People with Disabilities and Computer Technology Providing Access to Technology by Sheryl Burgstahler, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

People with Disabilities and Computer Technology Providing Access to Technology by Sheryl Burgstahler, Ph.D Working Together: People with Disabilities and Computer Technology Providing access to technology By Sheryl Burgstahler, Ph.D. People with disabilities meet barriers of all that normally require two or more keys to be types. However, technology is helping to lower pressed simultaneously. The key repeat function many of these barriers. By using computing can be disabled for those who cannot release a technology for tasks such as reading and writing key quickly enough to avoid multiple selections. documents, communicating with others, and Key ­­board guards (solid templates with holes over searching for information on the Internet, each key to assist precise selection) can be used by students and employees with disabilities are those with limited fine motor control. capable of handling a wider range of activities independently. Still, people with disabilities face a Sometimes repositioning the keyboard and variety of barriers to computer use. These barriers monitor can enhance accessibility. For example, can be grouped into three functional categories: mounting keyboards perpendicular to tables barriers to providing computer input, interpreting or wheelchair trays at head-height can assist output, and reading supporting documentation. individuals with limited mobility who use Hardware and software tools (known as adaptive pointing devices to press keys. Other simple or assistive technologies) have been developed to hardware modifications can assist individuals provide functional alternatives to these standard with mobility impairments. For instance, disk operations. Specific products, and approaches to guides can assist with inserting and removing using them, are described below. diskettes; a dedicated hard disk or computer network access can eliminate or reduce the necessity to do so. Mobility Impairments Some wheelchairs may not fit under standard For individuals who need to operate the computer height computer tables and some computer users with one hand, left- and right-handed keyboards do not have enough use of their hands and arms are available. They provide more efficient key to operate a standard keyboard or mouse. arrangements than standard keyboards designed for two-handed users. Input Equipment which provides flexibility in Some hardware modifications completely replace the positioning of monitors, keyboards, the keyboard or mouse for individuals who documentation, and tabletops is useful for cannot operate these standard devices. Expanded many individuals with disabilities. Plugging all keyboards (larger keys spaced far apart) can computer components into power outlet strips replace standard keyboards for those with limited with accessible on and off switches makes it fine motor control. Mini-keyboards provide access possible for some individuals to turn equipment to those who have fine motor control but lack a on and off independently. range of motion great enough to use a standard keyboard. Track balls and specialized input Some technology assists individuals with little devices can replace a mouse. or no use of their hands in using a standard keyboard. Individuals who have use of one finger, For those with more severe mobility impairments or have access to a mouth- or head-stick or some keyboard emulation is available, including other pointing device, can control the computer by scanning and Morse code input. In each case, pressing keys with the pointing device. Software special switches make use of at least one muscle utilities can create “sticky keys” that electronically over which the individual has voluntary control latch the SHIFT, CONTROL, and other keys to (e.g., head, finger, knee, mouth). In scanning allow sequential keystrokes to input commands input, lights or cursors scan letters and symbols displayed on computer screens or external Output devices. To make selections, individuals use Speech output systems can be used to read switches activated by movement of the head, screen text to computer users who are blind. finger, foot, breath, etc. Hundreds of switches Special software programs (called screen readers) tailor input devices to individual needs. In Morse “read” computer screens and speech synthesizers code input, users input Morse code by activating “speak” the text. The availability of earphones switches (e.g., a sip-and-puff switch registers dot for individuals using speech output systems can with a sip and dash with a puff). Special adaptive reduce the distractions for others nearby. hardware and software translate Morse code into a form that computers understand so that Refreshable Braille displays allow line-by- standard software can be used. line translation of screen text into Braille on a display area where vertical pins move into Speech input provides another option for Braille configurations as screen text is scanned. individuals with disabilities. Speech recognition Braille displays can be read quickly by those with systems allow users to control computers by advanced Braille skills, are good for detailed speaking words and letters. A particular system is editing (e.g., programming and final editing of “trained” to recognize specific voices. papers), and do not disrupt others in work areas because they are quiet. Braille printers provide Special software can further aid those with “hard copy” output for users who are blind. mobility impairments. Abbreviation expansion (macro) and word prediction software can Documentation reduce input demands for commonly used text Scanners with optical character recognition can and keyboard commands. For example, word read printed material and store it electronically