Lakhtin V., Lakhtin M., Aleshkin V. INTERACTION OF

Total Page:16

File Type:pdf, Size:1020Kb

Lakhtin V., Lakhtin M., Aleshkin V. INTERACTION OF Lakhtin V., Lakhtin M., Aleshkin V. G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Russia INTERACTION OF GLYCOSIDASES WITH CARBOHYDRATE-SENSITIVE REAGENTS Summary. The data on glycobiological aspects of 68 glycosidasases (interacting with carbohydrate-sensitive proteins and other reagents) from 430 sources are systemized and presented as a table. Key words: glycosidases, lectins, glycoconjugate recognition, biotechnology, microbiology, medicine. The data on at least 68 exo- and endoglycosidases from more than 430 sources are presented in the table (see below). Isolation of glycosidases using lectins The use of ConA-sorbents was especially effective for isolation of: shrimp chitinase (40 fold [f]) [905], bovine testicular lysosomal sialidase (25 f) [923], human placental lysosomal alpha- glucosidase (127 f) [960], human liver acid alpha-glucosidase (35-54 f) [707], flax linustatinase and linamarase as cyanogenic beta-glucosidases (32-44 f) [1276], human placental lysosomal alpha- glucosidase (146 f) [960], leguminous seed alpha-galactosidases (22-80 f) [972, 973, 977], human liver or placental acid beta-galactosidases (107-166 f) [960, 984, 985], feline or human liver lysosomal beta-galactosidase (45-78 f) [999, 1000, 1002, 1003], human liver acid beta-galactosidase of the patient with GM1-gangliosidosis (344 f) [1006], human placental acid beta-galactosidases (127-167 f) [1011, 924], wheat grain aleuronic alpha-mannosidase (49 f) [1034], mussel hepatopancreatic Zn2+-dependent alpha-mannosidase (71 f) [1037], human placental acid alpha- mannosidase (109 f) [960], goat kidney lysosomal alpha-mannosidase (27 f) [1056], mung bean beta- fructofuranosidase (40-90 f) [1107, 1109], pea beta-N-acetyl-D-glucosaminidases (70 f) [1031], human placental acid beta-N-acetyl-D-glucosaminidase (119 f) [960], ficus latex beta-N-acetyl-D- glucosaminidase (110 f) [1166], pea seed beta-N-acetyl-D-glucosaminidases (137-250 f) [1170], human placental acid beta-N-acetyl-D-hexoseaminidases (45-63 f) [1193, 1201], human spleen acid beta-N-acetyl-D-hexoseaminidases (40 f) [1208], human liver acid alpha-L-arabinofuranosidase (35- 54 f) [707], human lung alpha-L-iduronidase (540 f) [1242], and white mustard seed myrosinase (33 f) [1302]. The use of WGA-sorbents was especially effective in islolation of: wheat (endogenic) grain aleuronic beta-galactosidases (48 f) [991], human liver acid alpha-mannosidase (93 f) [707], fungal beta-N-acetyl-D-glucosaminidase (33 f) [968], wheat (endogenic) grain beta-N-acetyl-D- glucosaminidase (34 f) [1174], and human liver lactosylceramidase-II (75 f) [707]. LCA-sorbents were useful for isolation and multiple forms separation of: lentil alpha- galactosidase forms [979], bacteriophage hyaluronidase [1132], parasitical nematode beta-N-acetyl- D-hexososaminidase (10 f) [1182], and calf thyroid gland plasma membrane bound NAD- glycohydrolase [1295]. Other immobilized lectins were effective for the isolation of rat liver lysosomal alpha- glucosidase (RCA-sorbent, 36 fold) [617], influenza virion sialidase (CJA-I-sorbent) [918]. In many cases glycosidases were activated during lectin chromatography. Thus, slight activation (up to 10%) was observed in the cases of sorghum cyanogenic beta-glucosidase (dhurrinase) or black cherry prunasine hydrolases filtrated through ConA-sorbent [1275, 1278], human placental lysosomal alpha-glucosidase [960], chicken liver or bovine brain beta-galactosidases [995, 996], human cytosolic alpha-mannosidase filtrated through lectin sorbent [1042], monkey testicular 1 hyaluronidase [1139], or potato tuber beta-fructofuranosidase [1104]. Significant levels of glycosidase activation were registrated in the following cases: rabbit kidney neutral beta-glucosidase filtrated through lectin sorbent (18% activation) [962], human placental beta-galactosidase (50%) [985], human liver acid