CB1 and GPR55 Receptors Are Co-Expressed and Form Heteromers in Rat 3 and Monkey Striatum

Total Page:16

File Type:pdf, Size:1020Kb

CB1 and GPR55 Receptors Are Co-Expressed and Form Heteromers in Rat 3 and Monkey Striatum YEXNR-11769; No. of pages: 9; 4C: Experimental Neurology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr 1 Regular Article 2 CB1 and GPR55 receptors are co-expressed and form heteromers in rat 3 and monkey striatum 4 E. Martínez-Pinilla a,⁎, I. Reyes-Resina e, A. Oñatibia-Astibia a,M.Zamarbidea,A.Ricobarazad,G.Navarroe, 5 E. Moreno e,I.G.Dopeso-Reyesb,c, S. Sierra b,c, A.J. Rico b,c,E.Rodab,c,J.L.Lanciegob,c,1,R.Francoa,e,1 6 a Laboratory of Cell and Molecular Neuropharmacology, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain 7 b Laboratory of Basal Ganglia Neuroanatomy, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain 8 c Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain 9 d Laboratoire de Plasticité du Cerveau, ESPCI-ParisTech, Paris, France 10 e Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain 11 article info abstract 12 Article history: Heteromerization of G-protein-coupled receptors is an important event as they integrate the actions 22 13 Received 6 May 2014 of extracellular signals to give heteromer-selective ligand binding and signaling, opening new ave- 23 14 Revised 13 June 2014 nues in the development of potential drug targets in pharmacotherapy. A further aim of the present 24 15 Accepted 17 June 2014 paper was to check for cannabinoid CB –GPR55 receptor heteromers in the central nervous system 25 16 Available online xxxx 1 (CNS), specifically in striatum. First, a direct interaction was demonstrated in cells transfected with 26 27 17 Keywords: thecDNAforthehumanversionofthereceptors,using bioluminescence resonance energy transfer fi 28 18 GPCR heteromerization and in situ proximity ligation assays (PLA). In the heterologous system, a biochemical ngerprint 19 Cannabinoids consisting on cross-antagonism in ERK1/2 phosphorylation was detected. The cross-antagonism was 29 20 PLA also observed on GPR55-mediated NFAT activation. Direct identification of GPR55 receptors in stria- 30 21 BRET tum is here demonstrated in rat brain slices using a specific agonist. Moreover, the heteromer finger- 31 print was identified in these rat slices by ERK1/2 phosphorylation assays whereas PLA assays showed 32 results consistent with receptor–receptor interaction in both caudate and putamen nuclei of a non- 33 human primate. The results indicate not only that GPR55 is expressed in striatum but also that CB1 34 35 and GPR55 receptors form heteromers in this specificCNSregion. 36 © 2014 Published by Elsevier Inc. 373840 39 41 Introduction protein, leading to decreases in the intracellular levels of the second 53 messenger cAMP upon its activation (Howlett, 2005; Pertwee et al., 54 42 Endocannabinoids are neuromodulators that act on the canna- 2010). 55 43 binoid receptors which currently represent potential therapeutic G-protein-coupled receptor 55 (GPR55) has been for many 56 44 targets for pain and for alterations to the central nervous system years considered an orphan receptor, i.e. a receptor for which no 57 45 (CNS). 2-Arachidonoyl-glycerol (2AG) and anandamide (AEA) are endogenous agonist was identified. As some CB1R ligands, AM251 58 46 two main endocannabinoids that exert their function via specific and rimonabant (SR141617) were able to bind to GPR55 (Brown 59 47 cannabinoid receptors 1 (CB1R) and 2 (CB2R) (Pacher and Kunos, and Robin Hiley, 2009; Hiley and Kaup, 2007; Johns et al., 2007; 60 48 2013). CB1R is activated by endocannabinoids by the main psycho- Lauckner et al., 2008; Pertwee, 2007; Petitet et al., 2006; Ryberg 61 49 active constituent of Cannabis sativa, Δ9-tetrahydrocannabinol et al., 2007), it was for some time assumed to be a third cannabi- 62 50 (Matsuda et al., 1990; Sugiura et al., 1999). It is the most highly noid receptor. In 2007, Oka and coworkers reported L-α- 63 51 expressed G-protein-coupled receptor (GPCR) in the brain. It has been lysophosphatidylinositol (LPI) as endogenous agonist of GPR55. 