prediction software anticipates entire words after on computers, where it can be read using speech several keystrokes and increases input speed. synthesis or printed using Braille translation software and Braille printers. Such systems Output provide independent access to journals, syllabi, Screen output does not present a challenge, but and homework assignments for students who individuals with mobility impairments who have are blind. Electronic versions of documentation difficulty obtaining output from printers may can support computer users who are blind if it is need assistance from others. delivered in an accessible format. Documentation On-screen help provides efficient access to user Low Vision guides for individuals who are unable to turn For some people with visual impairments the pages in books. standard size of letters on the screen or printed in documents are too small for them to read. Some people cannot distinguish one color from another. Blindness Individuals who are blind cannot access visual Input material presented on the computer screen or in Most individuals who have visual impairments printed materials. can use standard keyboards, but large print keytop labels are sometimes useful. Input Most individuals who are blind use standard Output keyboards, however, Braille input devices are Special equipment for individuals who are available. Braille key labels can assist with visually impaired can modify display or printer keyboard use. output. Computer-generated symbols, both text and graphics, can be enlarged on the monitor 2 or printer, thereby allowing individuals with Specific Learning Disabilities low vision to use standard word processing, Educational software where the computer spread sheet, electronic mail, and other software provides multi-sensory experiences, interaction, applications. For individuals with some visual positive reinforcement, individualized instruction, impairments, the ability to adjust the color and repetition can be useful in skill building. of the monitor or change the foreground and Some students with learning disabilities who have background colors is also of value. For example, difficulty processing written information can also special software can reverse the screen from benefit from completing writing assignments, black on white to white on black for people who tutorial lessons, and drill-and-practice work are light sensitive. Anti-glare screens can make with the aid of computers. For example, a screens easier to read. Voice output systems are standard word processor can be a valuable tool also used by people with low vision. for individuals with dysgraphia, an inability to produce handwriting reliably. Documentation Scanners with optical character recognition can Input read printed material and store it electronically Quiet work areas and ear protectors may make on computers, where it can be read using speech computer input easier for individuals with synthesis or printed in large print. learning disabilities who are hyper-sensitive to background noise. Hearing or Speech Impairments Software that aids in efficient and accurate input Speech and hearing disorders alone do not can also assist. Some people can compensate generally interfere with computer use. However, for high rates of input errors by using spell advanced speech synthesizers are close enough checkers, thesauruses, and grammar checkers. to human quality to act as substitute voices and In addition, word prediction programs (software thus provide a compensatory tool for students that predicts whole words from fragments) have who cannot communicate verbally. Students been used successfully by students with learning with portable systems can participate in class disabilities. Similarly, macro software which discussions once adapted computers provide expands abbreviations can reduce the necessity to them with intelligible speaking voices. Word memorize keyboard commands and
Recommended publications
  • Evaluating the Effect of Four Different Pointing Device Designs on Upper Extremity Posture and Muscle Activity During Mousing Tasks
    Applied Ergonomics 47 (2015) 259e264 Contents lists available at ScienceDirect Applied Ergonomics journal homepage: www.elsevier.com/locate/apergo Evaluating the effect of four different pointing device designs on upper extremity posture and muscle activity during mousing tasks * Michael Y.C. Lin a, Justin G. Young b, Jack T. Dennerlein a, c, a Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA b Department of Industrial & Manufacturing Engineering, Kettering University, 1700 University Avenue, Flint, MI 48504, USA c Department of Physical Therapy, Movements, and Rehabilitation Sciences, Bouve College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA article info abstract Article history: The goal of this study was to evaluate the effect of different types of computer pointing devices and Received 10 January 2014 placements on posture and muscle activity of the hand and arm. A repeated measures laboratory study Accepted 3 October 2014 with 12 adults (6 females, 6 males) was conducted. Participants completed two mouse-intensive tasks Available online while using a conventional mouse, a trackball, a stand-alone touchpad, and a rollermouse. A motion analysis system and an electromyography system monitored right upper extremity postures and muscle Keywords: activity, respectively. The rollermouse condition was associated with a more neutral hand posture (lower Pointing device inter-fingertip spread and greater finger flexion) along with significantly lower forearm extensor muscle Computer tasks fi Musculoskeletal disorders activity. The touchpad and rollermouse, which were centrally located, were associated with signi cantly more neutral shoulder postures, reduced ulnar deviation, and lower forearm extensor muscle activities than other types of pointing devices.
