Harmonia Axyridis As a Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Harmonia Axyridis As a Case Study View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in "BioControl 62(3): 341–354, 2017" which should be cited to refer to this work. Assessing the ecological risk posed by a recently established invasive alien predator: Harmonia axyridis as a case study Marc Kenis . Tim Adriaens . Peter M. J. Brown . Angelos Katsanis . Gilles San Martin . Etienne Branquart . Dirk Maes . Rene´ Eschen . Renate Zindel . Johan Van Vlaenderen . Dirk Babendreier . Helen E. Roy . Louis Hautier . Remy L. Poland Abstract Invasive alien predators are a serious native species encounters H. axyridis in the field, the threat to biodiversity worldwide. However, there is hazard of competition for food, and the IGP hazard. no generic method for assessing which local species Thirty native European ladybird species were assessed are most at risk following the invasion of a new through data obtained from field observations, labo- predator. The harlequin ladybird, Harmonia axyridis ratory experiments and literature reviews. The species (Pallas) (Coleoptera: Coccinellidae), is an alien in that are considered most at risk are found on deciduous Europe and many other parts of the world where it trees, have immature stages which are highly vulner- affects other species of ladybirds through competition able to IGP by H. axyridis, and are primarily for food and intra-guild predation (IGP). Here, we aphidophagous. These species should be the focus of describe a method developed to assess which Euro- specific studies and possibly conservation actions. The pean ladybird species are most at risk following the risk assessment method proposed here could be invasion of H. axyridis. The three components of the applied to other alien predators which are considered risk assessment are: the likelihood that the assessed a threat to native species through competition and predation. M. Kenis (&) Á A. Katsanis Á R. Eschen Á E. Branquart R. Zindel Á J. Van Vlaenderen Á D. Babendreier Invasive Species Unit, De´partement de l’Etude du Milieu http://doc.rero.ch CABI, 2800 Dele´mont, Switzerland Naturel et Agricole (DEMNA), Service Public de e-mail: [email protected] Wallonie, Avenue Mare´chal Juin, 23, 5030 Gembloux, Belgium T. Adriaens Á D. Maes Research Institute for Nature and Forest (INBO), R. Zindel 1070 Brussels, Belgium Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland P. M. J. Brown Animal & Environment Research Group, Department of H. E. Roy Life Sciences, Anglia Ruskin University, NERC Centre for Ecology & Hydrology, Cambridge CB1 1PT, UK Crowmarsh Gifford, Oxfordshire OX10 8BB, UK G. S. Martin Á L. Hautier R. L. Poland De´partement Sciences du Vivant, Centre Wallon de Clifton College, Clifton, Bristol, Avon BS8 3JH, UK Recherches Agronomiques, Unite´ Protection des Plantes et Ecotoxicologie, 5030 Gembloux, Belgium 1 Keywords Biological invasions Á Coccinellidae Á is usually lacking despite its obvious potential use for Ecological impact Á Harmonia axyridis Á Intra-guild prioritising research and conservation actions in the predation Á Risk assessment invaded regions. An example of an introduced arthropod predator that has had undesirable ecological impacts is the harlequin ladybird Harmonia axyridis (Pallas) Introduction (Coleoptera: Coccinellidae). This beetle was intro- duced into North America in 1916 and throughout the Invasive alien species are recognised as one of the 20th century to control aphids and coccids, and main causes of animal biodiversity loss (Bellard et al. became established in the 1980s (Roy et al. 2016). 2016). Associated animal species declines are mainly Since then, although successfully regulating pest due to competitive exclusion, predation, and intro- aphids in a range of crop systems, it has spread and duction of new diseases (Long 2003; Kenis et al. increased in number rapidly across most of North 2009). In particular, alien predatory insects are known America, where it has become the dominant aphi- to displace insects and other animals worldwide dophagous ladybird (e.g. Colunga-Garcia and Gage through competition for resources and predation 1998; Harmon et al. 2007). Harmonia axyridis was (Snyder and Evans 2006; Wagner and van Driesche commercially available in Europe as a pest-control 2010). In most cases, invasive alien insects have been agent from the late 1980s and feral populations were introduced accidentally, either as contaminants or first observed in Germany in 1999 (Brown et al. 2011). stowaways (Hulme et al. 2008). Nevertheless, preda- The beetle then rapidly invaded most European tors and parasitoids have also been released inten- countries and many other regions on all continents tionally in biological control programmes for pest except Antarctica (Roy et al. 2016). control and a small proportion of them have had The threat posed by H. axyridis to biodiversity and undesirable ecological effects on non-target species ecosystem functions in invaded regions may be through competition for resources, predation