June 2011 Publication of the Gemini Observatory

Total Page:16

File Type:pdf, Size:1020Kb

June 2011 Publication of the Gemini Observatory June 2011 Publication of the Gemini Observatory June2011 1 4 Director’s Message 23 Laser First Light at Doug Simons Gemini South Céline d’Orgeville 6 Jupiter: Battered from the Outside, Turmoil 29 GeMS Commissioning from Within Progress Glenn Orton Benoit Neichel and François Rigaut 11 Peering into Eta 32 A Stellar Nursery in the Carinae’s Past with NICI Lagoon Nebula John Martin and Étienne Artigau Julia I. Arias and Rodolfo H. Barbá 14 The First Clear 34 Gemini’s Spotters: Evidence for QSO- Guardians of the Light Driven Feedback in a Stephen James O’Meara Galaxy Merger David Rupke 38 Gemini Instrumentation: An Update, and a Look 18 Science Highlights to the Future Nancy A. Levenson Eric Tollestrup 2 GeminiFocus On the cover: This image composite shows the new 42 Gemini’s Green Queue Gemini South laser guide star (LGS) and Other Green News system with a Peter Pessev and Bernadette Rodgers closeup of the 5-star LGS constellation as it appears in a small telescope. 46 Sharing Gemini’s Below, the laser propagation team, Wonders: Looking In… from left to right, includes: François and Out Rigaut, Benoit Neichel, Matthieu Peter Michaud, Janice Harvey, and Bec, Andrew Serio, Antonieta Garcia Camila Durán, Carlos Segura, Vanessa Montes, Maxime Boccas, 50 Australia’s 2010 Gemini Tomislav Vucina, School Astronomy GeminiFocus is a twice-annual (June and December) Gelys Trancho, publication of the Gemini Observatory Vincent Fesquet and Contest Celine D’Orgeville. Mailing address: Gemini telescope Christopher Onken 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA and staff photo by Phone: (808) 974-2500 Fax: (808) 974-2589 Manuel Paredes; inset LGS image by Online viewing: www.gemini.edu/efocus 52 Profile: Maxime Boccas. To receive a printed copy of GeminiFocus, please send a Mercedes Gomez request (with your mailing address) to: Back cover: Carolyn Collins Petersen [email protected]. GeminiFocus is also available in electronic format at: www.gemini.edu/geminifocus Gemini North primary mirror Managing Editor: Peter Michaud reflecting the light of sunset off the interior 55 Staff Photography Science Editor: Nancy A. Levenson of the dome. Gemini Michael Hoenig Associate Editors: Stephen James O’Meara and Carolyn image by Joy Pollard. Collins Petersen Designer: Eve Furchgott / Blue Heron Multimedia Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. June2011 3 by Doug Simons Director, Gemini Observatory Gemini’s Move to Base Facility Nighttime Operations Among the many options considered in response to the budget reductions we face at Gemini, operating the telescopes remotely from the base facilities quickly emerged as an important part of our transition plans. This approach represents significant savings by eliminating transportation and lodging costs for nighttime staff. It also improves safety by reduc- ing the amount of long-distance mountain driving required. Both sites are subject to harsh conditions that can change quickly and require evacuations due to extreme weather from time to time. On Cerro Pachón, remote observing is already conducted by our neighbors at the Southern Astrophysical Research (SOAR), telescope and the new sodium laser at Gemini South has been monitored and operated from Gemini North as part of our distributed laser Adaptive Optics (AO) support model. The difficulty of working on Mauna Kea’s approximately 4,200-meter (14,000-foot) elevation, in particular, is well known. We expect the bene- fits of moving to base facility operations in Hilo to be particularly advantageous to the Gemini North science operations staff, where they will enjoy a more oxygenated environment near sea level. A veteran of observ- ing on Mauna Kea myself, I once spent a total of a month in “open-air” observing conditions conducting a brown dwarf survey using a 24-inch (60-cm) telescope that used to be where Gemini North now stands. After that experience, the prospect of operating a telescope and instruments from Hilo is a profound and welcome paradigm shift for me. Interestingly, Gemini’s move from summit to base facility operations is part of a larger progression that’s oc- curring at many facilities. In most cases, reducing the cost of operating telescopes was an important driver in the decision to develop this new approach across astronomy. It is also doubtless enabled by modern technologies that permit a range of telemetry, diagnostics, and remote-control systems that even some 10-15 years ago was hard to achieve. I point this out because while this move at Gemini may seem novel, in reality, we’re riding the same “wave” that many other facilities are generating. I suspect that in the not-too-distant future, the default mode of operating telescopes will be via remote operations, not on-site. The accompanying photo shows Mauna Kea’s summit area. Each