Cannabinoid Receptor Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Cannabinoid Receptor Ligands Cannabinoid Receptor Ligands Roger G Pertwee School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK. Phone: + 44 (0)1224 555740, Fax: + 44 (0)1224 555844, E-mail: [email protected] Roger Pertwee is currently Professor of Neuropharmacology at the University of Aberdeen and Director of Pharmacology for GW Pharmaceuticals. His research focuses on the pharmacology of cannabis and its constituents and of cannabinoid receptors and cannabis-derived, synthetic and endogenous ligands for these receptors. The Endocannabinoid System including immune cells. CB2 receptors are located predominantly in immune cells both within and Two types of cannabinoid receptor have so far been outside the central nervous system, the functions identified.1,2 These are the CB receptor, cloned 1 of these receptors including modulation of cytokine in 1990,3 and the CB receptor, cloned in 1993,4 2 release and of immune cell migration. In the brain, both of which are members of the superfamily of CB receptors are expressed by microglia,7 by blood G-protein-coupled receptors. The cloning of these 2 vessels,7 and by some neurons.8,9 However, the role receptors prompted the development of mice from of neuronal CB2 receptors is currently unknown. which cannabinoid CB1 and/or CB2 receptors have been genetically deleted and these transgenic The central distribution pattern of CB1 receptors is animals, particularly CB1 knockout mice, are now heterogeneous and accounts for several prominent widely used to explore the physiological and pharmacological properties of CB1 receptor agonists, pathological functions of cannabinoid receptors.1,5,6 for example their ability to impair cognition and CB1 receptors are found mainly at the terminals of memory and to alter the control of motor function. Thus central and peripheral neurons where they usually the cerebral cortex, hippocampus, lateral caudate- mediate inhibition of neurotransmitter release. putamen, substantia nigra pars reticulata, globus They are also present in some non-neuronal cells, pallidus, entopeduncular nucleus and the molecular Figure 1 | Structures of the plant cannabinoids, ∆9-tetrahydrocannabinol (∆9-THC), ∆8-tetrahydrocannabinol (∆8-THC), the synthetic cannabinoids HU 210, CP 55,940 , WIN 55,212-2 and WIN 55,212-3, and the endogenous cannabinoids anandamide and 2-arachidonylglycerol (see also Table 1) O O 11 9 N N 8 10 OH O O H 1 OH 7 10b H 2 10a N N H 3 13 H 6 O 5 12 4 1' 3' 5' O O O ∆9-THC ∆8-THC WIN 55,212-2 (Cat. No. 1038) WIN 55,212-3 (Cat. No. 2327) OH HO OH OH O H OH 8 5 3 1' O OH N H H 2' OH 10 O O 20 OH 17 19 HU 210 (Cat. No. 0966) CP 55,940 (Cat. No. 0949) Anandamide (Cat. No. 1339) 2-Arachidonylglycerol (Cat. No. 1298) (Bold Text Denotes Compounds Available From Tocris) Tocris Bioscience Scientific Review Series Tocris Bioscience Scientific Review Series layer of the cerebellum are all populated with such endogenous cannabinoids (endocannabinoids) 1,10 particularly high concentrations of CB1 receptors. to be identified were N-arachidonoyl ethanolamine In line with the analgesic properties of cannabinoid (anandamide) in 1992 and 2-arachidonylglycerol in 20-22 receptor agonists, CB1 receptors are also found on 1995 (Figure 1), both of which are synthesised pain pathways in the brain and spinal cord and at the on demand in response to elevations of intracellular peripheral terminals of primary sensory neurons.11,12 calcium.23 Anandamide is formed from N-arachidonoyl Although the concentration of CB1 receptors is phosphatidylethanolamine in a process that is considerably less in peripheral tissues than in the catalysed by N-acyl phosphatidylethanolamine- central nervous system, this does not mean that selective phospholipase D (NAPE-PLD). The peripheral CB1 receptors are unimportant. Thus in synthesis of 2-arachidonylglycerol, however, some peripheral tissues, discrete regions such as is thought to depend on the conversion of nerve terminals that form only a small part of the 2-arachidonate-containing phosphoinositides to total tissue mass are known to be densely populated diacylglycerols and on their subsequent with CB1 receptors. Peripheral tissues in which transformation to 2-arachidonylglycerol by the CB1 receptors are expressed on neurons include action of two diacylglycerol lipase (DAGL) isozymes, the heart, vas deferens, urinary bladder and small DAGLα and DAGLβ.23,24 Following their synthesis and intestine.10,13 release, these endocannabinoids are removed from their sites of action by cellular uptake and degraded Both CB1 and CB2 receptors are coupled through by enzymes, 2-arachidonylglycerol mainly by Gi/o proteins, negatively to adenylyl cyclase and monoacylglycerol lipase (MAGL) but also by fatty acid 1,14 positively to mitogen-activated protein kinase. In amide hydrolase (FAAH), and anandamide by FAAH addition, CB1 receptors are coupled to ion channels and/or by