or considerable. Impacts on native species can occur parasitism on native species (Hajek et al. 2016). both through direct predation and competition for Pre-release risk assessment protocols have the poten- resources. Harmonia axyridis has a broad diet, tial to limit the risk of non-target effects but these risk putting many non-target species at risk from preda- assessments are not yet carried out systematically in tion. Whilst preferring aphid and coccid prey, H. all countries (van Lenteren et al. 2006; Hajek et al. axyridis will also accept the immature stages of many 2016). Other risk and impact assessment protocols insects, including butterflies and other aphid preda- exist for alien species beyond biological control tors (Koch et al. 2003, 2006; Pell et al. 2008). Intra- introductions, many of which are appropriate for guild predation (IGP), i.e. the killing and eating of assessing predators (e.g. D’hondt et al. 2015; Kum- species eating similar, often limiting, resources (Polis schick et al. 2015) and some protocols have been et al. 1989), is widespread amongst aphidophagous http://doc.rero.ch developed for specific groups of predators, such as insects, and H. axyridis is known to attack the ants (Harris et al. 2005). However, these protocols immature stages of many ladybird guild members aim at assessing the risk or impact of specific invasive (Ware and Majerus 2008; Ware et al. 2008a; Rondoni alien species, taking into account their general impact et al. 2012a, b; Katsanis et al. 2013). Recent in the invaded habitat (Kumschick and Richardson observations have demonstrated that H. axyridis also 2013). In contrast, there is no generic method to feeds on European ladybirds in the field (Hautier assess which particular native species are most at risk et al. 2011; Thomas et al. 2013; Rondoni et al. 2014; following the invasion of a predator. Such knowledge Brown et al. 2015). Negative effects of H. axyridis on native Coccinel- lidae have already been documented in North Amer- ica. For example, H. axyridis was reported to be Present Address: A. Katsanis displacing Cycloneda sanguinea (L.), in Florida citrus Department of Ecology and Evolutionary Biology, University orchards (Michaud 2002). Similarly, within four years of California – Irvine, Irvine, CA 92697-2525, USA of its arrival in Michigan, H. axyridis had taken over 2 the status of Coleomegilla maculata (DeGeer) as the Materials and methods dominant aphid predator, and a decrease in popula- tions of three other species of ladybird was reported: A risk assessment involves identifying and quantify- Brachiacantha ursina (F.), Cycloneda munda (Say) ing the hazards, and determining the probabilities that and Chilocorus stigma (Say) (Colunga-Garcia and these hazards will materialise. The risk is then the Gage 1998). However, in an analysis of a 26-years product of a likelihood (probability) and a magnitude dataset in the same region, Bahlai et al. (2015) of hazard (consequence). In this study, the risk posed confirmed the long term decline of two species only, by H. axyridis on 30 native ladybirds (see list in C. maculata and Adalia bipunctata (L.). Table 1) was considered as the product of the likeli- In Europe, field studies have been undertaken in hood that a given ladybird species encounters H. several countries to monitor changes in populations of axyridis in the field, and the consequence of this native ladybird species following the arrival of H. encounter, through competition for food and direct axyridis (e.g. Eschen et al. 2007;Adriaensetal.2008; predation. Therefore, the risk assessment was carried Brown et al. 2011). A first assessment of the impact of out in three steps: (1) likelihood of encounter with H. H. axyridis on native species of ladybird in Belgium, axyridis in the field, (2) competition for food, (3) intra- Britain and Switzerland showed that some historically guild predation. widespread and common species are declining (Roy et al. 2012). For A. bipunctata in Belgium, the rate of Likelihood of encounter with H. axyridis decline warrants red listing as a vulnerable species in the field (Adriaens et al. 2015). However, ladybird populations are known to fluctuate naturally and, thus, it may take The likelihood that a native ladybird species encoun- several years before a long-term impact can be ters H. axyridis in the field was measured using field ascertained. Also, some species were already in data in Switzerland, Belgium and Britain. Datasets decline before the arrival of H. axyridis,suggesting comprising field observations were used to assess that the invasion acted as an additional stressor on spatial and temporal co-occurrence between native insect populations on top of other factors (Roy et al. species and H. axyridis. Since the data in the three 2012). Furthermore, general faunistic studies are able countries had not been collected for this particular to monitor changes in the most abundant species but purpose, sampling and, subsequently, calculation less common species are only rarely captured. It is methods differed among countries.