observatory circled has adapted to a remote observing mode in one form or another. At the W.M. Keck Observatory, for example, they have perfected the technique of classically running programs from Australia, Waimea, and sites across California. Dedi- cated standardized observing stations are used by Keck to minimize support requirements, while helping to ensure reliable and effective communications and data transmission. Staff is still present on the summit at 4 GeminiFocus night to operate the telescopes, but observations are boring observatories. The intent is to share costs conducted mostly off-site. with other facilities while never leaving them fully unattended. A similar model is used at the NASA InfraRed Tele- scope Facility (IRTF), though virtual private net- While we developed this project at Gemini, I deliber- Figure 1. work (VPN) connections and a simpler interface al- ately constrained the move to base facility operations Base facility low even greater flexibility for observers to connect only (vs. operations beyond Chile and Hawai‘i), to operations, in one worldwide. On the upper ridge of Mauna Kea, the set a well-defined objective for the project. Given form or another, is now commonplace United Kingdom InfraRed Telescope (UKIRT), UH budget constraints and all of the other activities on Mauna Kea. 2.2-meter, and Canada-France-Hawai‘i Telescope we’re managing as part of our transition plans, this The observatories (CFHT), are all fully remote-controlled from Hilo, seemed like a logical and prudent milestone to de- circled below, Honolulu, and Waimea. fine. Even though base facility nighttime operations including Keck, IRTF, UKIRT, UH will be the initial form of this new mode at Gemini, 2.2-meter, and An obvious concern with the absence of staff on-site we intend to use this as a bridge to broader engage- CFHT, all use is telescope safety and the ability to address problems ment and access of Gemini by our highly distributed remote observing that occur without any human intervention. Mainly, community in the future. Clearly the trend in global of some form today. The three this is addressed through the sophisticated use of communications is to increase bandwidth. This will facilities (indicated monitoring systems that continuously transmit data make it easier for astronomers at either dedicated by arrows) on –– like oil pressure in hydraulic drive systems, cool- sites, beyond Chile and Hawai‘i or their home insti- the upper ridge ant temperature, voltages on key electronic systems, tutions, to use easily accessible videocon and com- of Mauna Kea etc. In addition, cameras and microphones are used neighboring Gemini puter equipment, to conduct remote observations, are operated from to provide a network of “eyes” and “ears” for remote and/or eavesdrop on queue observations to evaluate Hilo, Honolulu, or observers. Remotely operated power distribution data being taken for their programs. Waimea. systems are integrated into facilities to make it pos- sible to power-cycle problematic control systems or shut off power-hungry electronics or compressors that do not need to be on during the day. While all of this adds to the complexity of a facility, this type of automation actually tends to increase its reliability when compared to more conven- tional approaches. In particular, through data log- ging, this approach to operating a complex facility makes it easier to trap developing failures in key subsystems before they cascade into serious prob- lems. All of this makes it possible to use predictive, not just preventive, maintenance, to reduce tele- scope downtime, cut costs, and improve efficiency. In addition, since we have well-established control Despite all of its benefits, Gemini’s reliance upon rooms in La Serena and Hilo and broadband com- queue observations has weakened the “organic” munications across all Gemini sites, and since the link that should exist between the observatory and telescopes overall are still quite new and modern, members of our user community. I am keen to nur- much of the core infrastructure needed to enable ture this link through more direct interaction be- this new mode is in place at Gemini already. tween the two. This link stands to enrich everyone involved. In this way, Gemini’s base facility opera- So, while pursuing this new operating mode carries tions plans are really just a segue to much more in- risks, from a technical standpoint Gemini is already novative and modern approaches to conducting ob- fairly well-poised to make this transition. As a final servations in the future — one that remains bright degree of safety in the entire system, and given the as we develop a sustainable and scientifically pro- propensity of remote observing elsewhere, we will ductive model to operate Gemini for years to come. pursue the formation of joint telescope nighttime support teams that are able to respond to unfore- Doug Simons is Director of the Gemini Observatory.
