Superconducting Point Contacts Weakly Connecting Two Superconductors and Electrostatic Effects in Superconductors Due to Temperature Gradients

Total Page:16

File Type:pdf, Size:1020Kb

Superconducting Point Contacts Weakly Connecting Two Superconductors and Electrostatic Effects in Superconductors Due to Temperature Gradients SUPERCONDUCTING POINT CONTACTS WEAKLY CONNECTING TWO SUPERCONDUCTORS AND ELECTROSTATIC EFFECTS IN SUPERCONDUCTORS DUE TO TEMPERATURE GRADIENTS A. TH. A. M. DE WAELE ms E R R A T A, A.Th.A.M. de Waele, Thesis p. 26 The captions to the figures 6 and 7 should be interchanged. P. 32 In the last formula there has to be an equality sign between the two last fractions. p. 77 The second line of eq,(6.') should read = - Vjri4 - m.VH = - W° p + sVT + -p -42 7 v vn - vs y' - in4 VH (6.1) p. 78 On this page m s m = electron mass. The second line of the first formula should reads =: - V2\i + 2e(E + v x B) - 2m VH OQ 3* sr o H- 0Q CL> en » n ro ro 3 ro 01 01 C rt rt rt 8. ro 9 9 Cf 01 11 H3* c I-h m rt M» OQ 0) o ro H- g a ro ro ro ro ro ce i-> rt 0Q O ro !-• H- < ro n ro N T3 01 9 C ^ n> ro c o 3 rt O 3 rt ro n> tr. C o rt rt 11 o 01 a O- OQ O. OQ 9 M ro M ro o rs 01 ro CA H- 01 rt cr 01 cr- O • ro 9 ON a to 3" cr rt O 01 c M rt < er rf H» ro ro H- 3 03 n> * 3" 3 i—' 9 rt OQ 01 OQ g •13 3Q ta ro rort g rt O o. 3* o oIt rt H- O a rt rt ro § cr O C CL ro ro 01 o 9 a (A H- rt ro ro » ro s STELLINGEN Vant-Hull, Simpkins en Harding hebben de magnetísche ruis van een staaf normaal metaal gemeten door de staaf in de holte van een dubbelpuntcontact te schuiven. Bij de interpretatie van de uitkomsten van deze meting dient de invloed van dit normale metaal op de werking van het dubbelpuntcontact te worden betrokken. L. Vant-Hull, R.A. Simpkins and J.T. Harding Phys. Lett. 24, 736 (1967) Dit proefschrift §4.6. II <u De alternatieve verklaring die Gubankov, Likharev en Margolin c\j geven voor de gemeten i als functie van B± , die wordt beschreven in figuur 16 van dit proefschrift, leidt niet tot bevredigende overeenstemming tussen de gemeten en de berekende waarden. De zelf- inductie van het omsloten oppervlak van het dubbelpuntcontact mag derhalve niet worden verwaarloosd. V.N. Gubankov, K.K. Likharev and N.M. Margolin, Sov. Phys.-Solid State 14, 819 (1972). CM III 4- Het gebrek aan overeenstemming tussen de théorie, die Mercereau OJ vocr een dubbele Dayem-brug heeft ontwikkeli, en het experiment, is ro het gevolg van een foutieve beschrijving van het systeem en niet van het feit dat in de théorie thermische ruis buiten beschouwing werd geläten. J.E. Mercereau, Rev. de Phys. Appl. (Paris) 5, 13 (1970). IV De verklaring van het verdwijnen van het ,,patch-effect" bij L)e druk in de vloeibaar-helium temperaturen wordt gezocht in de invloed die een superfluïde compone geadsorbeerd laagje kan hebben op de uittreepotentiaal van verschil- toestand gelijk aar lende kristaloppervlakken van een metaal. Deze verklaring kan worden V.M. Kont get-oetst door gebruik te maken van experimentele technieken die in D.L. Good deel II van dit proefschrift zijn beschreven. 