64 52 UNCORRECTED PROOF 65 clearly demonstrated that CB1R is coupled to a Gi heterotrimeric G Duringthelastdecadeithasbeendemonstrated that GPR55 does not couple to the adenylate cyclase system but its activation in- 66 duces intracellular calcium release via a Gα13/RhoA-mediated 67 pathway (Henstridge et al., 2009; Oka et al., 2007, 2009), regulates 68 the neutrophils cytoskeletal rearrangement and migration 69 ⁎ Corresponding author at: Laboratory of Cell and Molecular Neuropharmacology, (Balenga et al., 2011; Obara et al., 2011), and promotes prolifera- 70 Center for Applied Medical Research (CIMA), University of Navarra, Pio XII 55, 31008 tion via ERK1/2 MAPK activation (Andradas et al., 2011; 71 Pamplona, Spain. E-mail address: [email protected] (E. Martínez-Pinilla). Henstridge et al., 2010; Perez-Gomez et al., 2013). The pharmacol- 72 1 These authors contributed equally to this paper. ogy and the broad profile of tissue expression (Henstridge et al., 73 http://dx.doi.org/10.1016/j.expneurol.2014.06.017 0014-4886/© 2014 Published by Elsevier Inc. Please cite this article as: Martínez-Pinilla, E., et al., CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum, Exp. Neurol. (2014), http://dx.doi.org/10.1016/j.expneurol.2014.06.017 2 E. Martínez-Pinilla et al. / Experimental Neurology xxx (2014) xxx–xxx 74 2011), make GPR55 an attractive choice for further studies.2 De- approved by the Ethical Committee for Animal Testing of the University 124 75 spite its expression in mammalian brain (Ryberg et al., 2007), the of Navarra and the Department of Health of the Government of Navarra. 125 76 significant levels of LPI in nervous tissues (Oka et al., 2009), and 77 the active lipid metabolism in neural cells, the role of GPR55 in Monkey perfusion and tissue processing 126 78 the CNS is largely unknown. Recently, however, a knockout 79 mouse for GPR55 has been characterized by Wu et al. (2013) who Animals were anesthetized with an overdose of 10% chloral hydrate 127 80 report that the receptor plays a role in motor coordination. and perfused transcardially. The perfusate consisted of a saline Ringer's 128 81 Expression of dimers/oligomers constituted by different GPCRs solution followed by 3000 ml of a fixative solution containing 4% para- 129 fi 82 is a common nding from evidence in the last 15 years. Therefore formaldehyde and 0.1% glutaraldehyde in 0.125 M phosphate buffer 130 83 the occurrence of dimers/oligomers constituted by cannabinoid re- (PB), pH 7.4. Perfusion was continued with 1000 ml of a cryoprotectant 131 fi 84 ceptors and other GPCRs further diversi es the physiological ac- solution containing 10% glycerin and 2% dimethylsulfoxide (DMSO) in 132 85 tions of endocannabinoids. Interestingly, CB1Rs form homodimers 0.125 M PB, pH 7.4. Once perfusion was completed, the skull was 133 86 (Wager-Miller et al., 2002) and also heterodimers with CB2Rs opened, the brain was removed and stored for 48 h in a cryoprotectant 134 87 (Callen et al., 2012). In addition, Kargl et al. (2012) have reported solution containing 20% of glycerin and 2% DMSO in 0.125 M PB, pH 7.4. 135 88 that GPR55 co-immunoprecipitates with CB1R when co-expressed Finally, frozen serial sagittal sections (40 μm thick) were obtained on a 136 89 in heterologous cells. Based on the pleiotropic signaling of both sliding microtome and collected in 0.125 M PB, pH 7.4, as 10 series of ad- 137 90 cannabinoid receptors coupled with the atypical pharmacology of jacent sections. 