Processing of Columbite-Tantalite Ores and Concentrates for Niobium and Niobium Compounds in Electronic Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Progress the Business and Technology of Heat Treating ® May/June 2008 • Volume 8, Number 3
An ASM International® HEATPublication TREATING PROGRESS THE BUSINESS AND TECHNOLOGY OF HEAT TREATING ® www.asminternational.org MAY/JUNE 2008 • VOLUME 8, NUMBER 3 HEAT TREATMENT OF LANDING GEAR HEAT TREAT SIMULATION MICROWAVE HEATING SM Aircraft landing gear, such as on this U.S. Navy FA18 fighter jet, must perform under severe loading conditions and in many different environments. HEAT TREATMENT OF LANDING GEAR The heat treatment of rguably, landing gear has Alloys Used perhaps the most stringent The alloys used for landing gear landing gear is a complex requirements for perform- have remained relatively constant operation requiring ance. They must perform over the past several decades. Alloys A under severe loading con- like 300M and HP9-4-30, as well as the precise control of time, ditions and in many different envi- newer alloys AF-1410 and AerMet ronments. They have complex shapes 100, are in use today on commercial temperature, and carbon and thick sections. and military aircraft. Newer alloys like control. Understanding the Alloys used in these applications Ferrium S53, a high-strength stainless must have high strengths between steel alloy, have been proposed for interaction of quenching, 260 to 300 ksi (1,792 to 2,068 MPa) landing gear applications. The typical racking, and distortion and excellent fracture toughness (up chemical compositions of these alloys to100 ksi in.1/2, or 110 MPa×m0.5). are listed in Table 1. contributes to reduced To achieve these design and per- The alloy 300M (Timken Co., distortion and residual formance goals, heat treatments Canton, Ohio; www.timken.com) is have been developed to extract the a low-alloy, vacuum-melted steel of stress. -
Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit). -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Columbium (Niubium) and Tantalum
COLUMBIUM (NIOBIUM) AND TANTALUM By Larry D. Cunningham Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. Columbium [Niobium (Nb)] is vital as an alloying element in economic penalty in most applications. Neither columbium nor steels and in superalloys for aircraft turbine engines and is in tantalum was mined domestically because U.S. resources are of greatest demand in industrialized countries. It is critical to the low grade. Some resources are mineralogically complex, and United States because of its defense-related uses in the most are not currently (2000) recoverable. The last significant aerospace, energy, and transportation industries. Substitutes are mining of columbium and tantalum in the United States was available for some columbium applications, but, in most cases, during the Korean Conflict, when increased military demand they are less desirable. resulted in columbium and tantalum ore shortages. Tantalum (Ta) is a refractory metal that is ductile, easily Pyrochlore was the principal columbium mineral mined fabricated, highly resistant to corrosion by acids, a good worldwide. Brazil and Canada, which were the dominant conductor of heat and electricity, and has a high melting point. pyrochlore producers, accounted for most of total estimated It is critical to the United States because of its defense-related columbium mine production in 2000. The two countries, applications in aircraft, missiles, and radio communications. however, no longer export pyrochlore—only columbium in Substitution for tantalum is made at either a performance or upgraded valued-added forms produced from pyrochlore. -
Development of Low-Cost Casting Titanium Alloys: an Integrated Computational
Development of Low-cost Casting Titanium Alloys: An Integrated Computational Materials Engineering (ICME) Guided Study Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zhi Liang Graduate Program in Materials Science and Engineering The Ohio State University 2018 Dissertation Committee Professor Alan A. Luo, Advisor Professor Glenn Daehn Professor Ji-cheng Zhao Copyrighted by Zhi Liang 2018 Abstract Titanium alloys have proved to be important lightweight structural materials since 1960’s, due to their excellent intermediate temperature mechanical properties, corrosion resistance and weldability. Their good property-to-weight ratios make them ideal for many high-end and weight-sensitive applications. However, the application of titanium alloys is still limited due to the high costs in raw materials and manufacturing, indicating the importance of developing new cost-effective titanium alloys. Compared with other lightweight structural alloys (e.g. aluminum, magnesium), the raw material cost for titanium alloys is generally considered as expensive due to its expensive alloying elements such as vanadium, molybdenum, and tin. The cost issue is further amplified by the difficulties in using conventional machining methods for component-shaping due to the low thermal conductivity. Therefore, cost-effective titanium alloys should address either aspect. This work focuses on the goal of developing new cost-effective Ti-Al-Fe- Mn titanium alloys for the casting process via Integrated Computational Materials Engineering (ICME) approach by using cheaper alloying elements and net-shape manufacture process. Calculation of Phase Diagram (CALPHAD) work on the Ti-Al-Mn ternary system was conducted to establish the reliable thermodynamic database to guide the alloy design. -