447 (197)1 F.C. Witteborn and W.M. Fairbank, Nature 220, 436 (1968). Voor het meten domeingrootte in de behulp van neutrone In verband met de mogelijkheid om op eenvoudige wijze läge tem- gelet op de beschik peraturen te bereiken, is het van belang de thermische effecten te een golflengte van bestude. °n die gepaard gaan met veldemissie van electronen. VI In verband met de théorie van Misner dat de gravitatiestraling Het besturen v die door Weber is waargenomen het gevolg is van ^ravitatie- multidisciplinair t synchrotron straling, verdient het aanbeveling ook de polarisatie Dit leidt voor de n van de gravitatiestraling te meten. meerderheid van de C.W. Misner, Phys. Rev. Lett. 28, 994 (1972). die maar zeer ten d kan worden verbeter VII Het argument waarmee Einstein de algemene geldigheid van de A.Th.A.M. de Waele door hem ontwikkelde théorie over gravitatiestraling in twijfel trekc is niet steekhoudend. A. Einstein, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Berlin, 154 (1918). VIII van het ,,patch-effect" bij De. druk in de damp juist buiten een heliumfilm, waarin de in de invloed die een superfluïde component al dan niet beweegt, is in een stationaire epotentiaal van verschil- toes tand gelijk aan de verzadigde dampdruk. eze verklaring kan worden V.M. Kontorovich, Sov. Phys. JETP j}» 770 (1956). ntele technieken die in D.L. Goodstein and P.G. Saffman, Proc. R. Soc. A 325, i. 447 (1971). Nature 220, 436 (1968). IX Voor het meten van de spontane magnetisatie en van de gemiddelde domeingrootte in de transmissierichting van een ferromagneet met mvoudige wijze lage tem- behulp van neutronen-depolarisatie, zijn bij gegeven reactorflux en thermische effecten te gelet op de beschikbare polariseertechnieken, koude neutronen (met van electronen. een golflengte van ongeveer 4 A) te prefereren boven thermische (1 A). de gravitatíestraling Het besturen van een land als Nederland kan slechts door een multidisciplinair team van deskundigen worden overzien en uitgevoerd. g ook de polarisatie Dit leidt voor de niet-gespecialiseerde buitenstaander (de overgrote meerderheid van de bevolking) tot een onduidelijkheid in de politiek 94 (1972). die maar zeer ten dele door vereenvoudiging van de partijverhoudingen kan worden verbeterd. geldigheid van de A.Th.A.M. de Waele 21 december 1972 :raling in twijfel eussischen Akademie 8). BLI SUPERCONDUCTING POINT CONTACTS WEAKLY CONNECTING TWO SUPERCONDUCTORS AND ELECTROSTATIC EFFECTS IN SUPERCONDUCTORS DUE TO TEMPERATURE GRADIENTS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RIJKSUNIVERSITEIT VAN LEIDEN, OP GEZAG VAN DE RECTOR MAGNIFICUS DR. A. E. COHEN, HOOGLERAAR IN DE FACULTEIT DER LETTEREN, VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN TE VERDEDIGEN OP DONDERDAG 21 DECEMBER 1972, TE KLOKKE 14.15 UUR DOOR ALPHONS THEOPHILE AUGUSTA MARIA DE WAELE GEBOREN TE KOEWACHT (THANS GEMEENTE AXEL) IN 1944 1972 DRUKKERIJ J. H. PASMANS, 'S-GRAVENHAGE Promotor: Dr. R. de Bruyn Ouboter f .s; §6 §7 §9 §10 CONTENTS General Introduction PART I SUPERCONDUCTING POINT CONTACTS WEAKLY CONNECTING TWO SUPERCONDUCTORS Contents of Part I 11 §i Introduction 12 Two superconductors weakly connected by a single §2 superconducting point contact 24 The critical current through a double point contact §3 between two superconductors as a function of the applied magnetic field 38 §4 Two superconductors weakly connected by a double point contact in the resistive-superconductive region 50 §5 Description of the experimental set-up and the con- struction of double point contacts 69 : «ví' PART II Ml ELECTROSTATIC EFFECTS IN SUPERCONDUCTORS DUE TO TEMPERATURE GRADIENTS Contents of Part II 75 §6 Introduction 76 §7 Analysis of the measuring method; discussion of the effects contributing to the electrostatic signal 85 §8 Description of the apparatus. Noise sources and erroneous signals 92 §9 Experimental results 99 §10 Conclusions of Part II 103 References 104 Samenvatting 108 (§ Pir. (s GENERAL INTRODUCTION The work described in this thesis deals with the macroscopic quantum effects in superconducting point contacts weakly connecting two super- conductors and with the