Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of 2 psychrotolerant acetogens by post-transcriptional regulation 3 4 Jongoh Shin1, Yoseb Song1, Sangrak Jin1, Jung-Kul Lee2, Dong Rip Kim3, Sun Chang Kim1,4, 5 Suhyung Cho1*, and Byung-Kwan Cho1,4* 6 7 1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of 8 Science and Technology, Daejeon 34141, Republic of Korea 9 2Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea 10 3Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea 11 4Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea 12 13 *Correspondence and requests for materials should be addressed to S.C. (
[email protected]) 14 and B.-K.C. (
[email protected]) 15 16 Running title: Cold adaptation of psychrotolerant acetogen 17 18 Keywords: Post-transcriptional regulation, Psychrotolerant acetogen, Acetobacterium bakii, 19 Cold-adaptive acetogenesis 20 1 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 ABSTRACT 2 Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. 3 Despite their ecological and industrial importance, their transcriptional and post-transcriptional 4 regulation has not been systematically studied. With completion of the genome sequence of 5 Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this 6 psychrotolerant acetogen in response to temperature variations under autotrophic and 7 heterotrophic growth conditions.