palmitoylethanolamide-preferring acid through Gi/o proteins, positively to A-type and inwardly amidase (PAA), cyclooxygenase-2, lipoxygenases rectifying potassium channels and negatively to and cytochrome P450.5,23-25 Other ligands that may 1,13,14 N-type and P/Q-type calcium channels. CB1 be endocannabinoids are 2-arachidonylglyceryl receptors can also couple to Gs proteins to activate ether (noladin ether), O-arachidonoyl ethanolamine 15-17 adenylyl cyclase, the extent to which this occurs (virodhamine), N-dihomo-γ-linolenoyl ethanolamine, possibly being determined by the location of these N-docosatetraenoyl ethanolamine, oleamide, receptors or by cross-talk between CB1 receptors N-arachidonoyl dopamine (NADA) and and co-localised G-protein-coupled non-CB1 N-oleoyl dopamine (OLDA) (Figures 2 and 3).5 15,16,18,19 receptors. It may also be that CB1 receptors Endocannabinoids together with their receptors can exist as two distinct subpopulations, one constitute what is now usually referred to as the 15 coupled to Gi/o proteins and the other to Gs. Details ‘endocannabinoid system’. of additional signalling mechanisms that have been While it is generally accepted that endocannabinoids proposed for cannabinoid CB1 and CB2 receptors can be found elsewhere.1,14 do pass through cell membranes, one issue that is currently very much a matter of debate is the question The cloning of cannabinoid receptors was followed of whether the cellular uptake of endocannabinoids by the discovery that mammalian tissues produce such as anandamide is mediated by a transporter.25-27 compounds that can activate these receptors. The first In contrast, FAAH is now well characterised. Indeed, Figure 2 | Structures of the endogenous cannabinoid receptor agonists, N-dihomo-γ-linolenoyl ethanolamine, N-docosatetraenoyl ethanolamine, NADA, oleamide, OLDA and virodhamine OH O O O OH OH N N N OH H H H N-Dihomo-γ-linolenoyl ethanolamine N-Docosatetraenoyl ethanolamine NADA (Cat. No. 1568) OH O O O NH2 NH2 N OH O H Oleamide (Cat. No. 0878) OLDA (Cat. No. 1641) Virodhamine (Cat. No. 1569) (Bold Text Denotes Compounds Available From Tocris) | Cannabinoid Receptor Ligands it has been cloned28 and FAAH knockout mice mechanism(s) underlying the entourage effect have have been developed.29,30 NAPE/PLD,31 MAGL,32-34 yet to be established. and DAGLα and DAGLβ35 have also been cloned, Endocannabinoids most probably have both and mice with a genetic deletion of NAPE/PLD neuromodulatory and immunomodulatory roles that generated.36 include inhibition of ongoing transmitter release At least some effects induced by endogenously through retrograde signalling38 and regulation of released anandamide and 2-arachidonylglycerol cytokine release and of immune cell migration.39,40 appear to be enhanced through what has been It is also now generally accepted that there are termed the “entourage effect”. This relies on certain disorders in which endocannabinoid release the co-release of other endogenous fatty acid increases in particular tissues, and secondly, that this derivatives that include palmitoylethanolamide upregulation of the endocannabinoid system leads and oleamide, which can potentiate anandamide, in some instances to the suppression of unwanted and 2-linoleoylglycerol and 2-palmitoylglycerol, signs and symptoms and so is “autoprotective” and in which can potentiate 2-arachidonylglycerol.37 The others to the production of undesirable effects.5 Thus Table 1 | Pharmacological properties of certain cannabinoid CB1/CB2 receptor agonists and their Ki 3 3 values for the in vitro displacement of [ H]CP 55,940 or [ H]HU 243 from CB1- and CB2-specific binding sites CB1 Ki CB2 Ki Classification Examples values values (nM) (nM) Classical The compounds in this group consist of dibenzopyran derivatives and are either plant-derived cannabinoids or synthetic analogues of these. Notable examples are 9 • (–)-∆ -THC, which binds equally well to CB1 and CB2 receptors and behaves as a partial agonist 5.05 to 3.13 to at both of these receptor types. It has even less efficacy at CB2 than at CB1 receptors and, 80.3 75.3 42 indeed, has been reported in one CB2 bioassay system to behave as an antagonist. 8 9 • (–)-∆ -THC, which resembles ∆ -THC both in its affinities for CB1 and CB2 receptors and in its 44, 44, CB1 receptor efficacy. 47.6 39.3 8 • (–)-11-hydroxy-∆ -THC-dimethylheptyl (HU 210), which has efficacies at CB1 and CB2 receptors 0.06 to 0.17 to that match those of CP 55,940 and WIN 55,212-2 (see below) and affinities for CB1 and CB2 0.73 0.52 receptors that exceed those of many other cannabinoids. It is a particularly potent cannabinoid receptor agonist and its pharmacological effects in vivo are exceptionally long-lasting. The enhanced affinity and efficacy shown by HU 210 at cannabinoid receptors can be largely attributed to the replacement of the pentyl side chain of ∆8-THC with a dimethylheptyl group. Nonclassical The compounds in this group were developed by a Pfizer research team.