electrostatic effects in superconductors due to temperature gradients. When two superconductors are completely isolated from each other it is possible to apply a voltage difference between both superconductors, while there is no current flowing between them (V = any value, i = 0). On the other hand, when two superconductors are tightly pressed against each other a supercurrent can flow through the contact region while the voltage is zero (V = 0, i = any value below the (bulk) critical current). From these considerations one can understand that there should be ways of connecting two superconductors that lead r.o current-voltage dependen- ces that are in some way in between these two extreme (and trivial) cases. In order to find this intermediate region one must "weakly" con- nect the two superconductors. In 1962 and 1963 Josephson and Anderson predicted that weakly coupled superconductors should show a macroscopic quantum behaviour. There are many ways to realize a weak coupling. One can separate the two superconductors by a thin insulation layer (tunnel junction), a layer of a normal metal (S-N-S junction) or by a narrow constriction of super- conducting material (Dayem bridge) with a width of the order of one micro- meter. The types of weak links that we deal with in part I of this thesis (§1 - §5) are the so-called superconducting point contacts. They con- sist of one or more points of one superconducting block that touch another superconducting block. Although the detailed behaviour of the various types of weak links is different, they have many important features in common. One of them is that up to a certain critical value a current can flow through the weak link while the voltage across the link is zero, even in an oxide or an S-N-S junction. Another common feature is that weak links radiate electro-magnetic waves, obeying the relation 2eV = hv. These effects were predicted by Josephson in 1962. Part I of this thesis deals with the dc and ac current-voltage- magnetic field dependences of several different point contact arrange- ments. It is shown (§2) that in a device with a single supeiconducting point contact, ac super and normal currents, and ac and dc voltages are generated when a dc current is supplied to the contact, larger than the maximum supercurrent (V í 0).
Recommended publications
  • Moment of Inertia of Superconductors
    Moment of inertia of superconductors J. E. Hirsch Department of Physics, University of California, San Diego La Jolla, CA 92093-0319 We find that the bulk moment of inertia per unit volume of a metal becoming superconducting 2 2 increases by the amount me/(πrc), with me the bare electron mass and rc = e /mec the classical 2 electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL) , with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting. PACS numbers: I. INTRODUCTION and is called the “London moment”. In this paper we propose that this effect reveals fundamental physics of A superconducting body rotating with angular veloc- superconductors not predicted by conventional BCS the- ity ~ω develops a uniform magnetic field throughout its ory [3, 4]. For a preliminary treatment where we argued interior, given by that BCS theory is inconsistent with the London moment we refer the reader to our earlier work [5]. Other non- 2m c B~ = − e ~ω ≡ B(ω)ˆω (1) conventional explanations of the London moment have e also been proposed [6, 7]. with e (< 0) the electron charge, and me the bare electron Eq. (1) has been verified experimentally for a variety mass. Numerically, B =1.137 × 10−7ω, with B in Gauss of superconductors [8–15].