138 91 the GPR55, the aim of this study was to know whether GPR55 is 92 expressed in the CNS and forms heteromers with CB R. In samples 1 Rat brain slices preparation 139 93 from striatum the CB1R–GPR55 heteromer fingerprint was detect- 94 ed and the interaction was further investigated by the use of the Rats were anesthetized with 4% isoflurane (2-chloro-2- 140 95 recently-developed in situ proximity ligation assay (PLA). (difluoromethoxy)-1,1,1-trifluoro-ethane) and decapitated with a 141 guillotine; brain was rapidly removed and placed in ice-cold oxy- 142 − 143 96 Materials and methods genated (O2/CO2: 95/5%) Krebs-HCO3 buffer (124 mM NaCl; 4mMKCl;1.25mMNaH2PO4;1.5mMMgCl2;1.5mMCaCl2; 144 145 97 Drugs 10 mM glucose; and 26 mM NaHCO3 pH 7.4). Brains were sliced at 4 °C in a brain matrix (Zivic Instruments, Pittsburgh, PA) into 146 147 98 N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-eic­osatetraenamide (ACEA) 0.5 mm coronal slices and the striatum area was dissected. Slices − 148 99 was from Tocris Bioscience, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)- were kept at 4 °C in Krebs-HCO3 buffer during the dissection of 149 100 4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (SR141716) was the striatum. Each slice was transferred into an incubation tube − 150 101 from Cayman Chemical and CID1792197 was from PubChem containing 1 ml of ice-cold Krebs-HCO3 buffer. The temperature 151 102 (Kotsikorou et al., 2011). ACEA was supplied as pale yellow oil that wasraisedto23°Candafter30minthemediumwasreplacedby − 152 103 was diluted in ethanol in a 10 mM concentration stock solution. 2mlKrebs-HCO3 buffer (23 °C). The slices were incubated under – 153 104 SR141617 (10 mM) and CID1792197 (10 mM) stock solutions were constant oxygenation (O2/CO2:95/5%)at30°Cfor4 5hinan 154 105 prepared in DMSO. Aliquots of these stock solutions were kept frozen Eppendorf Thermomixer (5 Prime, Inc., Boulder, CO). The media μ − 155 106 at −20 °C until use. were replaced by 200 l of fresh Krebs-HCO3 buffer and incubated for 30 min before the addition of ligands.
Recommended publications
  • Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission
    The Journal of Neuroscience, October 14, 2015 • 35(41):14057–14069 • 14057 Neurobiology of Disease Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission Alexandra Alvarsson,1* Xiaoqun Zhang,1* Tiberiu L Stan,1 Nicoletta Schintu,1 Banafsheh Kadkhodaei,2 Mark J. Millan,3 Thomas Perlmann,2,4 and Per Svenningsson1 1Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-17176 Stockholm, Sweden, 2Ludwig Institute for Cancer Research, SE-17177 Stockholm, Sweden, 3Pole of Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris 87290, France, and 4Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden Parkinson’s disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by L-DOPA relieves symptoms of PD but causes dyskinesia. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in experimental Parkinsonism and L-DOPA responses has been neglected. Here, we report that TAAR1 knock-out (KO) mice show a reduced loss of dopaminergic markers in response to intrastriatal 6-OHDA administra- tion compared with wild-type (WT) littermates. In contrast, the TAAR1 agonist RO5166017 aggravated degeneration induced by intra- striatal6-OHDAinWTmice.Subchronic L-DOPAtreatmentofTAAR1KOmiceunilaterallylesionedwith6-OHDAinthemedialforebrain bundle resulted in more pronounced rotational behavior and dyskinesia than in their WT counterparts. The enhanced behavioral sensitization to L-DOPA in TAAR1 KO mice was paralleled by increased phosphorylation of striatal GluA1 subunits of AMPA receptors. Conversely, RO5166017 counteracted both L-DOPA-induced rotation and dyskinesia as well as AMPA receptor phosphorylation.
    [Show full text]
  • Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System
    International Journal of Molecular Sciences Review Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System Shenglong Zou and Ujendra Kumar * Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-3660; Fax: +1-604-822-3035 Received: 9 February 2018; Accepted: 11 March 2018; Published: 13 March 2018 Abstract: The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids. Keywords: cannabinoid; endocannabinoid; receptor; signaling; central nervous system 1. Introduction The plant Cannabis sativa, better known as marijuana, has long been used for medical purpose throughout human history.