Effect of Compound Jacketing Rolling on Microstructure and Mechanical
EFFECT OF COMPOUND JACKETING ROLLING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SUPERALLOY GH4720Li Jinglong Qu 1, Minqing Wang 1, Jianxin Dong 2, Guilin Wu 3, Ji Zhang 1 1 Central Iron and Steel Research Institute, Superalloy Department, No.76, Xueyuan Nanlu, Beijing, 100081, China 2 University of Science and Technology Beijing, Department of Materials Science and Technology, No.30, Xueyuan Lu, Beijing, 100083,China 3 Northeast Special Steel Group Co., Ltd., Liaoning Fushun, 113001, China Keywords: GH4720Li Alloy, Compound Jacketed Rolling, Microstructure, γ′ phase Abstract In this paper, a compound jacketed rolling technique for superalloy GH4720Li is experimentally investigated. The results show that microstructure of GH4720Li is susceptible to hot working parameters. When rolling temperature is about 1130ºC, a fine-grained microstructure, excellent mechanical properties and high yield strength can be obtained. In addition, the rolling temperature can be controlled effectively, friction force between ingot and roller can be reduced, surface cracking induced by rolling can be avoided, and uniform microstructure can be obtained using compound jacketing. When accumulative strain of rolling is greater than 65%, the coarse columnar dendritic microstructure can be refined completely and grain size of ASTM 8 obtained. After heat treatment, GH4720Li bars exhibit excellent mechanical properties. Introduction GH4720Li is a high strength and difficult-to-deform superalloy with excellent mechanical, corrosion resistant and oxidation resistant properties. It is now widely used in aircraft and land-based turbine discs. In practice, the temperature required for a long-term use of GH4720Li is below 700 °C. The weight percent of Al+Ti is as high as 7.5%, and the amount of γ′ strengthening phase is as high as 40%. -
Tin, Tungsten, and Tantalum Deposits of South Dakota
TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais sance trip in September, 1908, together with such reviews of the his tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered. -
Radiation Characterisation for New Tantalum Polymer Capacitors
1 Radiation Characterisation for New Tantalum Polymer Capacitors P. Martin, I. Lopez-Calle, E. Muñoz, M. Domínguez, M. Morales, D. Núñez, D. Lacombe, Y. Morilla, C. Mota, J. Pedroso. (polyethylenedioxythiophene), with same successful results Abstract —Polymer tantalum capacitor technology was than standard manganese dioxide tantalum capacitors [1]. developed in response to demands from the market to lower the The radiation test has been performed at RadLab [2] [3] ESR of tantalum capacitors while preserving their small case radiation facility from ALTER TECHNOLOGY, which is size and high reliability. The technology is promising in several awarded with ISO-17025 accreditation to perform radiation aspects. The higher quality interface between the dielectric and test according to ESCC 22900, MIL-STD-750 and MIL-STD- the polymer cathode increases the breakdown voltage of the 883 TM1019, including the dosimetry process; and the device, as well as reducing its DC leakage current, even at extreme radiation exposure conditions. laboratory suitability for MIL-STD-883 and MIL-STD-750 provided by the Defense Logistics Agency (DLA). These I. INTRODUCTION accreditations make this state-of-the-art radiation facility one of a kind. Passive parts and particularly capacitors offering for space applications have evolved significantly during past few years. II. DESCRIPTION OF THE DEVICES UNDER TEST New materials and structures aiming to offer advanced electrical performance and improving the ratio capacitance A. Solid-electrolyte tantalum capacitors per volume of these components have been introduced Solid-electrolyte tantalum capacitors were first developed recently. and commercially produced in the 1950s. They represented a Additionally, future missions approved by ESA where high quantum leap forward in miniaturization and reliability over levels of radiation are involved, and the lack of experimental data corresponding to these new technologies in families existing wound-foil wet electrolytic capacitors. -
Primary Mill Fabrication
Metals Fabrication—Understanding the Basics Copyright © 2013 ASM International® F.C. Campbell, editor All rights reserved www.asminternational.org CHAPTER 1 Primary Mill Fabrication A GENERAL DIAGRAM for the production of steel from raw materials to finished mill products is shown in Fig. 1. Steel production starts with the reduction of ore in a blast furnace into pig iron. Because pig iron is rather impure and contains carbon in the range of 3 to 4.5 wt%, it must be further refined in either a basic oxygen or an electric arc furnace to produce steel that usually has a carbon content of less than 1 wt%. After the pig iron has been reduced to steel, it is cast into ingots or continuously cast into slabs. Cast steels are then hot worked to improve homogeneity, refine the as-cast microstructure, and fabricate desired product shapes. After initial hot rolling operations, semifinished products are worked by hot rolling, cold rolling, forging, extruding, or drawing. Some steels are used in the hot rolled condition, while others are heat treated to obtain specific properties. However, the great majority of plain carbon steel prod- ucts are low-carbon (<0.30 wt% C) steels that are used in the annealed condition. Medium-carbon (0.30 to 0.60 wt% C) and high-carbon (0.60 to 1.00 wt% C) steels are often quenched and tempered to provide higher strengths and hardness. Ironmaking The first step in making steel from iron ore is to make iron by chemically reducing the ore (iron oxide) with carbon, in the form of coke, according to the general equation: Fe2O3 + 3CO Æ 2Fe + 3CO2 (Eq 1) The ironmaking reaction takes place in a blast furnace, shown schemati- cally in Fig. -