Recommended publications
  • NGC 6872 in the Constellation of Pavo 23 September 2014
    Image: NGC 6872 in the constellation of Pavo 23 September 2014 of free hydrogen, which is the basis material for new stars, meaning that if it weren't for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation. Provided by NASA Credit: ESA/Hubble & NASA / Acknowledgement: Judy Schmidt This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500,000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100,000 and 120,000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm—although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms 1 / 2 APA citation: Image: NGC 6872 in the constellation of Pavo (2014, September 23) retrieved 23 September 2021 from https://phys.org/news/2014-09-image-ngc-constellation-pavo.html This document is subject to copyright.
    [Show full text]
  • A Blast Wave from the 1843 Eruption of Eta Carinae
    1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2].
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • CANDIDATE X-RAY-EMITTING OB STARS in the CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS Matthew S
    For Publication in the Chandra Carina Complex Project Special Issue of the Astrophysical Journal Supplement Series Preprint typeset using LATEX style emulateapj v. 8/13/10 CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS Matthew S. Povich,1,2 Leisa K. Townsley,1 Patrick S. Broos,1 Marc Gagne,´ 3 Brian L. Babler,4 Remy´ Indebetouw,5 Steven R. Majewski,5 Marilyn R. Meade,4 Konstantin V. Getman,1 Thomas P. Robitaille,6,7 & Richard H. D. Townsend4 For Publication in the Chandra Carina Complex Project Special Issue of the Astrophysical Journal Supplement Series ABSTRACT We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela–Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV)and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: AV = 1–1.5 mag produced by foreground dust with a ratio of total-to-selective absorption RV =3.1 plus a contribution from local dust with RV > 4.0inthe Carina molecular clouds that increases as AV increases.
    [Show full text]
  • An Aboriginal Australian Record of the Great Eruption of Eta Carinae
    Accepted in the ‘Journal for Astronomical History & Heritage’, 13(3): in press (November 2010) An Aboriginal Australian Record of the Great Eruption of Eta Carinae Duane W. Hamacher Department of Indigenous Studies, Macquarie University, NSW, 2109, Australia [email protected] David J. Frew Department of Physics & Astronomy, Macquarie University, NSW, 2109, Australia [email protected] Abstract We present evidence that the Boorong Aboriginal people of northwestern Victoria observed the Great Eruption of Eta (η) Carinae in the nineteenth century and incorporated the event into their oral traditions. We identify this star, as well as others not specifically identified by name, using descriptive material presented in the 1858 paper by William Edward Stanbridge in conjunction with early southern star catalogues. This identification of a transient astronomical event supports the assertion that Aboriginal oral traditions are dynamic and evolving, and not static. This is the only definitive indigenous record of η Carinae’s outburst identified in the literature to date. Keywords: Historical Astronomy, Ethnoastronomy, Aboriginal Australians, stars: individual (η Carinae). 1 Introduction Aboriginal Australians had a significant understanding of the night sky (Norris & Hamacher, 2009) and frequently incorporated celestial objects and transient celestial phenomena into their oral traditions, including the sun, moon, stars, planets, the Milky Way and Magellanic Clouds, eclipses, comets, meteors, and impact events. While Australia is home to hundreds of Aboriginal groups, each with a distinct language and culture, few of these groups have been studied in depth for their traditional knowledge of the night sky. We refer the interested reader to the following reviews on Australian Aboriginal astronomy: Cairns & Harney (2003), Clarke (1997; 2007/2008), Fredrick (2008), Haynes (1992; 2000), Haynes et al.