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]
  • Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid
    Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid M. Tajmar* ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria C. J. de Matos† ESA-ESTEC, Directorate of Scientific Programmes, PO Box 299, NL-2200 AG Noordwijk, The Netherlands Abstract The quantization of the extended canonical momentum in quantum materials including the effects of gravitational drag is applied successively to the case of a multiply connected rotating superconductor and superfluid. Experiments carried out on rotating superconductors, based on the quantization of the magnetic flux in rotating superconductors, lead to a disagreement with the theoretical predictions derived from the quantization of a canonical momentum without any gravitomagnetic term. To what extent can these discrepancies be attributed to the additional gravitomagnetic term of the extended canonical momentum? This is an open and important question. For the case of multiply connected rotating neutral superfluids, gravitational drag effects derived from rotating superconductor data appear to be hidden in the noise of present experiments according to a first rough analysis. PACS: 04.80.Cc, 04.25.Nx, 74.90.+n Keywords: Gravitational Drag, Gravitomagnetism, London moment * Research Scientist, Space Propulsion, Phone: +43-50550-3142, Fax: +43-50550-3366, E-mail: [email protected] † Scientific Advisor, Phone: +31-71-565-3460, Fax: +31-71-565-4101, E-mail: [email protected] Introduction Applying an angular velocity ωv to any substance aligns its elementary gyrostats and thus causes a magnetic field known as the Barnett effect [1]. In this case, the angular velocity v v ω is proportional to a magnetic field Bequal which would cause the same alignment: v 1 2m (1) B = − ⋅ωv .
    [Show full text]
  • Search for Frame-Dragging-Like Signals Close to Spinning Superconductors
    Search for Frame-Dragging-Like Signals Close to Spinning Superconductors M. Tajmar, F. Plesescu, B. Seifert, R. Schnitzer, and I. Vasiljevich Space Propulsion and Advanced Concepts, Austrian Research Centers GmbH - ARC, A-2444 Seibersdorf, Austria +43-50550-3142, [email protected] Abstract. High-resolution accelerometer and laser gyroscope measurements were performed in the vicinity of spinning rings at cryogenic temperatures. After passing a critical temperature, which does not coincide with the material’s superconducting temperature, the angular acceleration and angular velocity applied to the rotating ring could be seen on the sensors although they are mechanically de-coupled. A parity violation was observed for the laser gyroscope measurements such that the effect was greatly pronounced in the clockwise-direction only. The experiments seem to compare well with recent independent tests obtained by the Canterbury Ring Laser Group and the Gravity-Probe B satellite. All systematic effects analyzed so far are at least 3 orders of magnitude below the observed phenomenon. The available experimental data indicates that the fields scale similar to classical frame-dragging fields. A number of theories that predicted large frame-dragging fields around spinning superconductors can be ruled out by up to 4 orders of magnitude. Keywords: Frame-Dragging, Gravitomagnetism, London Moment. PACS: 04.80.-y, 04.40.Nr, 74.62.Yb. INTRODUCTION Gravity is the weakest of all four fundamental forces; its strength is astonishingly 40 orders of magnitude smaller compared to electromagnetism. Since Einstein’s general relativity theory from 1915, we know that gravity is not only responsible for the attraction between masses but that it is also linked to a number of other effects such as bending of light or slowing down of clocks in the vicinity of large masses.
