer Bird Curator, Al Wabra Wildlife Preservation. Presentation for Aviary Congress Singapore, November 2008 Introduction to Birds of Paradise in the Wild Taxonomy The family Paradisaeidae is in the order Passeriformes. In the past decade since the publication of Frith and Beehler (1998), the taxonomy of the family Paradisaeidae has been re-evaluated considerably. Frith and Beehler (1998) listed 42 species in 17 genera. However, the monotypic genus Macgregoria (MacGregor’s Bird of Paradise) has been re-classified in the family Meliphagidae (Honeyeaters). Similarly, 3 species in 2 genera (Cnemophilus and Loboparadisea) – formerly described as the “Wide-gaped Birds of Paradise” – have been re-classified as members of the family Melanocharitidae (Berrypeckers and Longbills) (Cracraft and Feinstein 2000). Additionally the two genera of Sicklebills (Epimachus and Drepanornis) are now considered to be combined as the one genus Epimachus. These changes reduce the total number of genera in the family Paradisaeidae to 13. However, despite the elimination of the 4 species mentioned above, 3 species have been newly described – Berlepsch's Parotia (P. berlepschi), Eastern or Helen’s Parotia (P. helenae) and the Eastern or Growling Riflebird (P. intercedens). The Berlepsch’s Parotia was once considered to be a subspecies of the Carola's Parotia. It was previously known only from four female specimens, discovered in 1985. It was rediscovered during a Conservation International expedition in 2005 and was photographed for the first time. The Eastern Parotia, also known as Helena's Parotia, is sometimes considered to be a subspecies of Lawes's Parotia, but differs in the male’s frontal crest and the female's dorsal plumage colours.
    [Show full text]
  • The Freshwater Crab Liberonautes Latidactylus (De Man, 1903) Preys on Adult Allen’S Giant Frog, Conraua Alleni (Barbour and Loveridge, 1927)
    Herpetology Notes, volume 12: 1073-1076 (2019) (published online on 29 October 2019) The freshwater crab Liberonautes latidactylus (de Man, 1903) preys on adult Allen’s Giant Frog, Conraua alleni (Barbour and Loveridge, 1927) Marvin Schäfer1,*, Joseph Doumbia2, and Mark-Oliver Rödel1 Post-metamorphic anuran amphibians are preyed therein), the role of freshwater crabs as predators is upon by many vertebrates (reviewed by Toledo et less well documented, but particularly for frogs, might al., 2007) and invertebrate predators (Toledo, 2005; be underrated. Freshwater crabs are known to feed on Wells, 2007). Amongst invertebrates, spiders are eggs (Hayes, 1983), tadpoles (Gray and Christy, 2000), most frequently listed (for a recent review concerning juvenile (Affonso and Signorelli, 2011) and adult African examples, see Babangenge et al., 2019), but frogs (Tsuji, 2005; Rosa et al., 2014; Wehrtmann et al., unusual anuran specialists like the carabid beetles 2019). Hence, all anuran life stages are potential prey Epomis have become known as well (Wizen and Gasith, of freshwater crabs. Interestingly, the ability to hunt 2011). Although Diesel (1989) reports an example seems to decrease in freshwater crabs exceeding 25 mm of a tree-hole breeding crab, occasionally preying on of carapace width. Large individuals are supposed to be anuran eggs and tadpoles, crustaceans are only rarely less agile, and hence less effective in capturing elusive mentioned as amphibian predators. Toledo (2005) only prey (Williams, 1962; Williams, 1965; Dobson, 2004). lists one species of decapod crab as a predator of post- Consequently, one might assume that larger and agile metamorphic anurans. More recently, Pyke et al.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Pedal Luring in the Leaf-Frog Phyllomedusa Burmeisteri (Anura, Hylidae, Phyllomedusinae)
    Phyllomedusa 1(2):93-95, 2002 © 2002 Melopsittacus Publicações Científicas ISSN 1519-1397 Pedal luring in the leaf-frog Phyllomedusa burmeisteri (Anura, Hylidae, Phyllomedusinae) Jaime Bertoluci Departamento de Zoologia, Universidade Federal de Minas Gerais. Caixa Postal 486, Belo Horizonte, MG, Brazil, 31270-901. E-mail: [email protected]. Keywords - Phyllomedusa burmeisteri, Phyllomedusinae, Hylidae, Anura, pedal luring, prey capture, feeding behavior. Luring behavior as a strategy of prey cap- the frog was maintained in a 60 × 30 × 37-cm ture has evolved independently in several glass terrarium containing soil and a bromeliad. squamate lineages, including pygopodid lizards On the fourth day of acclimation at 2300 h and (Murray et al. 1991), and boid (Murphy et al. under dim light, pedal luring was observed in 1978, Radcliffe et al. 1980), viperid (Greene response to offering the frog an individual adult and Campbell 1972, Heatwole and Dawson cricket (Orthoptera); the same observations were 1976, Henderson 1970, Sazima 1991), elapid made the next night. During the next three days, (Carpenter et al. 1978), and colubrid snakes the frog fed on domestic cockroaches (Sazima and Puorto 1993). Bavetz (1994) (Blattaria), but pedal luring was not observed in reported pedal luring related to predation in these circumstances. Larval mealworms ambystomatid salamanders. In anurans, this (Tenebrio sp.) also were offered to the frog, but feeding behavior has been described only for the always were refused. terrestrial leptodactylid frogs Ceratophrys Phyllomedusa burmeisteri is a sit-and-wait calcarata (Murphy 1976) and C. ornata predator that typically perches with its hands (Radcliffe et al. 1986). Pedal luring apparently and feet firmly grasping the substrate while does not occur in the terrestrial leptodactylids searching for prey.