Vysoké Učení Technické V Brně Dielektrické
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV FYZIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF PHYSICS DIELEKTRICKÉ VLASTNOSTI TENKÝCH VRSTEV OXIDŮ TANTALU A NIOBU DIELECTRIC PROPERTIES OF THIN TANTALUM AND NIOBIUM OXIDE LAYERS ZKRÁCENÁ VERZE DOKTORSKÉ PRÁCE SHORT VERSION OF DOCTORAL THESIS AUTHOR Ing. INAS ABUETWIRAT AUTOR PRÁCE SUPERVISOR Assoc. Prof. Ing. KAREL LIEDERMANN, Ph.D, MEng. VEDOUCÍ PRÁCE BRNO 2014 ABUETWIRAT, I. Dielectric properties of thin tantalum and niobium oxide layer. Brno: Brno University of Technology, Faculty of Electrical Engineering and Communication, 2014, 32 p., Research Advisor: Karel Liedermann, PhD, MEng, Assoc. Prof. © Inas Abuetwirat, 2014 KLÍČOVÁ SLOVA Dielektrická spektroskopie, dielektrická relaxace, dielektrická spektra, elektrická vodivost, oxid tantalu, oxid niobu. KEYWORDS Dielectric spectroscopy, dielectric relaxation, dielectric spectra, electrical conductivity, tantalum oxide, niobium oxide. Depository of the manuscript: Department of Science and Research, Dean’s Office, FEEC BUT Brno, Technická 10, 616 Brno. Contents 1. INTRODUCTION............................................................................................................. 1 2. MATERIAL UNDER STUDY......................................................................................... 2 2.1. Tantalum pent-oxide (Ta2O5) ...................................................................................... 2 2.2. Niobium pent-oxide -
Simulation of Intrinsic Inclusion Motion and Dissolution During the Vacuum Arc Remelting of Nickel Based Superalloys W
SIMULATION OF INTRINSIC INCLUSION MOTION AND DISSOLUTION DURING THE VACUUM ARC REMELTING OF NICKEL BASED SUPERALLOYS W. Zhang, P.D. Lee and M. McLean Department of Materials, Imperial College London SW7 2BP, UK R.J. Siddall Special Metals Limited, Wiggin Works, Holmer Road Hereford HR4 9SL, UK dissolution of intrinsic particles for typical melt conditions of Abstract INCONEL 7 18’. Vacuum Arc Remelting (VAR) is one of the state-of-the-art Introduction secondaryre-melting processesthat are now routinely used to improve the homogeneity, purity and defect concentration in The VAR process has been investigated previously by both modern turbine disc alloys. The last is of particular importance experimental and mathematicaltechniques. Early mathematical since, as the yield strength of turbine disc alloys has approachessolved for heat transfer and approximated the fluid progressively increasedto accommodateincreasingly stringent flow by using an enhancedthermal conductivity in the molten design requirements, the fracture of these materials has region [l]. The next stage of modeling complexity become sensitive to the presence of ever smaller defects, incorporated the fluid flow using a quasi-steady state particularly inclusions. During the manufacture of these alloys assumption [2,3]. More recently Jardy et al. [4] presented a extrinsic defects can be introduced in the primary alloy model that simulated the transient growth of the ingot and production stage from a variety of sources; these include macrosegregation.In the last few years some authors have ceramic particles originating from crucibles, undissolved used macromodelsto investigate how the formation of defects tungsten (or tungsten carbide) and steel shot. In addition such as freckles correlated to operational parameters[.5,6]. -
Geology of the South Pass Area, Fremont County, Wyoming
Geology of the South Pass Area, Fremont County, Wyoming By RICHARD W. BAYLEY, PAUL DEAN PROCTOR,· and KENT C. CONDIE GEOLOGICAL SURVEY PROFESSIONAL PAPER 793 Describes the stratigraphy) structure) and metamorphism of the South Pass area) and the iron and gold deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600101 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $1.10 (paper cover) Stock Number 240l-02398 CONTENTS Page Page Abstract 1 Intrusive igneous rocks-Continued Introduction ------------------------------------- 1 Louis Lake batholith ------------------------ 17 Geography -----------------------·----------- 1 Diabasic gabbro dikes ------------------------ 24 Human his,tory ------------------------------ 2 Structure --------------------------------------- 24 Previous investigations ----·------------------ 3 Metamorphism ----------------------------------- 26 Recent investigations ------------------------ 4 Geochronology ---------------------------------- 28 Acknowledgments ---------------------------- 4 Economic geology -------------------------------- 2~ Geologic setting -------------------------------- 4 Gold ----------·------------------------------ 28 Stratigraphy ------------------------------~---- 6 Quartz veins ---------------------------..:. 29 Goldman Meadows Formation ---------------- 6