Recommended publications
  • Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors
    0022-3565/97/2813-1030$03.00/0 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 281, No. 3 Copyright © 1997 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. JPET 281:1030–1037, 1997 Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors KRISTY D. LAKE, DAVID R. COMPTON, KAROLY VARGA, BILLY R. MARTIN and GEORGE KUNOS Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia Accepted for publication February 19, 1997 ABSTRACT 9 Previous studies indicate that the CB1 cannabinoid receptor an- potency was (-)-11-OH-D -THC dimethylheptyl $ (-)-3-[2- tagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophe- hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]cy- nyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A), in- clohexan-1-ol . (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]- hibits the anandamide- and D9-tetrahydrocannabinol- (THC) 4-[3-hydroxy-propyl]cyclohexan-1-ol . THC . anandamide $ induced hypotension and bradycardia in anesthetized rats with a (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy- potency similar to that observed for SR141716A antagonism of propyl]cyclohexan-1-ol, which correlated well with CB1 receptor THC-induced neurobehavioral effects. To further test the role of affinity or analgesic potency (r 5 0.96-0.99). There was no hypo- CB1 receptors in the cardiovascular effects of cannabinoids, we tension or bradycardia after palmitoylethanolamine or (1)-11-OH- examined two additional criteria for receptor-specific interactions: D9-THC dimethylheptyl.
    [Show full text]
  • Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission
    The Journal of Neuroscience, October 14, 2015 • 35(41):14057–14069 • 14057 Neurobiology of Disease Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission Alexandra Alvarsson,1* Xiaoqun Zhang,1* Tiberiu L Stan,1 Nicoletta Schintu,1 Banafsheh Kadkhodaei,2 Mark J. Millan,3 Thomas Perlmann,2,4 and Per Svenningsson1 1Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-17176 Stockholm, Sweden, 2Ludwig Institute for Cancer Research, SE-17177 Stockholm, Sweden, 3Pole of Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris 87290, France, and 4Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden Parkinson’s disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by L-DOPA relieves symptoms of PD but causes dyskinesia. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in experimental Parkinsonism and L-DOPA responses has been neglected. Here, we report that TAAR1 knock-out (KO) mice show a reduced loss of dopaminergic markers in response to intrastriatal 6-OHDA administra- tion compared with wild-type (WT) littermates. In contrast, the TAAR1 agonist RO5166017 aggravated degeneration induced by intra- striatal6-OHDAinWTmice.Subchronic L-DOPAtreatmentofTAAR1KOmiceunilaterallylesionedwith6-OHDAinthemedialforebrain bundle resulted in more pronounced rotational behavior and dyskinesia than in their WT counterparts. The enhanced behavioral sensitization to L-DOPA in TAAR1 KO mice was paralleled by increased phosphorylation of striatal GluA1 subunits of AMPA receptors. Conversely, RO5166017 counteracted both L-DOPA-induced rotation and dyskinesia as well as AMPA receptor phosphorylation.
    [Show full text]
  • Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System
    International Journal of Molecular Sciences Review Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System Shenglong Zou and Ujendra Kumar * Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-3660; Fax: +1-604-822-3035 Received: 9 February 2018; Accepted: 11 March 2018; Published: 13 March 2018 Abstract: The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids. Keywords: cannabinoid; endocannabinoid; receptor; signaling; central nervous system 1. Introduction The plant Cannabis sativa, better known as marijuana, has long been used for medical purpose throughout human history.
    [Show full text]
  • Extracts and Tinctures of Cannabis
    WHO Expert Committee on Drug Dependence Critical Review …………….. Extracts and tinctures of cannabis This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization © World Health Organization 2018 All rights reserved. This is an advance copy distributed to the participants of the 41st Expert Committee on Drug Dependence, before it has been formally published by the World Health Organization. The document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means without the permission of the World Health Organization. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
    Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A.