Recommended publications
  • Coleoptera: Coccinellidae) in Turkey
    Türk. entomol. bült, 2017, 7 (2): 113-118 ISSN 2146-975X DOI: http://dx.doi.org/10.16969/entoteb.331402 E-ISSN 2536-4928 Original article (Orijinal araştırma) First record of Anatis ocellata (Linnaeus, 1758) (Coleoptera: Coccinellidae) in Turkey Anatis ocellata (Linnaeus, 1758) (Coleoptera: Coccinellidae)’nın Türkiye’deki ilk kaydı Şükran OĞUZOĞLU1* Mustafa AVCI1 Derya ŞENAL2 İsmail KARACA3 Abstract Coccinellids sampled in this study were collected from the Taurus cedar (Cedrus libani A. Rich.) at Gölcük Natural Park in Isparta and Crimean pine (Pinus nigra Arnold.) in Bilecik Şeyh Edebali University Campus. Anatis ocellata (Linnaeus, 1758) was found among the collected coccinellids and is reported for the first time in Turkish coccinellid fauna, after the identification of samples. Morphological features and taxonomic characters of this species are given with distribution and habitat notes. Keywords: Anatis ocellata, Bilecik, coccinellid, Isparta, new record Öz Gelin böcekleri, Isparta’da Gölcük Tabiat Parkı’nda Toros sediri (Cedrus libani A. Rich.) ve Bilecik Şeyh Edebali Üniversitesi Kampüsü’nde karaçam (Pinus nigra Arnold.) üzerinden toplanmıştır. Teşhis sonucunda toplanan örnekler arasında Anatis ocellata’nın bulunduğu ve Türkiye gelin böcekleri faunası için yeni kayıt olduğu belirlenmiştir. Bu çalışmada türün morfolojik özellikleri ile taksonomik karakteristikleri, yayılış ve habitat notları verilmiştir. Anahtar sözcükler: Anatis ocellata, Bilecik, coccinellid, Isparta, yeni kayıt 1 Süleyman Demirel Üniversitesi, Orman Fakültesi,
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Cambridge University Press 978-1-107-11607-8 — a Natural History of Ladybird Beetles M. E. N. Majerus , Executive Editor H. E. Roy , P
    Cambridge University Press 978-1-107-11607-8 — A Natural History of Ladybird Beetles M. E. N. Majerus , Executive Editor H. E. Roy , P. M. J. Brown Index More Information Index 2-isopropyl-3-methoxy-pyrazine, 238 281, 283, 285, 287–9, 291–5, 297–8, 2-phenylethylamine, 237 301–3, 311, 314, 316, 319, 325, 327, 329, 335 abdomen, 17, 20, 22, 24, 28–9, 32, 38, 42, 110, Adalia 4-spilota,80 114, 125, 128, 172, 186, 189, 209–10, Adalia conglomerata, 255 218 adaline, 108, 237, 241 Acacia, 197, 199 adalinine, 237 acaricides, 316 adelgids, 29, 49, 62, 65, 86, 91, 176, 199, 308, Acaridae, 217 310, 322 Acarina, 205, 217 Adonia, 44, 71 Acer pseudoplatanus, 50, 68, 121 aggregations, 163, 165, 168, 170, 178, 184, Acraea, 228, 297, 302 221, 312, 324 Acraea encedana, 302 Aiolocaria, 78, 93, 133, 276 Acraea encedon, 297, 302 Aiolocaria hexaspilota,78 Acyrthosiphon nipponicum, 101 Aiolocaria mirabilis, 133, 276 Acyrthosiphon pisum, 75, 77, 90, 92, 97–101, albino, 273 116, 239 Alces alces,94 Adalia, 5–6, 10, 22, 34, 44, 64, 70, 78, 80, 86, Aleyrodidae, 91, 310 123, 125, 128, 130, 132, 140, 143, 147, alfalfa, 119, 308, 316, 319, 325 159–60, 166–7, 171, 180–1, 218, 222, alimentary canal, 29, 35, 221 234, 237, 239, 241, 255, 259–60, 262, alkaloids, x, 99–100, 195–7, 202, 236–9, 241–2, 269, 279, 281, 284, 286, 298, 311, 325, 245–6 327, 335 Allantonematidae, 220 Adalia 10-punctata, 22, 70, 80, 86, 98–100, anal cremaster, 38, 40 104, 108, 116, 132, 146–7, 149, Anatis, 4, 17, 23, 41, 44, 66, 76, 89, 102, 131, 154, 156, 160, 174, 181–3, 188, 148, 165, 186, 191, 193,