beta-galactosidase of the patient with GM1- gangliosidosis (few fold activation) [1006], rabbit kidney neutral beta-galactosidase filtrated through lectin sorbent (18% activation) [962], guinea pig liver acid alpha-mannosidase (42% activation) [1059], potato tuber beta-fructofuranosidase (84% activation) [1105]. Interestingly, activator(s) of glycosidases can be also activated during lectin chromatography, as it was shown for glucosylceramidase activator proteins from human spleen (up to 30%) [1148]. Thus, glycosidase activation can be influenced by elimination of glycosidase inhibitor(s) [1105], or the presence of endogenic activating factors. In a number cases, glycosidase activation was accompanied with significant levels of enzyme purification at the step of lectin chromatography [960, 985, 1005, 1106]. A lot of examples on separation of enzyme multiple forms can be found in the table. For example, mammalian lysosomal (acid) glycosidase forms with affinity to lectins can be simply separated from cytosolic (neutral) glycosidase forms without affinity to the same lectins [707, 958, 962, 1192, 1216]. Fungal purified glycosidase forms having similar sugar composition can be further separated on lectin sorbent using elution with sugar gradient [876]. A set of lectins allows to reveal or separate glycosidase forms, as it was demonstrated for human liver acid beta-galactosidase [1008], radish or castor bean beta-fructofuranosidases [1098, 1103], sweet wormwood or rat liver beta-N- acetyl-D-glucosaminidases [952, 1128], human intestinal sucrase-isomaltase [892]. Interestingly, mutual conversion of isoenzyme forms can take place [828, 1008]. Sometimes, glycosidases reveal strong binding to lectin sorbents. For example, immobilization of fungal beta-glucosidase on ConA-Macrosorb has taken place even in the presence of 0,5 M lectin- specific sugar and 10% ethanol [949]. In another cases the presence of ethylene glycol or borate together with sugar was needed for successful elution of glycosidases bound to lectin sorbents [1190, 1118]. Retaining of glycosidase activity of enzyme bound to lectin allows using lectin matrixes as affinity carriers for preparing biocatalysts (see Chapter 1). Sometimes, low affinity interaction between glycosidases and lectin sorbents result in enzyme or enzyme form retardation in eluates without use of sugar for elution [952, 968, 1098]. Interestingly, a number of glycopeptides and glycans from glycoproteins can be retarded during lectin chromatography, depending on glycan structure and lectin type (see Chapter 1). Coupled/ sequential column technique was applied for purification of the following glycosidases: bacterial cell wall zymogenic form of lysozyme (combination of immobilized hemoglobin and ConA, 62 f) [914], trichinella larval beta-N-acetyl-D-hexoseaminidases (filtration through DEAEC followed by affinity chromatography on LCA-sorbent) [1182], human liver lysosomal alpha-L-iduronidase (ConA and Blue agarose, 380 f) [1241]. Few cases include the use of lectin sorbents for immobilization of ligands interacting with glycosidases (for "sandwich" chromatography of glycosidases) [1069, 1070, 1238, 1253]. It shoud be noted that the use of lectins (RCA-I and others) in study of pathological forms of glycosidases may be of diagnostical significanca. Examples of glycosidases from human tissues and cell lines from patients with liver disorders, I-cell disease, mucolipidosis-II, GM1 gangliosidosis, leukaemic diseases can be found in the general table. Glycosidases can interact with endogenic lectins [1019, 1174, 1196, 1219]. As a result of glycosidase-lectin complexes, modulation of glycosidase activity can be revealed (see Chapter 1). Carbohydrate moiety of glycosidases As for other enzyme classes and esterases described above, carbohydrate moiety of glycosidases are characterized as wide varying one: from very low contents (<1% w/w) in cases of bacterial beta- 2 amylase [812], fungal beta-glucosidase [946], or rat liver mannosidase-I from Golgi apparatus [1271] up to 45-80% in the cases of Aspergillus cellulaes and beta-glucosidase [861, 938], yeast glucoamylase [847], beta-fructofuranosidase [1065] and exo-beta-1,3-D-glucanase [1231], or castor bean beta-fructofuranosidase [1102]. Interestingly, too low sugar content does not allow to interact with lectin properly. In such cases special conditions are needed. Thus, Man9GlcNAc-splitting alpha-mannosidase must be incubated with ConA-sorbent for 16 hours to increase its binding ability from 0 up to 70% [1271]. Specific interaction in this case was supported by experiment with EndoH-treated enzyme which lost ability for further interaction with lectin. On the other hand, polysaccharide-associated enzyme with relatively high content of sugars can not interact with the same lectin. Thus, Candida exo-beta-D-glucanase treated with beta-glucosidase reveals ability to be precipitated with ConA [1231]. However, native enzyme (68% sugars, mainly glucose and mannose) does not bind to ConA-sorbent nor be precipitated with non-immobilized lectin [1231]. In some cases carbohydrate composition of glycosidase sanples was characterized by the presence of L-rhamnose [813, 910], L-arabinose [971], or both sugars [976]. However, many microbial glycosidases include sugar residues which are typical for glycans linked to proteins [280, 692, 866, 898, 987, 1161]. That is why the use of carbohydrate-binding proteins in study of glycosidases would be of special interest for further glycan structure analysis or separation of glycosidase multiple forms. A set of lectins with specificities needed can be selected from the table. Carbohydrate moiety of
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Microbial Enterotypes Beyond Genus Level: Bacteroides Species As A
    Gut Microbes ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/kgmi20 Microbial enterotypes beyond genus level: Bacteroides species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides in overweight subjects Lars Christensen, Claudia V. Sørensen, Frederikke U. Wøhlk, Louise Kjølbæk, Arne Astrup, Yolanda Sanz, Mads F. Hjorth & Alfonso Benítez-Páez To cite this article: Lars Christensen, Claudia V. Sørensen, Frederikke U. Wøhlk, Louise Kjølbæk, Arne Astrup, Yolanda Sanz, Mads F. Hjorth & Alfonso Benítez-Páez (2020) Microbial enterotypes beyond genus level: Bacteroides species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides in overweight subjects, Gut Microbes, 12:1, 1847627, DOI: 10.1080/19490976.2020.1847627 To link to this article: https://doi.org/10.1080/19490976.2020.1847627 © 2020 The Author(s). Published with View supplementary material license by Taylor & Francis Group, LLC. Published online: 15 Dec 2020. Submit your article to this journal Article views: 1490 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=kgmi20 GUT MICROBES https://doi.org/10.1080/19490976.2020.1847627 RESEARCH PAPER Microbial enterotypes beyond genus level: Bacteroides species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Manual D'estil Per a Les Ciències De Laboratori Clínic
    MANUAL D’ESTIL PER A LES CIÈNCIES DE LABORATORI CLÍNIC Segona edició Preparada per: XAVIER FUENTES I ARDERIU JAUME MIRÓ I BALAGUÉ JOAN NICOLAU I COSTA Barcelona, 14 d’octubre de 2011 1 Índex Pròleg Introducció 1 Criteris generals de redacció 1.1 Llenguatge no discriminatori per raó de sexe 1.2 Llenguatge no discriminatori per raó de titulació o d’àmbit professional 1.3 Llenguatge no discriminatori per raó d'ètnia 2 Criteris gramaticals 2.1 Criteris sintàctics 2.1.1 Les conjuncions 2.2 Criteris morfològics 2.2.1 Els articles 2.2.2 Els pronoms 2.2.3 Els noms comuns 2.2.4 Els noms propis 2.2.4.1 Els antropònims 2.2.4.2 Els noms de les espècies biològiques 2.2.4.3 Els topònims 2.2.4.4 Les marques registrades i els noms comercials 2.2.5 Els adjectius 2.2.6 El nombre 2.2.7 El gènere 2.2.8 Els verbs 2.2.8.1 Les formes perifràstiques 2.2.8.2 L’ús dels infinitius ser i ésser 2.2.8.3 Els verbs fer, realitzar i efectuar 2.2.8.4 Les formes i l’ús del gerundi 2.2.8.5 L'ús del verb haver 2.2.8.6 Els verbs haver i caldre 2.2.8.7 La forma es i se davant dels verbs 2.2.9 Els adverbis 2.2.10 Les locucions 2.2.11 Les preposicions 2.2.12 Els prefixos 2.2.13 Els sufixos 2.2.14 Els signes de puntuació i altres signes ortogràfics auxiliars 2.2.14.1 La coma 2.2.14.2 El punt i coma 2.2.14.3 El punt 2.2.14.4 Els dos punts 2.2.14.5 Els punts suspensius 2.2.14.6 El guionet 2.2.14.7 El guió 2.2.14.8 El punt i guió 2.2.14.9 L’apòstrof 2.2.14.10 L’interrogant 2 2.2.14.11 L’exclamació 2.2.14.12 Les cometes 2.2.14.13 Els parèntesis 2.2.14.14 Els claudàtors 2.2.14.15