    [Show full text]
  • Applications of Superconductivity to Space-Based Gravitational
    461 APPLICATIONS OF SUPERCONDUCTIVITY TO GRAVITATIONAL EXPERIMENTS IN SPACE Saps Buchman W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, U.S.A. ABSTRACT We discuss the superconductivity aspects of two space-based experiments ⎯ Gravity Probe B (GP-B) and the Satellite Test of the Equivalence Principle (STEP). GP-B is an experimental test of General Relativity using gyroscopes, while STEP uses differential accelerometers to test the Equivalence Principle. The readout of the GP-B gyroscopes is based on the London moment effect and uses state-of-the-art dc SQUIDs. We present experimental proof that the London moment is the quantum mechanical ground state of a superconducting system and we analyze the stability of the flux trapped in the gyroscopes and the flux flushing techniques being developed. We discuss the use of superconducting shielding techniques to achieve dc magnetic fields smaller than 10-7 G and an ac magnetic shielding factor of 1013. SQUIDs with performance requirements similar to those for GP-B are also used for the STEP readout. Shielding for the STEP science instrument is provided by superconducting shells, while the STEP test masses are suspended in superconducting magnetic bearings. 462 I. INTRODUCTION Low temperature techniques have been widely used in high precision experiments due to their advantages in reducing thermal and mechanical disturbances, and the opportunity to utilize the low temperature phenomena of superconductivity and superfluidity. Gravitational experiments have reached the stage at which both low temperature technology and ultra low gravity space environments are needed to meet the requirements for measurement precision. In this paper we present some of the applications of superconductivity to two space based gravitational experiments ⎯ Gravity Probe B1) (GP- B) and the Satellite Test of the Equivalence Principle2) (STEP).
    [Show full text]
  • The Gravity Probe B Test of General Relativity C W F Everitt, R Parmley, M Taber Et Al
    Classical and Quantum Gravity PAPER • OPEN ACCESS Related content - Gravity Probe B cryogenic payload The Gravity Probe B test of general relativity C W F Everitt, R Parmley, M Taber et al. - The Gravity Probe B gyroscope To cite this article: C W F Everitt et al 2015 Class. Quantum Grav. 32 224001 S Buchman, J A Lipa, G M Keiser et al. - Gravity Probe B data analysis: II. Science data and their handling prior to the final analysis A S Silbergleit, J W Conklin, M I Heifetz et View the article online for updates and enhancements. al. Recent citations - Astrophysically relevant bound trajectories around a Kerr black hole Prerna Rana and A Mangalam - Measuring general relativistic dragging effects in the Earth’s gravitational field with ELXIS: a proposal Lorenzo Iorio - Lensing convergence in galaxy clustering in CDM and beyond Eleonora Villa et al This content was downloaded from IP address 130.194.20.173 on 23/05/2019 at 04:30 Classical and Quantum Gravity Class. Quantum Grav. 32 (2015) 224001 (29pp) doi:10.1088/0264-9381/32/22/224001 The Gravity Probe B test of general relativity C W F Everitt1, B Muhlfelder1, D B DeBra1, B W Parkinson1, J P Turneaure1, A S Silbergleit1, E B Acworth1, M Adams1, R Adler1, W J Bencze1, J E Berberian1, R J Bernier1, K A Bower1, R W Brumley1, S Buchman1, K Burns1, B Clarke1, J W Conklin1, M L Eglington1, G Green1, G Gutt1, D H Gwo1, G Hanuschak1,XHe1, M I Heifetz1, D N Hipkins1, T J Holmes1, R A Kahn1, G M Keiser1, J A Kozaczuk1, T Langenstein1,JLi1, J A Lipa1, J M Lockhart1, M Luo1, I Mandel1, F Marcelja1,
    [Show full text]
  • Table of Contents
    CONTENTS 1 - Introduction .............................................................................................................. 1 1.1 - A history of women and men ................................................................................... 1 1.2 - Experimental signs of superconductivity ................................................................. 1 1.2.1 - The discovery of superconductivity: the critical temperature ...................... 1 1.2.2 - The magnetic behavior of superconductors .................................................. 3 The MEISSNER-OCHSENFELD effect ....................................................................... 3 Critical fields and superconductors of types I and II ............................................. 3 1.2.3 - Critical current ............................................................................................... 3 1.2.4 - The isotope effect .......................................................................................... 4 1.2.5 - JOSEPHSON currents and flux quantification .................................................. 4 1.3 - Phenomenological models ........................................................................................ 5 1.3.1 - LONDON theory .............................................................................................. 5 1.3.2 - The thermodynamic approach ....................................................................... 6 1.3.3 - GINZBURG-LANDAU theory ...........................................................................