    [Show full text]
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • The Green Spruce Aphid in Western Europe
    Forestry Commission The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management Edited by Keith R. Day, Gudmundur Halldorsson, Susanne Harding and Nigel A. Straw Forestry Commission ARCHIVE Technical Paper & f FORESTRY COMMISSION TECHNICAL PAPER 24 The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management A research initiative undertaken through European Community Concerted Action AIR3-CT94-1883 with the co-operation of European Communities Directorate-General XII Science Research and Development (Agro-Industrial Research) Edited by Keith R. t)ay‘, Gudmundur Halldorssorr, Susanne Harding3 and Nigel A. Straw4 ' University of Ulster, School of Environmental Studies, Coleraine BT52 ISA, Northern Ireland, U.K. 2 2 Iceland Forest Research Station, Mogilsa, 270 Mossfellsbaer, Iceland 3 Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Thorvaldsenvej 40, Copenhagen, 1871 Frederiksberg C., Denmark 4 Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, Surrey GU10 4LH, U.K. KVL & Iceland forestry m research station Forest Research FORESTRY COMMISSION, EDINBURGH © Crown copyright 1998 First published 1998 ISBN 0 85538 354 2 FDC 145.7:453:(4) KEYWORDS: Biological control, Elatobium , Entomology, Forestry, Forest Management, Insect pests, Picea, Population dynamics, Spruce, Tree breeding Enquiries relating to this publication should be addressed to: The Research Communications Officer Forest Research Alice Holt Lodge Wrecclesham, Farnham Surrey GU10 4LH Front Cover: The green spruce aphid Elatobium abietinum. (Photo: G. Halldorsson) Back Cover: Distribution of the green spruce aphid. CONTENTS Page List of contributors IV Preface 1. Origins and background to the green spruce aphid C. I. Carter and G. Hallddrsson in Europe 2.
    [Show full text]
  • Survey of Predatory Coccinellids (Coleoptera
    Survey of Predatory Coccinellids (Coleoptera: Coccinellidae) in the Chitral District, Pakistan Author(s): Inamullah Khan, Sadrud Din, Said Khan Khalil and Muhammad Ather Rafi Source: Journal of Insect Science, 7(7):1-6. 2007. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.007.0701 URL: http://www.bioone.org/doi/full/10.1673/031.007.0701 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science | www.insectscience.org ISSN: 1536-2442 Survey of predatory Coccinellids (Coleoptera: Coccinellidae) in the Chitral District, Pakistan Inamullah Khan, Sadrud Din, Said Khan Khalil and Muhammad Ather Rafi1 Department of Plant Protection, NWFP Agricultural University, Peshawar, Pakistan 1 National Agricultural Research Council, Islamabad, Pakistan Abstract An extensive survey of predatory Coccinellid beetles (Coleoptera: Coccinellidae) was conducted in the Chitral District, Pakistan, over a period of 7 months (April through October, 2001).