    [Show full text]
  • Track Ball → It Is Pointing Device That Is Used to Control the Positions Of
    Department Of Computer Application (BBA) Dr. Rakesh Ranjan BCA Sem - 2 Input devices Track ball it is pointing device that is used to control the positions of the cursor on the screen. It is usually used in notebook computers where it is placed on the keyboard . It is nothing but an upside down mouse where the ball rotates in place within a socket. The user can rolls the ball to position the cursor at the appropriate position on the screen and then clicks one of the buttons near the track ball either to select the objects or to position the cursor. The working of a track ball is identical to mouse Touch pad it is small flat rectangular stationary pointing device with a sensitive surface of 1.5 to 2 inch. The user has to slide his or her figure tips across the surface of the pad to point to specific objects on the object. The surface translate the motion and position of the user’s figures to a relative position on the screen The touch pad are widely used in laptop and other handheld devices . The working of the touchpad is similar to that of mouse or a trackball. The pressure of the finger on the surface leads to a capacitance effect, which is detected by the sensors . the sensors send appropriate signals to cpu which interprets them and display the pointer on the screen . Joy stick it is widely used in computer games and computer aided design and manufacturing (CAD/CAM) applications. It has one or more push buttons called switches .
    [Show full text]
  • An Isometric Joystick As a Pointing Device for Handheld Information Terminals
    An Isometric Joystick as a Pointing Device for Handheld Information Terminals Miika Silfverberg I. Scott MacKenzie Tatu Kauppinen Usability Group Department of Computer Science Usability Group Nokia Research Center, Finland York University, Canada Nokia Research Center, Finland Abstract embedded pointing device that is suitable for handheld Meeting the increasing demand for desktop-like appli- use. This work studies the applicability of the isometric cations on mobile products requires powerful interac- joystick to handheld usage. tion techniques. One candidate is GUI-style point-and- click interaction using an integrated pointing device 1.1 Isometric Joystick that supports handheld use. We tested an isometric joy- A joystick is a good candidate for handheld pointing. stick for this purpose. Two prototypes were built. They Since it is mounted in the device chassis, it cannot be were designed for thumb operation and included a sepa- lost, unlike a stylus. It is small and can be manipulated rate selection button. Twelve participants performed potentially with the same hand that holds the device. point-and-select tasks. We tested both one-handed and two-handed interaction, and selection using the separate The device studied herein is an isometric joystick. The selection button and the joystick’s integrated press-to- pointer is moved by applying force to the stick. The select feature. A notebook configuration served as a stick itself doesn't move, or moves very little – hence reference. Results for the handheld conditions, both the name "isometric". The most common input-output one-handed and two-handed, were just slightly off those mapping is known as “velocity-control”, whereby the for the notebook condition, suggesting that an isometric applied force controls the velocity of the pointer.