    [Show full text]
  • London Moment Readout of the Gyroscope
    From the book "Near Zero: New Frontiers of Physics." Editors, J. D. Fairbank, B. S. Deaver. Jr, 2. W. F. Everitt, P. F. Michelson, 1988 VI.3( C) The Stanford Relativity Gyroscope Experiment (C): London Moment Readout of the Gyroscope John T. Anderson 1. INTRODUCTION It, has always been an objective of the relativity gyroscope experiment that the gyroscope should be a near perfect uniform solid sphere. It should be featureless and balanced. Under these conditions, it appears that the number of methods to determine the direction of spin of the gyroscope is limited. The conventional approaches used for free precession gyroscopes employ either unequal moments of inertia in the gyroscope, patterning on the surface, or a flat area on a pole of the gyroscope that is tracked by opti- cal means. Objections to these approaches are based on both unacceptable drift and inadequate sensitivity. The relativistic precessions of the gyroscope are small, 6.6 and 0.042 sec- onds of arc respectively for the geodetic and motional precessions. TO make a meaningful measurement of the motional effect requires that. the drift and other errors in the gyroscope be much smaller. Gyroscope errors below 0.001 seconds of arc are reasonable both in terms of the scientific value of the measurement and from the practical point of what we believe 660 ANDERSON can be achieved. This goal cannot be reached without an unrelenting search for, and understanding of the sources of, Newtonian torques on the gyro- scope. It was in the course of calculating the torque from the magnetic moment of the superconducting niobium coating on the gyroscope that C.
    [Show full text]
  • Examining Einstein's Spacetime with Gyroscopes
    Educational Product National Aeronautics and Educators Grades Space Administration & Students 9-12 GRAVITY PROBE B Examining Einstein’s Spacetime with Gyroscopes An Educator’s Guide “Gravity Probe B: Investigating Einstein’s Spacetime with Gyroscopes” is avail- able in electronic format through the Gravity Probe B web site. This product is one of a collection of products available in PDF format for educators and students to download and use. These publications are in the public domain and are not copyrighted. Permis- sion is not required for duplication. Gravity Probe B web site - http://einstein.stanford.edu/ Gravity Probe B email - [email protected] Educator’s Guide created in October 2004 Produced and Written by Shannon K’doah Range, Educational Outreach Director Editing and Review by Jennifer Spencer and Bob Kahn Images/Graphics by Shannon Range, Kate Stephenson, the Gravity Probe B Image Archives, York University, and James Overduin Many thanks to the contributions of Dr. Ronald Adler, Dr. James Overduin, Dr. Alex Silbergleit and Dr. Robert Wagoner. THIS EDUCATOR’S GUIDE ADDRESSES THE FOLLOWING NATIONAL SCIENCE EDUCATION STANDARDS: CONTENT STANDARD A * Understandings about scientific inquiry CONTENT STANDARD B * Motions and forces * Conservation of energy and increase in disorder * Interactions of energy and matter CONTENT STANDARD D * Origin and evolution of the universe CONTENT STANDARD E * Abilities of technological design * Understandings about science and technology CONTENT STANDARD G * Science as a human endeavor * Nature of scientific knowledge * Historical perspectives 2 Educator’s Guide to Gravity Probe B * Produced October 2004 by Shannon K’doah Range GRAVITY PROBE B Examining Einstein’s Spacetime with Gyroscopes An Educator’s Guide http://einstein.stanford.edu/ * [email protected] 3 Table Of Contents Introduction To Gravity Probe B: The Relativity Mission ............