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]
  • In This Issue:  a to K, Please Bring a Main Dish 1
    The Rosette Gazette Volume 21,, IssueIssue 1 Newsletter of the Rose CityCity AstronomersAstronomers January, 2009 RCA JANUARY 19 HOLIDAY POTLUCK! As weather prevented the December holiday meeting from taking place the January meeting of the Rose City Astronomers will be a holiday potluck and social gathering for all family members to be held in the OMSI Cafeteria. Each member is asked to bring a dish to serve 10-12 people. If your last name begins with . In This Issue: A to K, please bring a main dish 1 .. General Meeting 2 .. Club Officers L to Q, please bring an appetizer or side dish .... Magazines .... RCA Library R to Z, please bring a dessert 3 .. The Observer’s Corner Plates, silverware, and beverages/ice will be supplied by the club. Just bring your dish 7 .. Southern Galaxies along with a serving utensil and enjoy the holiday spirit of the RCA membership. 10. Dec. Board Minutes The Holiday Social is a great event to pick up some excellent holiday deals! Save time to 11. Telescope Workshop shop at the RCA Sales Table for your favorite astronomy gifts. In addition, the Swap .... Astro Imaging SIG Meet will be back by popular demand and there will be ample empty tables around the .... Science Sig .... Downtowners lobby for everyone who is interested in displaying items for the Swap Meet. 12. Calendar There will also be tables provided for interesting celestial displays. If you have taken any astronomy pictures this year and want to share them, this is your ideal opportu- nity. Members also bring their latest inventions and "astro stuff." If you have a fun gadget, item, or tool, please bring it in and show it off to the rest of the membership! Note that January 19 is the THIRD Monday of the month which is the evening of our normal general meeting.
    [Show full text]
  • Stars and Gas in the Very Large Interacting Galaxy NGC 6872
    A&A 464, 155–165 (2007) Astronomy DOI: 10.1051/0004-6361:20066023 & c ESO 2007 Astrophysics Stars and gas in the very large interacting galaxy NGC 6872 C. Horellou1 and B. Koribalski2 1 Onsala Space Observatory, Chalmers University of Technology, 439 92 Onsala, Sweden e-mail: [email protected] 2 Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia e-mail: [email protected] Received 12 July 2006 / Accepted 2 November 2006 ABSTRACT The dynamical evolution of the large (>100 kpc), barred spiral galaxy NGC 6872 and its small companion IC 4970 in the southern group Pavo is investigated. We present N-body simulations with stars and gas and 21 cm Hi observations carried out with the Australia Telescope Compact Array of the large-scale distribution and kinematics of atomic gas. Hi is detected toward the companion, corre- 9 10 sponding to a gas mass of ∼1.3 × 10 M. NGC 6872 contains ∼1.4 × 10 M of Hi gas, distributed in an extended rotating disk. 9 Massive concentrations of gas (∼10 M) are found at the tip of both tidal tails and towards the break seen in the optical northern arm near the companion. We detect no Hi counterpart to the X-ray trail between NGC 6872 and NGC 6876, the dominant elliptical galaxy in the Pavo group located ∼8 to the southeast. At the sensitivity and the resolution of the observations, there is no sign in the overall Hi distribution that NGC 6876 has affected the evolution of NGC 6872. There is no evidence of ram pressure stripping either.