    [Show full text]
  • Metabolite Sensing Gpcrs: Promising Therapeutic Targets for Cancer Treatment?
    cells Review Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Jesús Cosín-Roger 1,*, Dolores Ortiz-Masia 2 , Maria Dolores Barrachina 3 and Sara Calatayud 3 1 Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain 2 Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; [email protected] 3 Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; [email protected] (M.D.B.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +34-963851234 Received: 30 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment. Keywords: G-protein-coupled receptor; metabolite sensing GPCR; cancer 1. Introduction G-protein-coupled receptors (GPCRs) are characterized by a seven-transmembrane configuration, constitute the largest and most ubiquitous family of plasma membrane receptors, and regulate virtually all known physiological processes in humans [1,2]. This family includes almost one thousand genes that were initially classified on the basis of sequence homology into six classes (A–F), where classes D and E were not found in vertebrates [3].
    [Show full text]
  • Activation of Dorsal Horn Cannabinoid CB2 Receptor Suppresses The
    Niu et al. Journal of Neuroinflammation (2017) 14:185 DOI 10.1186/s12974-017-0960-0 RESEARCH Open Access Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats Juan Niu†, Dujuan Huang†, Rui Zhou†, MingXia Yue, Tao Xu, Junna Yang, Li He, Hong Tian, XiaoHong Liu and Junwei Zeng* Abstract Background: More evidence suggests that dorsal spinal cord microglia is an important site contributing to CB2 receptor-mediated analgesia. The upregulation of P2Y12 and P2Y13 purinoceptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not known whether the expression of P2Y12 and P2Y13 receptors at spinal dorsal horn will be influenced after CB2 receptor activation in neuropathic pain rats. Methods: Chronic constriction injury (CCI) and intrathecal ADPbetaS injection were performed in rats to induce neuropathic pain. The paw withdrawal latency (PWL) was used to evaluate thermal hyperalgesia in neuropathic rats. The expression of P2Y12 and P2Y13 receptors, p-p38MAPK, and NF-kappaBp65 was detected with RT-PCR and western blotting analysis. Results: Treatment with AM1241 produces a pronounced inhibition of CCI-induced thermal hyperalgesia and significantly inhibited the increased expression of P2Y12 and P2Y13 receptors at the mRNA and protein levels, which open up the possibility that P2Y12 and P2Y13 receptor expression are downregulated by CB2 receptor agonist AM1241 in CCI rats. Western blot analysis demonstrated that AM1241 reduced the elevated expression of p-p38MAPK and NF-κBp65 in the dorsal spinal cord induced by CCI. After administration with either SB203580 (p38MAPK inhibitor) or PDTC (NF-kappaB inhibitor), the levels of P2Y13 receptor expression in the dorsal spinal cord were lower than those in the CCI group.
    [Show full text]
  • The Expanded Endocannabinoid System/Endocannabinoidome As a Potential Target for Treating Diabetes Mellitus
    Current Diabetes Reports (2019) 19:117 https://doi.org/10.1007/s11892-019-1248-9 OBESITY (KM GADDE, SECTION EDITOR) The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus Alain Veilleux1,2,3 & Vincenzo Di Marzo1,2,3,4,5 & Cristoforo Silvestri3,4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D. Keywords Endocannabinoidome . Bioactive lipids . Peripheral tissues . Glucose . Insulin Introduction: The Endocannabinoid System cannabis-derived natural product, Δ9-tetrahydrocannabinol and its Subsequent Expansion (THC), responsible for most of the psychotropic, euphoric to the “Endocannabinoidome” and appetite-stimulating actions (via CB1 receptors) and immune-modulatory effects (via CB2 receptors) of marijuana, The discovery of two G protein-coupled receptors, the canna- opened the way to the identification of the endocannabinoids binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the (eCBs).