    [Show full text]
  • Cannabinoids in the Pathophysiology of Skin Inflammation
    molecules Review Cannabinoids in the Pathophysiology of Skin Inflammation Cristian Scheau 1 , Ioana Anca Badarau 1, Livia-Gratiela Mihai 1, Andreea-Elena Scheau 2, Daniel Octavian Costache 3, Carolina Constantin 4,5, Daniela Calina 6 , Constantin Caruntu 1,7,*, Raluca Simona Costache 8,* and Ana Caruntu 9,10 1 Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (C.S.); [email protected] (I.A.B.); [email protected] (L.-G.M.) 2 Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; [email protected] 3 Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 4 Immunology Department, ”Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; [email protected] 5 Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania 6 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; [email protected] 7 Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania 8 Gastroenterology and Internal Medicine Clinic, Carol Davila University Central Emergency Military Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania 9 Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 10 Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania * Correspondence: [email protected] (C.C.); [email protected] (R.S.C.); Tel.: +40-745-086-978 (C.C.) Academic Editor: Eric J. Downer Received: 30 December 2019; Accepted: 2 February 2020; Published: 4 February 2020 Abstract: Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.
    [Show full text]
  • The Selective Reversible FAAH Inhibitor, SSR411298, Restores The
    www.nature.com/scientificreports OPEN The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive Received: 22 September 2017 Accepted: 26 January 2018 behaviors to acute and chronic Published: xx xx xxxx stress in rodents Guy Griebel1, Jeanne Stemmelin2, Mati Lopez-Grancha3, Valérie Fauchey3, Franck Slowinski4, Philippe Pichat5, Gihad Dargazanli4, Ahmed Abouabdellah4, Caroline Cohen6 & Olivier E. Bergis7 Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-efects (memory defcit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like efects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profle positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors. Te endocannabinoid (eCB) system is formed by two G protein-coupled receptors, CB1 and CB2, and their main transmitters, N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoyglycerol (2-AG)1.
    [Show full text]
  • N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation Via Nonhematopoietic TRPV1
    N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 This information is current as Samira K. Lawton, Fengyun Xu, Alphonso Tran, Erika of October 1, 2021. Wong, Arun Prakash, Mark Schumacher, Judith Hellman and Kevin Wilhelmsen J Immunol 2017; 199:1465-1475; Prepublished online 12 July 2017; doi: 10.4049/jimmunol.1602151 http://www.jimmunol.org/content/199/4/1465 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/07/12/jimmunol.160215 Material 1.DCSupplemental http://www.jimmunol.org/ References This article cites 69 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/199/4/1465.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 Samira K.
    [Show full text]
  • The Cannabinoid Receptor Agonist WIN 55,212-2 Attenuates the Effects Induced by Quinolinic Acid in the Rat Striatum
    Neuropharmacology 51 (2006) 1004e1012 www.elsevier.com/locate/neuropharm The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum A. Pintor a, M.T. Tebano a, A. Martire a, R. Grieco a, M. Galluzzo a, M.L. Scattoni b,A.Pe`zzola a, R. Coccurello c, F. Felici a, V. Cuomo d, D. Piomelli e, G. Calamandrei b, P. Popoli a,* a Department of Drug Research and Evaluation, Central Nervous System Pharmacology Division, Istituto Superiore di Sanita`, Viale Regina Elena, 299, 00161 Rome, Italy b Department of Cell Biology and Neuroscience, Istituto Superiore di Sanita`, Viale Regina Elena, 299, 00161 Rome, Italy c Institute of Neuroscience, EBRI Foundation, Rome, Italy d Department of Pharmacology and General Physiology, University ‘‘La Sapienza’’, Rome, Italy e Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA Received 7 April 2006; received in revised form 15 May 2006; accepted 16 June 2006 Abstract The ability of CB1 receptors to regulate the release of glutamate in the striatum, together with the finding that, in experimental models of Huntington disease (HD), both endocannabinoid levels and CB1 receptor densities are reduced, has prompted the investigation on the neuropro- tective role of the cannabinoids in HD. Quinolinic acid (QA) is an excitotoxin that, when injected in the rat striatum reproduces many features of HD and that acts by stimulating glutamate outflow. The aim of the present study was to test the ability of the cannabinoid receptor agonist WIN 55,212-2 to prevent the effects induced by QA in the rat striatum.