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Balsam Woolly Aphid Predator Studies, British Columbia, 1959-1967
    BALSAM WOOLLY APHID PREDATOR STUDIES, BRITISH COLUMBIA, 1959-1967 b, J. W. E. Ho..II, J. C. V. Holml and A. F. O.wlon FOREST RESEARCH LABORATORY VICTORIA, BRITISH COLUMBIA INFORMATION REPORT BC·X·23 ...... ..N .......,_u., .......t ,,",_.. FORESTRY BRANCH JULY, 1968 BAlBAM \l)()LLY APHID PllEDATOll STUDIES. BRITISH COLUYillIA, 1959-1967 by J. W. E. Harris, J. C. V. Holms and A. F. Dawson FOIlliST ru,;S~ARCH L\ BORA T'JRY VICTORIA, BRITISH COLl/llllIA INFtmhATIotJ fU,P\)HT dG-'<-2J D~PARrnENT OF FORESTRY AND RURAL D~\I];lJ)PHF.NT JOLY, 1968 BAlSMl WOOLLY APHID PREDATOR STUDIES, BRITISH COLUMBIA, 1959-1966 by J. w. E. Harris, J. C. V. Halms and A. F. Dawson1/ INTRODUCTION The balsam woolly aphid Adelges pleate (Ratzburg) (Homoptera: Adelgidae), is an important pest of true firs Abies species) in British Columbia where it was first found in 1958, near Vancouver. It was intro­ duced to North America from Europe early in the century, and has since spread or been re-introduced to the ~~ritirne Provinces and Quebec, the northeastern United States as far south as North Carolina, northern California, Oregon and 'hashington. On the mainland amabills fir (Abies amabilis (DougL) Forb.) is the principal infested species. Compared with other native true firs it is moderate~ susceptible to attack but because most infestation has occurred in mature and Qvermature stands, mortality has been heavy. The pest is found at Salmon Inlet and Howe Sound, in the mountains north of Vancouver, the Indian River Valley and the Lower Fraser River Valley east to the Harrison River drainage.
    [Show full text]
  • Genus Coccinella (Coccinellidae: Coleoptera)
    Sarhad J. Agric. Vol.29, No.2, 2013 GENUS COCCINELLA (COCCINELLIDAE: COLEOPTERA) FROM GILGIT- BALTISTAN WITH TWO NEW RECORDS FROM PAKISTAN MUHAMMAD ASHFAQUE1*, FARMAN ULLAH2 and MUHAMMAD ATHER RAFI1 1 Institute of Plant and Enviromental Protection, National Agriculture Research Centre, Islamabad – Pakistan. 2 Department of Plant Protection, The University of Agriculture, Peshawar – Pakistan. *Email: [email protected] ABSTRACT The genus Coccinella from Gilgit-Baltistan was revised and four species were confirmed. Coccinella iranica and C. redemita are reported here as new records for Pakistan. Diagnostic characters of each species are given along with colour markings of elytra and detail structure of genitalia. Remarks pertaining to taxonomic discussion, history, taxonomy status and regional record of distribution are given for each species. Keywords: Coccinella, Coccinellid beetles, ladybird beetles, Coccinellinae, Coccinellidae, New records, Gilgit-Baltistan, Pakistan Citation: Ashfaque. M.., F. Ullah and M. A. Rafi. 2013. Genus coccinella (coccinellidae: coleoptera) from gilgit-baltistan with two new records from Pakistan. Sarhad J. Agric. 29(2): 239-247 INTRODUCTION It is interesting that Linnaeus – the great naturalist’s first zoological contribution to the nomenclature was on Coccinella. He described this genus in 1758 with its 36 European representatives. Laterille put this genus under newly established Coccinellidae. Later on, Europen taxonomists did intensive work on this group of insects, notably Mulsant (1846, 1850 and 1866); Redtenbacher (1843); LeConte (1852); Crotch (1874); Weise (1885a,b; 1892 and 1900) and Ganglbauer (1899). The members of genus Coccinella Linnaeus, 1758 are aphidophagous and principally distributed in the Holarctic region with only a few species in the Oriental and/or Australian regions (Kovar, 1997).
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]