    [Show full text]
  • Page 1 Supplemental Table I Upin WTVG Upin Humlowfb FAR1
    Supplemental Table I UPinWTvG UPinHuMlowFB overlap FAR1 CD209 PLEKHO2 B2M IL27 GCLC CALR HMGN2P46 ME1 XPO1 CLEC1A NEK6 PDIA3 HSD17B14 TMEM106A SERPINH1 NSUN7 KCNJ15 PLEKHO2 SEMA6B SH3PXD2B HSPD1 BAALC RHOU SYVN1 CEACAM4 TGFBI DNAJB9 KATNAL2 CTSZ SLC25A19 CCDC175 SULF2 MHCII CARD14 P2RY6 MDN1 TDO2 CD74 GCLC FCAR HLA-DQB1 PTPN2 GLDN CD14 CHORDC1 MMP7 CSF2RB LOX CLEC5A MRC1 STIP1 ZMYND15 ITGAX BPIFB1 ITLN1 SLAMF7 ME1 DKK2 CD84 PDIA6 FAM124A FCGR2A HYOU1 F3 CLEC10A NLRC5 DZIP1L IFI30 NEK6 CECR6 CLEC4A SLC39A14 NDP CLEC7A TMEM106AFCGR1A TFEC KCNJ15 CCL7 C1QC SH3PXD2B CRABP2 C1QA RHOU PIPOX FOLR2 LRP2 CCL2 CH25H MVD VSIG4 C1QB TGFBI LINC01010 SIGLEC1 NFKB2 DPRXP4 CTSS C5 FAM20A CCR1 HSP90B1 ANKRD29 SLAMF8 ALDH18A1 OCSTAMP MS4A7 EDEM1 TGM2 HK3 CTSZ TM4SF19 CXCL10 C6 TRPV4 CTSK AACS CCL8 MSR1 PPA1 CCL1 STEAP4 PIK3R5 KCNE1 CXCL9 RASAL3 SLC9A7P1 MS4A6A DOCK11 CHI3L1 TIMP1 BHLHE40 LOC731424 CD209 HCLS1 DCSTAMP CCL7 FASN MSR1 PDCD1LG2 PDIA4 IL31RA CCL2 ITK CXCL3 CXCL2 CRELD2 TREM2 C15orf48 SFTPD MGST1 GPR84 BCL3 METTL7B CXCL5 SULF2 TMEM86A OCSTAMP CYP51A1 A2M SERPINA1 CREB3L1 AQP9 MMP12 DUSP2 NUPR1 CCL8 ADAM8 FHAD1 CCL24 P2RY6 YPEL4 FBP1 KCNAB2 FBP1 NA NFKBIE LOC100506585 NA FSCN1 CXCL16 NA MANF RAB13 NA SLC5A3 LOC391322 NA CTSC IL8 NA COTL1 MS4A4A NA HSPA5 SERPING1 NA MUC5B PLA2G4C NA CD74 CA12 NA HLA-DQB1 GBP1P1 NA SLC7A2 C11orf45 NA FABP5 ACVRL1 NA CIITA SPP1 NA RAB3IL1 TLN2 NA HSPE1 NDRG2 NA SCD C15orf48 NA ITIH4 KCNJ15 NA SERPINA3 MEIS3P1 NA LAG3 IL1RN NA FOXM1 HNMT NA CD14 CYP27B1 NA RRM2 CDCP1 NA ABCD2 FOLR2 NA FCRL2 ECM1 NA PDE3B ADAMDEC1
    [Show full text]
  • A Role for the Endocannabinoid-Arachidonic Acid Pathway in Drug Reward and Long-Lasting Relapse to Drug Taking
    J Pharmacol Sci 96, 382 – 388 (2004) Journal of Pharmacological Sciences ©2004 The Japanese Pharmacological Society Forum Minireview New Perspectives in the Studies on Endocannabinoid and Cannabis: A Role for the Endocannabinoid-Arachidonic Acid Pathway in Drug Reward and Long-Lasting Relapse to Drug Taking Tsuneyuki Yamamoto1,*, Kusnandar Anggadiredja1, and Takato Hiranita1 1Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Received September 27, 2004; Accepted October 27, 2004 Abstract. Growing evidence on the involvement of cannabinoids in the rewarding effects of various kinds of drugs of abuse has suggested that not only the classical dopaminergic and opioidergic, but also the most recently established endocannabinoid system is implicated in the brain reward system. Furthermore, the interplay between the three systems has been shown to be an essential neural substrate underlying many aspects of drug addiction including craving and relapse. Relapse, the resumption of drug taking following a period of drug abstinence, is considered the main hurdle in treating drug addiction. Yet, little is known about its underlying mechanisms. The link between the endocannabinoid system and the arachidonic cascade is currently being clarified. While several findings have, indeed, shown the essential role of the endocannabinoid system in the reinstatement model, the endocannabinoid-arachidonic acid pathway may also be an important part in the neural machinery underlying relapse. This evidence may provide an alternative approach that will open a novel strategy in combating drug addiction. Keywords: drug seeking behavior, relapse, addiction, endocannabinoid system, arachidonic acid cascade Cannabinoid and reward atypical habit-forming drug.