    [Show full text]
  • NIH Public Access Author Manuscript Drug Alcohol Depend
    NIH Public Access Author Manuscript Drug Alcohol Depend. Author manuscript; available in PMC 2015 October 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Drug Alcohol Depend. 2014 October 1; 143: 251–256. doi:10.1016/j.drugalcdep.2014.08.004. Effects of the cannabinoid CB1 receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine- seeking behavior in rats* Li Jinga,b, Yanyan Qiua, Yanan Zhangc, and Jun-Xu Lia aDepartment of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA bDepartment of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China cResearch Triangle Institute, Research Triangle Park, North Carolina, USA Abstract Background—Cannabinoid CB1 receptors play an essential role in drug addiction. Given the side effect profiles of orthosteric CB1 antagonism, new strategies have been attempted to modulate this target, such as CB1 receptor allosteric modulation. However, the effect of CB1 allosteric modulation in drug addiction is unknown. The present study examined the effects of the CB1 receptor allosteric modulator ORG27569 on the reinstatement of cocaine- and methamphetamine- seeking behavior in rats. Methods—Rats were trained to self-administer 0.75 mg/kg cocaine or 0.05 mg/kg methamphetamine in 2-hr daily sessions for 14 days which was followed by 7 days of extinction sessions in which rats responded on the levers with no programmed consequences. On reinstatement test sessions, rats were administered ORG27569 (1.0, 3.2, 5.6 mg/kg, i.p.) or SR141716A (3.2 mg/kg, i.p.) 10 min prior to re-exposure to cocaine- or methamphetamine-paired cues or a priming injection of cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.).
    [Show full text]
  • CB1 and GPR55 Receptors Are Co-Expressed and Form Heteromers in Rat 3 and Monkey Striatum
    YEXNR-11769; No. of pages: 9; 4C: Experimental Neurology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr 1 Regular Article 2 CB1 and GPR55 receptors are co-expressed and form heteromers in rat 3 and monkey striatum 4 E. Martínez-Pinilla a,⁎, I. Reyes-Resina e, A. Oñatibia-Astibia a,M.Zamarbidea,A.Ricobarazad,G.Navarroe, 5 E. Moreno e,I.G.Dopeso-Reyesb,c, S. Sierra b,c, A.J. Rico b,c,E.Rodab,c,J.L.Lanciegob,c,1,R.Francoa,e,1 6 a Laboratory of Cell and Molecular Neuropharmacology, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain 7 b Laboratory of Basal Ganglia Neuroanatomy, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain 8 c Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain 9 d Laboratoire de Plasticité du Cerveau, ESPCI-ParisTech, Paris, France 10 e Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain 11 article info abstract 12 Article history: Heteromerization of G-protein-coupled receptors is an important event as they integrate the actions 22 13 Received 6 May 2014 of extracellular signals to give heteromer-selective ligand binding and signaling, opening new ave- 23 14 Revised 13 June 2014 nues in the development of potential drug targets in pharmacotherapy. A further aim of the present 24 15 Accepted 17 June 2014 paper was to check for cannabinoid CB –GPR55 receptor heteromers in the central nervous system 25 16 Available online xxxx 1 (CNS), specifically in striatum.
    [Show full text]
  • The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys
    The Journal of Neuroscience, May 11, 2011 • 31(19):7043–7048 • 7043 Brief Communications The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys Zuzana Justinova´,1,2 Sevil Yasar,3 Godfrey H. Redhi,1 and Steven R. Goldberg1 1Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, 2Maryland Psychiatric Research Centre, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228, and 3Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224 Two endogenous ligands for cannabinoid CB1 receptors, anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG), have been identified and characterized. 2-AG is the most prevalent endogenous cannabinoid ligand in the brain, and electrophysiological studies suggest 2-AG, rather than anandamide, is the true natural ligand for cannabinoid receptors and the key endocannabinoid involved in retrograde signaling in the brain. Here, we evaluated intravenously administered 2-AG for reinforcing effects in nonhuman primates. Squirrel monkeys that previously self-administered anandamide or nicotine under a fixed-ratio schedule with a 60 s timeout after each injection had their self-administration behavior extinguished by vehicle substitution and were then given the opportunity to self-administer 2-AG. Intravenous 2-AG was a very effective reinforcer of drug-taking behavior, maintaining higher numbers of self-administered injections per session and higher rates of responding than vehicle across a wide range of doses. To assess involvement of CB1 receptors in the reinforcing effects of 2-AG, we pretreated monkeys with the cannabinoid CB1 receptor inverse agonist/antagonist rimonabant [N-piperidino-5-(4-chlorophenyl)-1-(2,4- dichlorophenyl)-4-methylpyrazole-3-carboxamide].
    [Show full text]