    [Show full text]
  • Pointing Devices, Input-Output Mappings, CD Gain, Mid-Air Interaction, Problems of Direct Input and Solutions Input Devices Vs
    Input: pointing devices, input-output mappings, CD gain, mid-air interaction, problems of direct input and solutions Input devices vs. Finger-based input Indirect vs. Direct pointing Indirect: The position of the cursor Direct: Fingers manipulate visual is controlled by the device objects directly on the screen Absolute vs. Relative pointing Absolute: 1-to-1 mapping between input and output space indirect direct Relative: Input controls the relative position of the cursor (always indirect) Hovering mode Tracking the position of the pointing device (e.g., the pen) or the finger from distance Hover widgets http://www.youtube.com/watch?v=KRXfaZ8nqZM Absolute pointing Direct input ! Hovering feedback is not indispensable as there is a clear mapping between pen/fingers and the screen ! Main drawback: occlusion problems Indirect input Wacom Cintiq ! « Hovering » is indispensable: users must know the position of the cursor before starting drawing regular graphics tablet Relative pointing Common devices: mouse and touchpad « Clutching » instead of « hovering » mode ! Lift the mouse or finger to « re-calibrate » movement ! Use of smaller input space to traverse a larger output space How would you map the input space of the tablet to the output space of the wall? Smarties: https://www.lri.fr/~chapuis/publications/CHI14-smartiestk.mp4 Buxton’s 3-state model (1990) A. Two-state model for mouse Buxton’s 3-state model (1990) B. Two-state model for a touch tablet Buxton’s 3-state model (1990) C. Three-state model for a gaphics tablet with stylus Relative pointing: Mappings Position control: maps human input to the position of the cursor (or object of interest) Examples: mouse, touchpad Rate (or velocity) control: maps human input to the velocity of the cursor (or object of interest) Examples: joystick, trackpoint Trackpoint Isotonic vs.
    [Show full text]
  • A Computer Vision-Based Pointing and Gesture Input Device
    FlowMouse: A Computer Vision-Based Pointing and Gesture Input Device Andrew D. Wilson and Edward Cutrell Microsoft Research One Microsoft Way, Redmond, WA [email protected], [email protected] Abstract. We introduce FlowMouse, a computer vision-based pointing device and gesture input system. FlowMouse uses optical flow techniques to model the motion of the hand and a capacitive touch sensor to enable and disable in- teraction. By using optical flow rather than a more traditional tracking based method, FlowMouse is exceptionally robust, simple in design, and offers op- portunities for fluid gesture-based interaction that go well beyond merely emu- lating pointing devices such as the mouse. We present a Fitts law study exam- ining pointing performance, and discuss applications of the optical flow field for gesture input. 1 Introduction Today’s computing environments are strongly tied to the availability of a high resolu- tion pointing device, and, more fundamentally, to the notion of a single, discrete two- dimensional cursor. Modern GUIs (graphical user interfaces) combined with devices such as mice and track pads are extremely effective at reducing the richness and vari- ety of human communication down to a single point. While the utility of such devices in today’s interfaces cannot be denied, there are opportunities to apply other kinds of sensors to enrich the user experience. For example, video cameras and computer vision techniques may be used to capture many details of human shape and movement [24]. The shape of the hand may be analyzed over time to manipulate an onscreen object in a way analogous to the hand’s manipulation of paper on a desk.
    [Show full text]
  • Chapter 9. Input Devices
    Table of contents 9 Input devices .................................................................................................................9-1 9.1 Keyboards ............................................................................................................. 9-4 9.2 Fixed-function keys .............................................................................................. 9-6 9.3 Pointing devices.................................................................................................... 9-7 9.3.1 General........................................................................................................... 9-7 9.3.2 Mouse ............................................................................................................ 9-9 9.3.3 Joystick and trackball .................................................................................. 9-10 9.3.3.1 General..................................................................................................9-10 9.3.3.2 Hand-operated displacement joysticks .................................................9-10 9.3.3.3 Finger-operated displacement joysticks................................................9-11 9.3.3.4 Thumb tip and fingertip-operated displacement joysticks....................9-13 9.3.3.5 Hand-operated isometric joysticks........................................................9-13 9.3.3.6 Thumb tip and fingertip-operated isometric joysticks..........................9-14 9.3.3.7 Ball controls..........................................................................................9-14
    [Show full text]
  • Chapter 3 Input Devices
    CSCA0201 FUNDAMENTALS OF COMPUTING Chapter 3 Input Devices 1 Input Devices Topics: • Input Devices • Examples of Input Device • Keyboard • Pointing Devices • Graphic and Video Input Devices • Audio Input Devices 2 Input Devices Input Devices • Any peripheral (piece of computer hardware equipment) used to provide data and control signals to a computer. • Allows the user to put data into the computer. • Without any input devices, a computer would only be a display device and not allow users to interact with it. 3 Input Devices Examples of Input Device • Keyboard • Mouse • Touchscreen • Graphic tablet • Microphone • Scanner 4 Input Devices Keyboard • One of the primary input devices used with a computer. • The keyboard looks very similar to the keyboards of electric typewriters, with some additional keys. • Keyboards allow a computer user to input letters, numbers, and other symbols into a computer • Uses an arrangement of buttons or keys. • Requires pressing and holding several keys simultaneously or in sequence. 5 Input Devices Keyboard 6 Input Devices Types of Keyboard • Standard • Laptop • Gaming and Multimedia • Thumb-sized • Virtual • Foldable 7 Input Devices Types of Keyboard Standard • Desktop computer keyboards, such as the 101-key US traditional keyboards or the 104-key Windows keyboards, include alphabetic characters, punctuation symbols, numbers and a variety of function keys. 8 Input Devices Types of Keyboard Laptop Keyboard • The laptop computer keyboard is a small version of the typical QWERTY keyboard. • A typical laptop has the same keyboard type as a normal keyboard, except for the fact that most laptop keyboards condense the symbols into fewer buttons to accommodate less space.