    [Show full text]
  • New Sahonagasy Action Plan 2016-2020
    New Sahonagasy Action Plan 2016-2020 1 New Sahonagasy Action Plan 2016 – 2020 Nouveau plan d’Action Sahonagasy 2016 – 2020 Edited by: Franco Andreone, IUCN SSC Amphibian Specialist Group - Madagascar Jeff S. Dawson, Durrell Wildlife Conservation Trust Falitiana C. E. Rabemananjara, IUCN SSC Amphibian Specialist Group - Madagascar Nirhy H.C. Rabibisoa, IUCN SSC Amphibian Specialist Group - Madagascar Tsanta F. Rakotonanahary, Durrell Wildlife Conservation Trust With assistance from: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance James P. Lewis, Amphibian Survival Alliance/Rainforest Trust Published by: Museo Regionale di Scienze Naturali (Turin, Italy) and Amphibian Survival Alliance (Warrenton, VA) Publication date: June 2016 Recommended citation: Andreone, F., Dawson, J.S., Rabemananjara, F.C.E., Rabibisoa, N.H.C. & Rakotonanahary, T.F. (eds). 2016. New Sahonagasy Action Plan 2016–2020 / Nouveau Plan d'Action Sahonagasy 2016–2020. Museo Regionale di Scienze Naturali and Amphibian Survival Alliance, Turin. ISBN: 978-88-97189-26-8 Layout by: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance Translation into French: Mathilde Malas, Speech Bubbles, www.speechbubbles.eu Printed by: Centro Stampa Regione Piemonte, Turin Front cover: Spinomantis aglavei, Gonçalo M. Rosa Back cover: Mantella expectata, Gonçalo M. Rosa IUCN - International Union for Conservation of Nature Founded in 1948, The International Union for Conservation of Nature brings together States, government agencies and a diverse range of nongovernmental organizations in a unique world partnership: over 1,000 members in all spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable.
    [Show full text]
  • Species Limits, and Evolutionary History of Glassfrogs
    !" # $"%!&"'(!$ ! )*)') !+ ,-.',)'**'-*)*' /0/ // ')11,2 !"#"$$$%$$& ' & & (' ') ' * ') + ,-'.)"$$). / 0 &1& )2 ) #3")44 ) )56,7,443,5474,3) 8 9 '' & ' & ' & ' * ) ' & ** ,& % & & & ' & ' ): '& ' ' ' '2 ) : ' ' ' ; < ;=2 > < ' * & &' '& ;& <) '' *'' & & ' &'' 9 * ' )? ' & ' & @ ' & ) ' '&' * & ' ' ;* ' '< &'>&' ) (' ' & 7$$ && ' ' ' & ' * ' ' )= &' & &*'' ' ) > * *& *'' ' ) : ' & & & ) > & 65 : , * A ) ' & & *' ' ' & & ' '= & ) 2 '2 ' & - ! (' = ( . . ! "# $ " # "% " "#!&'()* " B. + ,-'"$$ :..=7#47,#"73 :.=56,7,443,5474,3 % %%% ,7$$"C;' %AA )@)A D E % %%% ,7$$"C< Mathematical representation is inevitably simplistic, and occasionally one has to be brutal in forcing it to suit a reality that can only be very complex. And yet, there is a beauty about trees because of the simplicity with which they allow you to describe a series of events […]. But one must ask whether one is justified simplifying reality to the extent necessary to represent it as a tree. Cavalli-Sforza, Genes, People, and Languages (2001) The universe is no narrow thing and the order within it is not constrained by any latitude in is conception to repeat what exists in one part in any other part. Even in this world more things exist
    [Show full text]
  • The Most Frog-Diverse Place in Middle America, with Notes on The
    Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(2) [Special Section]: 304–322 (e215). The most frog-diverse place in Middle America, with notes on the conservation status of eight threatened species of amphibians 1,2,*José Andrés Salazar-Zúñiga, 1,2,3Wagner Chaves-Acuña, 2Gerardo Chaves, 1Alejandro Acuña, 1,2Juan Ignacio Abarca-Odio, 1,4Javier Lobon-Rovira, 1,2Edwin Gómez-Méndez, 1,2Ana Cecilia Gutiérrez-Vannucchi, and 2Federico Bolaños 1Veragua Foundation for Rainforest Research, Limón, COSTA RICA 2Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, COSTA RICA 3División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, C1405DJR, Buenos Aires, ARGENTINA 4CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, PORTUGAL Abstract.