    [Show full text]
  • RS2 AX2 Total AR2 AR C15:02 AR C17:12 AR C17:02 AR C19:12
    Table S1 Content of macronutrients, wholegrain, dietary fibres, resistant starch, arabinoxylan and alkylresorcinol homologs in the study products Energy1 Protein1 Fat1 CHO1 WG1 Total DF1 RS2 AX2 Total AR2 AR C15:02 AR C17:12 AR C17:02 AR C19:12 AR C19:02 AR C21:12 AR C21:02 AR C23:12 AR C23:02 AR C25:12 AR C25:02 (MJ/100g) (g/100g) (g/100g) (g/100g) (g/100g) (g/100g) (g/100g) (g/100g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) Wholegrain products Rolled Oats 1.43 13 6.5 56 100 10 6.1 2.5 0 0 0 0 0 0 0 0 0 0 0 0 Oat flakes 1.65 12 6 68 84 9 8.1 2.2 0 0 0 0 0 0 0 0 0 0 0 0 Wholegrain rye kernel bread 0.8 6 1 35 50 8 5.3 18.4 934.2 13.4 33.0 173.5 76.4 213.8 60.3 176.9 29.3 74.5 21.4 61.7 Wholegrain wheat buns 0.97 9.5 2.5 38 50 9 4.8 9.1 352.1 1.5 2.6 16.3 18.0 104.5 14.1 152.1 0.0 30.7 0.0 12.2 Wholegrain wheat pasta 1.45 14 2 65 55 7 2.6 5.4 313.3 0.0 0.0 2.3 3.8 37.1 11.4 172.0 6.5 58.6 0.0 21.4 Wholegrain wheat kernels 1.41 11 2.5 61 100 12 7.8 7.3 652.7 3.2 4.1 25.3 28.0 185.3 21.3 289.9 0.0 65.0 0.0 30.6 Wholegrain bulgur 1.49 11 1.5 65 100 13 3.2 4.5 376.9 4.1 4.5 18.6 22.2 121.2 13.7 153.7 0.0 27.7 0.0 11.3 Wholegrain rye crisp bread 1.45 9 1.5 66 90 15 7.2 9.5 1120.8 16.4 40.1 202.5 93.1 263.1 71.9 211.8 35.4 87.7 23.0 75.9 Refined grain products Wheat-rice flakes 1.61 14 1.5 76 - 2.5 4.6 1.5 130.6 1.5 1.6 5.5 6.5 37.0 4.8 56.7 0.0 11.8 0.0 5.1 Oat flakes 1.65 12 6 68 84 9 2.2 0 0 0 0 0 0 0 0 0 0 0 0 Maslin rye bread3 1.06 9 5 38 - 5 3.7 8.8 597.8 9.5 21.1 114.3 48.1 136.4 39.9 112.9 20.0
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0225797 A1 Northen Et Al
    US 20120225797A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0225797 A1 Northen et al. (43) Pub. Date: Sep. 6, 2012 (54) MULTIPLEXED SCREENING OF ENZYME (22) Filed: Feb. 1, 2012 ACTIVITIES USING NANOSTRUCTURE-NITIATORMASS Related U.S. Application Data SPECTROMETRY (60) Provisional application No. 61/438,586, filed on Feb. 1, 2011. (75) Inventors: Trent R. Northen, Walnut Creek, CA (US); Wolfgang E. Reindl, Publication Classification Berkeley, CA (US); Kai Deng, (51) Int. C. Albany, CA (US); Seema Singh, C40B 30/08 (2006.01) Fremont, CA (US); Anup K. Singh, C40B 40/04 (2006.01) Danville, CA (US) (52) U.S. Cl. ............................................. 506/11:506/15 (73) Assignees: Sandia Corporation, Livermore, (57) ABSTRACT CA (US); The Regents of the Disclosed herein are methods, compositions and systems for University of California, Oakland, analyzing and detecting enzyme activity. For examples, CA (US) methods, compositions and systems for parallel detection and analysis of enzymatic activities of enzymes in complex bio (21) Appl. No.: 13/363,695 logical mixtures are provided. b ii. Sif cleanup gyCohydrolase S activity Patent Application Publication Sep. 6, 2012 Sheet 1 of 14 US 2012/0225797 A1 glycohydrolase activity & & sugar units periests if hexoses C cleaved sugas sits assifioritates: tsg SS Figure I Patent Application Publication Sep. 6, 2012 Sheet 2 of 14 US 2012/0225797 A1 Replacement Sheet Figure 2 Patent Application Publication Sep. 6, 2012 Sheet 3 of 14 US 2012/0225797 A1 Replacement Sheet Mass Figure 3 Patent Application Publication Sep. 6, 2012 Sheet 4 of 14 US 2012/0225797 A1 Replacement Sheet a),t 100% -- Glucose b) 100% : -- Glucose w 3 xylose k 8 xylose 88% 30 & As ar : : -" s : S.