    [Show full text]
  • ICT Literacyfor Secondaryschool
    KEMENTERIAN PELAJARAN MALAYSIA Self Access Learning Module ICT Literacy for IICCTT LLiitteerraaccyy ffoorr SSSeeecccooo nnndddaaarrryyy SSSccchhhoooooolll PPPrrrooogggrrraaammmmmmeee Computer Hardware COMPUTER PARTS & COMPONENTS INPUT DEVICES OUTPUT DEVICES STORAGE DEVICES PUSAT PERKEMBANGAN KURIKULUM KEMENTERIAN PELAJARAN MALAYSIA ICTL for Secondary School - Computer Hardware Module MODULE 5 INPUT DEVICES OUTPUT DEVICES STORAGE DEVICES Curriculum Development Centre Ministry of Education Malaysia 1 ICTL for Secondary School - Computer Hardware Module 1. Name of Module : Computer Parts & Components –Input devices, Output devices and Storage devices. 2. Learning Outcomes: The students should be able to: • identify and list the input devices • state the respective functions of input devices • identify and list the output devices • state the respective functions of output devices • identify and list the storage devices • state the functions of storage devices • identify differences between primary and secondary storage devices • state the units for data measurement 3. Knowledge and Skills: 1. Main components of computer system 2. System unit 3. Peripherals 4. Module Summary: At the end of the module, students should be able to identify input, output and storage devices and their functions respectively. This module contains 3 activities: Activity 1: Input devices Activity 2: Output devices Activity 3: Storage devices 2 ICTL for Secondary School - Computer Hardware Module Activity 1: Input Devices Input devices are any electronic devices connected to a computer that produce input signals. A keyboard is an example of input device for text input. A scanner is an example of input device for graphical as well as text input. A microphone is an example of input device for audio input A webcam is an example of an input device for video input.
    [Show full text]
  • Pointing Devices for Wearable Computers
    Hindawi Publishing Corporation Advances in Human-Computer Interaction Volume 2014, Article ID 527320, 10 pages http://dx.doi.org/10.1155/2014/527320 Review Article Pointing Devices for Wearable Computers Andrés A. Calvo and Saverio Perugini Department of Computer Science, University of Dayton, 300 College Park, Dayton, OH 45469-2160, USA Correspondence should be addressed to Saverio Perugini; [email protected] Received 29 July 2013; Revised 20 December 2013; Accepted 22 January 2014; Published 24 March 2014 Academic Editor: Eva Cerezo Copyright © 2014 A. A. Calvo and S. Perugini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a survey of pointing devices for wearable computers, which are body-mounted devices that users can access at any time. Since traditional pointing devices (i.e., mouse, touchpad, and trackpoint) were designed to be used on a steady and flat surface they are inappropriate for wearable computers. Just as the advent of laptops resulted in the development of the touchpad and trackpoint, the emergence of wearable computers is leading to the development of pointing devices designed for them. However, unlike laptops, since wearable computers are operated from different body positions under different environmental conditions for different uses, researchers have developed a variety of innovative pointing devices for wearable computers characterized by their sensing mechanism, control mechanism, and form factor. We survey a representative set of pointing devices for wearable computers using an “adaptation of traditional devices” versus “new devices” dichotomy and study devices according to their control and sensing mechanisms and form factor.