    [Show full text]
  • Cryogenic Extragalactic Abstracts
    Printed_by_SSC Mar 25, 10 16:24Spitzer_Approved_Extragalactic Page 1/742 Mar 25, 10 16:24Spitzer_Approved_Extragalactic Page 2/742 Spitzer Space Telescope − General Observer Proposal #3126 Spitzer Space Telescope − General Observer Proposal #50134 A Complete IRAC Map of M31 The Local Group Dwarf Spheroidals Principal Investigator: Pauline Barmby Principal Investigator: Pauline Barmby Institution: SAO Institution: SAO Technical Contact: Steven Willner, Center for Astrophysics Technical Contact: Pauline Barmby, SAO Co−Investigators: Co−Investigators: Steven Willner, SAO Joseph Hora, SAO Michael Pahre, SAO Karl Gordon, STScI Matthew Ashby, SAO Tom Jarrett, SSC John Huchra, SAO Matthew Ashby, SAO Robert Gehrz, University of Minnesota Elisha Polomski, University of Minnesota Science Category: local group galaxies Charles Woodward, University of Minnesota Observing Modes: IracMap MipsPhot MipsScan Roberta Humphreys, University of Minnesota Hours Approved: 30.0 Karl Gordon, University of Arizona Joannah Hinz, University of Arizona Abstract: Charles Engelbracht, University of Arizona We propose to complete the Spitzer survey of the Local Group. The galaxies not Pablo Perez−Gonzalez, University of Arizona yet observed include most of the dwarf spheroidals, a galaxy type which, George Rieke, University of Arizona although numerous, has not been heavily studied by Spitzer so far. Imaging Lucianna Bianchi, Johns Hopkins University observations with IRAC and MIPS will yield a complete census of asymptotic giant David Thilker, Johns Hopkins University branch stars, probing mass loss in galaxies with a range of metallicities, masses, and environments. Long−wavelength MIPS observations will detect any Science Category: local group galaxies insterstellar dust or constrain the gas−to−dust ratio. Completing the Spitzer Observing Modes: IracMap observations of Local Group galaxies forms an important part of the Spitzer Hours Approved: 35.5 Legacy for future missions.
    [Show full text]
  • TABLE 1: the Sample
    TABLE 1: The Sample Index Name ®(J2000) ±(J2000) BT T Leda RC3 vh DL AB Notes 1 (h m s) ( ) (mag) Type Type Type (km s¡ ) (Mpc) (mag) ± 0 00 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 1 ESO 009-G010 17 39 31.76 85 18 37.3 12.70 3.9 Sbc SA(s)bc: 2421 33.9 0.613 ¡ 2 ESO 027-G001 21 52 26.37 81 31 51.1 12.78 5.0 SBc SB(s)c 2559 18.3 0.860 ¡ 3 ESO 027-G008 22 23 04.19 79 59 49.1 12.96 5.0 SBc SB(s)c? 2491 31.0 0.447 extra ¡ 4 ESO 056-G115 05 23 34.52 69 45 22.1 1.92 9.0 SBm SB(s)m 320 0.050 0.324 LMC, NED ¡ 5 ESO 060-G019 08 57 26.71 69 03 36.5 12.80 6.9 SBcd SB(s)d 1443 18.5 0.433 ¡ 6 ESO 091-G003 09 13 31.59 63 37 35.1 13.00 2.3 Sab SA(rs)ab 1906 20.8 0.974 extra ¡ 7 ESO 097-G013 14 13 09.95 65 20 21.2 12.03 3.4 Sb SA(s)b: 439 4.2 6.276 Circinus, NED ¡ 8 ESO 121-G006 06 07 29.69 61 48 26.9 10.74 5.1 Sc Sc pec: spin 1211 19.1 0.221 ¡ 9 ESO 121-G026 06 21 38.68 59 44 23.8 12.70 3.8 SBbc SB(rs)bc 2264 40.7 0.196 ¡ 10 ESO 136-G012 16 02 35.49 61 46 28.4 12.90 5.0 SBc SB(s)c: 4370 37.2 1.220 ¡ 11 ESO 137-G018 16 20 58.39 60 29 27.7 12.40 5.0 Sc SA(s)c: 626 6.8 1.049 NED ¡ 12 ESO 137-G034 16 35 14.11 58 04 48.1 12.39 0.4 S0/a SAB(s)0/a? 2747 32.9 1.444 NED ¡ 13 ESO 137-G038 16 40 52.50 60 23 39.5 12.89 4.1 SABb SAB(r)bc: 3624 29.6r 1.066 ¡ 0 14 ESO 138-G005 16 53 53.52 58 46 44.5 12.84 3.1 E/S0 SB0 ? pec 2648 37.0r 0.568 ¡ ¡ 15 ESO 138-G010 16 59 02.89 60 12 56.6 11.62 7.7 Sd SA(s)dm 1145 14.7 0.949 ¡ + 16 ESO 138-G029 17 29 18.45 62 27 54.7 12.89 1.0 S0/a (R)SAB(s)0 pec 4637 64.0r 0.357 PGC 60379 ¡ ¡ 17 ESO 183-G030 18 56 55.90 54 32
    [Show full text]