    [Show full text]
  • Summary of Nist Precision Measurement Grants
    SUMMARY OF NIST PRECISION MEASUREMENT GRANTS Recipient Title of Grant Dates James E. Faller Precision measurement gravitational physics 1971-1973 Wesleyan University Daniel Kleppner Precision studies with the hydrogen maser M.I.T. Hugh G. Robinson Precision determination of the ratio of atomic magnetic Duke University moments ................................................... ................................................... .. E. Norval Fortson Precision radio frequency spectroscopy with atomic ions 1972-1974 University of Washington by the ion storage exchange collision method William H. Parker Determination of h/m using macroscopic phase coherence Univ. Calif., Irvine in superconductors Arthur Rich Precision measurement of ion cyclotron resonance University of Michigan ................................................... ................................................... .. Stuart B. Crampton Investigations of hydrogen atom interactions using atomic 1973-1975 Williams College hydrogen masers Brij M. Khorana Quantum properties of liquid helium University of Notre Dame Hans A. Schuessler Precision measurement of the hyperfine structure of stored Texas A&M University heavy ions ................................................... ................................................... .. Theodor W. H¨ansch Precision laser spectroscopy of one-electron atoms 1974-1976 Stanford University Harold J. Metcalf Time resolved excited state spectroscopy SUNY, Stony Brook Richard T. Robiscoe Measurement of the Lamb shift in H, n = 2, by the Ram- Montana
    [Show full text]
  • Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. an Educator's Guide with Activities in Space Science
    DOCUMENT RESUME ED 463 153 SE 065 783 AUTHOR Range, Shannon K'doah; Mullins, Jennifer TITLE Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science. INSTITUTION National Aeronautics and Space Administration, Washington, DC. PUB DATE 2002-03-00 NOTE 48p. AVAILABLE FROM Web site: http://einstein.stanford.edu/. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Higher Education; Middle Schools; *Physical Sciences; Relativity; *Science Activities; *Science Experiments; Science Instruction; Secondary Education; *Space Sciences IDENTIFIERS Telescopes ABSTRACT This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3) "The Gravity Probe B Science Instrument"; and (4)"Concluding Questions of Gravity Probe B." The guide also presents seven classroom extension activities and demonstrations. These include: (1) "Playing Marbles with Newton's Gravity"; (2) "The Speed of Gravity?"; (3) "The Equivalence Principle"; (4) "Spacetime Models"; (5) "Frame-Dragging of Local Spacetime"; (6) "The Miniscule Angels"; and (7) "Brief History of Gyroscopes." (YDS) Reproductions supplied by EDRS are the best that can be made from the original document. Educational Product National Aeronautics and EducatorsIGrades
    [Show full text]
  • The Gravity Probe B Relativity Mission
    S´eminaire Poincar´e IX (2006) 55 { 61 S´eminaire Poincar´e Testing Einstein in Space: The Gravity Probe B Relativity Mission John Mester and the GP-B Collaboration Hansen Laboratory Stanford University Stanford CA, USA Abstract. The Gravity Probe B Relativity Mission was successfully launched on April 20, 2004 from Vandenberg Air Force Base in California, a culmination of 40 years of collaborative development at Stanford University and NASA. The goal of the GP- B experiment is to perform precision tests of two independent predictions of general relativity, the geodetic effect and frame dragging. On-orbit cryogenic operations lasted 17.3 months, exceeding requirements. Analysis of the science data is now in progress with a planned announcement of results scheduled for April 2007. Introduction Our present theory of gravity, Einstein's general relativity, is elegant, internally con- sistent and (so far) in agreement with observation. Yet, despite recent advances, the range of predictions tested and the precision to which experiments have tested the theory remain limited [1]. In addition, general relativity resists quantization, thwart- ing efforts to include the theory in a unified picture of the forces of nature. Nearly all attempts at unifying gravitation with the Standard Model result in a theory which differs form general relativity, and in particular, include additional vector or scalar couplings which potentially violate the Equivalence Principle [2,3]. Space offers the opportunity for new tests of general relativity with improved precision [4]. The use of drag compensation, first demonstrated in flight by the Discos instrument on the Triad mission [5], to reduce air drag, magnetic torque, and radiation pressure disturbances enables a uniquely quiet environment for experimentation, one not limited by seismic noise.
    [Show full text]