—Regarding amphibians, Costa Rica exhibits the greatest species richness per unit area in Middle America, with a total of 215 species reported to date. However, this number is likely an underestimate due to the presence of many unexplored areas that are diffcult to access. Between 2012 and 2017, a monitoring survey of amphibians was conducted in the Central Caribbean of Costa Rica, on the northern edge of the Matama mountains in the Talamanca mountain range, to study the distribution patterns and natural history of species across this region, particularly those considered as endangered by the International Union for Conservation of Nature. The results show the highest amphibian species richness among Middle America lowland evergreen forests, with a notable anuran representation of 64 species.
    [Show full text]
  • Ceratophrys Cranwelli) with Implications for Extinct Giant Frogs Scientific Reports, 2017; 7(1):11963-1-11963-10
    PUBLISHED VERSION A. Kristopher Lappin, Sean C. Wilcox, David J. Moriarty, Stephanie A.R. Stoeppler, Susan E. Evans, Marc E.H. Jones Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs Scientific Reports, 2017; 7(1):11963-1-11963-10 © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Originally published at: http://doi.org/10.1038/s41598-017-11968-6 PERMISSIONS http://creativecommons.org/licenses/by/4.0/ 19th of April 2018 http://hdl.handle.net/2440/110874 www.nature.com/scientificreports OPEN Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs Received: 27 March 2017 A. Kristopher Lappin1, Sean C. Wilcox1,2, David J. Moriarty1, Stephanie A. R. Stoeppler1, Accepted: 1 September 2017 Susan E.
    [Show full text]
  • Ginini Flats Wetlands Ramsar Site
    PLAN OF MANAGEMENT 2001 Ginini Flats Wetlands Ramsar Site Department of Urban Services Conservation Series No. 18 Government GININI FLATS WETLANDS RAMSAR SITE Plan of Management May 2001 ACKNOWLEDGEMENTS A preliminary draft of this Plan of Management was prepared for Environment ACT byDr Bob Banens, Mr Allen Fox and Dr Laslo Nagy of the Atech Group with advice from Mr Roger Good and Ms Jane Gough. Comments and contributions on the drafts were provided by staff from Environment ACT, the Nature Conservation and Namadgi Sub-committee of the Environment Advisory Committee, the Flora and Fauna Committee and various ACT community groups and individuals. The development of this management plan was funded through the National Wetlands Program of Environment Australia. NOTES This plan of management has been prepared to fulfill the principle obligation of Contracting Parties to the Ramsar Convention. This obligation is to develop management plans for all Ramsar sites in their territory. Also, this Plan constitutes a component of the management plan for Namadgi National Park. The implementation of the management actions stated in this Plan of Management will be undertaken as part of the management of the Namadgi National Park. ISSN 1036-0441 Australian Capital Territory, Canberra 2001 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Manager, Library and Information Management, Department of Urban Services, ACT Government, GPO Box 158, Canberra City, ACT 2601. Published by Publishing Services for Environment ACT (BDM 0778) 120 A4, 05/01 (01/0882) Environment ACT Home Page: http:www.act.gov.au/environ Environment ACT Helpline: 02 6207 9777 Pi d R ldP CONTENTS ACKNOWLEDGEMENTS………………………………………………………………………… II NOTES………..……………………………………………………………………………………… II CONTENTS………………………………………………………………………………………… III ABSTRACT……………………………………………………………………………………….… V VISION……………………………………………………………………………………………… VI 1.
    [Show full text]