    [Show full text]
  • New Developments of Polysaccharide Synthesis Via Enzymatic Polymerization
    No. 8] Proc. Jpn. Acad., Ser. B 83 (2007) 215 Review New developments of polysaccharide synthesis via enzymatic polymerization By Shiro KOBAYASHIÃ1;y (Communicated by Hitosi NOZAKI, M.J.A.) Abstract: This review focuses on the in vitro synthesis of polysaccharides, the method of which is ‘‘enzymatic polymerization’’ mainly developed by our group. Polysaccharides are formed by repeated glycosylation reactions between a glycosyl donor and a glycosyl acceptor. A hydrolysis enzyme was found very efficient as catalyst, where the monomer is designed based on the new concept of a ‘‘transition-state analogue substrate’’ (TSAS); sugar fluoride monomers for polycondensation and sugar oxazoline monomers for ring-opening polyaddition. Enzymatic polymerization enabled the first in vitro synthesis of natural polysaccharides such as cellulose, xylan, chitin, hyaluronan and chondroitin, and also of unnatural polysaccharides such as a cellulose–chitin hybrid, a hyaluronan–chondroitin hybrid, and others. Supercatalysis of hyaluronidase was disclosed as unusual enzymatic multi-catalyst functions. Mutant enzymes were very useful for synthetic and mechanistic studies. In situ observations of enzymatic polymerization by SEM, TEM, and combined SAS methods revealed mechanisms of the polymerization and of the self-assembling of high-order molecular structure formed by elongating polysaccharide molecules. Keywords: polysaccharide synthesis, enzymatic polymerization, cellulose, chitin, glyco- saminoglycan, hybrid polysaccharide bond with a complicated structure (Fig. 2).6) Al- Introduction though the modification reactions of polysaccha- Polysaccharides are found in all living cells and rides to prepare a new material like cellulose acetate play critical biological roles in nature. They belong from cellulose have long been known, chemical to one of three major classes of natural biomacro- synthesis of polysaccharides via the glycosidic bond molecules besides nucleic acids and proteins formation had not been successful, despite many (Fig.
    [Show full text]
  • Ep 2258837 A1
    (19) & (11) EP 2 258 837 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.12.2010 Bulletin 2010/49 C12N 9/28 (2006.01) B08B 7/00 (2006.01) B08B 17/02 (2006.01) C11D 3/386 (2006.01) (21) Application number: 10180241.1 (22) Date of filing: 07.09.2005 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Deinhammer, Randy HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Wake Forest, NC 27587 (US) SK TR • Andersen, Carsten 3500 Værløse (DK) (30) Priority: 10.09.2004 US 608535 P (74) Representative: Kofoed, Gertrud Sonne (62) Document number(s) of the earlier application(s) in Novozymes A/S accordance with Art. 76 EPC: Patents 05795624.5 / 1 791 966 Krogshoejvej 36 2880 Bagsvaerd (DK) (71) Applicants: • Novozymes North America, Inc. Remarks: Franklinton, North Carolina 27525 (US) This application was filed on 27-09-2010 as a • Novozymes A/S divisional application to the application mentioned 2880 Bagsvaerd (DK) under INID code 62. (54) Methods for preventing, removing, reducing, or disrupting biofilm (57) The present invention relates to methods for preventing, removing, reducing, or disrupting biofilm present on a surface, comprising contacting the surface with an alpha-amylase derived from a bacterium. EP 2 258 837 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 258 837 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims priority from U.S. provisional application entitled "Methods for preventing, removing, reducing, or disrupting biofilm", filed on September 8, 2004 (serial number 60/608,535) which is hereby incorporated by reference.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]