    [Show full text]
  • ASSISTIVE TECHNOLOGY GLOSSARY the U.S
    ASSISTIVE TECHNOLOGY GLOSSARY The U.S. Department of Education established the Center on Technology and Disability (CTD) to provide a wide range of assistive technology resources for families, teachers, service providers, advocates. researchers, teacher training programs, disability organizations, and vendors. The CTD website – www.ctdinsitute.org – has a resource library with more than 1,000 assistive technology-related materials; a webinar center with an active schedule of informational presentations, and extensive archive; and a learning center for those who want structured, in-depth modules. The Center on Technology and Disability is funded by the U.S. Department of Education, Office of Special Education Programs (OSEP) under award #H327F130003 – 13A. Assistive Technology Glossary This glossary was created to help parents as they encounter various terms in the areas of special education, disabilities, and assistive technology. It is important for parents and guardians to understand the “language” of assistive technology in order to be informed advocates for their child’s technology needs. A Access: The term “access” refers to the ability of any person or group to be able to have full use of a product or device, or full access to a service or environment. With full access to technology and services, people with varying abilities are able to participate successfully in school, at home, in the workplace, and in the community. Accessibility Features: Accessibility features are options that allow a user to adjust a technology tool’s settings to their personal needs. Common ac- cessibility settings adjust for an individual’s visual, mobility, hear- ing, language, and learning needs. On electronic print materials, font size and color may be changed, along with background color.
    [Show full text]
  • Input Devices
    Student Notes Input Devices Input is any data or instructions entered into the memory of a computer. An input device is any hardware component that allows a user to enter data and instructions into a computer. The following is a list of the most common input devices which are nowadays found in a computer system. QWERTY Keyboard glossary pg. 129, 132 A keyboard contains keys that allow a user to enter data and instructions into the computer. All computer keyboards have a typing area that includes the letters of the alphabet, numbers, punctuation marks, and other basic keys. Many desktop computer keyboards also have a numeric keypad located on the right side of the keyboard. On notebook and many handheld computers, the keyboard is built into the top of the system unit. A standard computer keyboard is called a QWERTY keyboard because of the layout of its typing area which is similar to that of a typewriter. Advantages of using keyboards for data input include It is not necessary to buy additional equipment because most computer systems are normally supplied with keyboards. Entering data and instructions with keyboards is generally faster than with pointing devices. Disadvantages of using keyboards for data input include It takes a lot of time to practice in order to type quickly and accurately. Typing speeds are still very slow when compared with computer speeds. Mouse glossary pg. 130 A mouse is the most widely used pointing device with a GUI environment on personal computers. A mechanical mouse has a rubber ball on its underside to detect movement of the mouse.
    [Show full text]
  • Mouse / Pointing Device
    Mouse / Pointing Device Overview There are a number of ailments that can come from using your mouse incorrectly, from sore wrists to aching shoulders. They may take years to develop, but once present, can be difficult to reverse. That's why it is so important - even if you're not currently feeling pain - to position and use your mouse properly so that you avoid future problems. Set-up & Positioning 1. Place your mouse close to your keyboard and within easy reach. Placing your mouse too far away can cause your shoulders muscles to tire from constantly supporting your outstretched arm, leading to neck and shoulder pain. Keeping it close to your keyboard means you won't have to overstretch when reaching for the mouse. 2. Keep your mouse close to your keyboard. Placing your mouse on a desk if your keyboard is on a tray can cause you to overreach, and result in shoulder or neck pain. You should be able to use your mouse comfortably with your arms close to your side, and your elbows at a slightly "open" angle. 3. Consider a mouse tray to help keep your mouse near your keyboard. Your mouse should be close to your keyboard, and both should be comfortably placed. If you are using a keyboard tray, the best position for your mouse is on an adjustable tray that slides over the numeric keypad of your keyboard, putting your mouse about 2 inches above your keyboard (known as a mouse bridge). If your keyboard tray has a mouse tray to the side that tilts, then try angling it down slightly to improve your wrist posture.
    [Show full text]