    [Show full text]
  • Glucocorticoid Regulation of the G-Protein Coupled Estrogen Receptor (GPER) in Mouse Hippocampal Neurons
    Glucocorticoid Regulation of the G-Protein Coupled Estrogen Receptor (GPER) in Mouse Hippocampal Neurons by Kate Colleen Eliza Nicholson A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Biomedical Sciences Guelph, Ontario, Canada © Kate Colleen Eliza Nicholson, August, 2019 ABSTRACT GLUCOCORTICOID REGULATION OF THE G-PROTEIN COUPLED ESTROGEN RECEPTOR (GPER) IN MOUSE HIPPOCAMPAL NEURONS Kate Colleen Eliza Nicholson Advisor: University of Guelph, 2019 Dr. Neil J. MacLusky The most prevalent estrogen, 17β-estradiol, binds the non-classical G-protein coupled estrogen receptor (GPER) with high affinity resulting in rapid activation of the c- jun N terminal kinase (JNK) pathway. GPER activation mediates some of the rapid neurotrophic and memory-enhancing effects of 17β-estradiol in the female hippocampus. However, exposure to stressful stimuli may impair these beneficial effects. This thesis characterizes neurosteroid receptor expression in murine-derived mHippoE cell lines that are subsequently used to investigate the glucocorticoid regulation of GPER protein expression and functional activation. This thesis demonstrates that 24-hour treatment with a glucocorticoid receptor agonist reduces GPER protein expression and activation of JNK in female-derived mHippoE-14s. Using an in vivo model, treatment with glucocorticoids significantly reduces hippocampal activation of JNK in female ovariectomized CD1 mice. Collectively, this thesis uses in vitro and in vivo models to characterize glucocorticoid regulation of GPER expression and signalling in female murine hippocampal neurons. ACKNOWLEDGEMENTS To Dr. MacLusky: I would like to thank you for inspiring my passion for science and pursuit of knowledge. Over the past 2 years, you have provided me with countless opportunities to grow as a young researcher and I am tremendously grateful for this.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • GPR55 Is a Cannabinoid Receptor That Increases Intracellular Calcium and Inhibits M Current
    GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current Jane E. Lauckner*†, Jill B. Jensen*, Huei-Ying Chen‡, Hui-Chen Lu‡, Bertil Hille*§, and Ken Mackie*¶ʈ Departments of *Physiology and Biophysics and ¶Anesthesiology and †Neurobiology and Behavior Graduate Program, University of Washington, Seattle, WA 98195; and ‡Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 Contributed by Bertil Hille, November 29, 2007 (sent for review November 9, 2007) The CB1 cannabinoid receptor mediates many of the psychoactive 240 Ϯ 100 nM, insignificantly different from hGPR55-HEK293 effects of ⌬9THC, the principal active component of cannabis. cells (n ϭ 6, 254 Ϯ 80 nM). However, ample evidence suggests that additional non-CB1/CB2 Other cannabinoid agonists also activated hGPR55 to increase receptors may contribute to the behavioral, vascular, and immu- intracellular calcium. The endogenous cannabinoid anandamide nological actions of ⌬9THC and endogenous cannabinoids. Here, (AEA), and its metabolically stable analog methanandamide we provide further evidence that GPR55, a G protein-coupled (MEA), both increased intracellular calcium. On average, 5 ␮M receptor, is a cannabinoid receptor. GPR55 is highly expressed in MEA increased calcium by 100 nM (n ϭ 7, Fig. 1B), and 5 ␮M large dorsal root ganglion neurons and, upon activation by various AEA increased calcium by 45 nM (n ϭ 6, Fig. 1B). The cannabinoids (⌬9THC, the anandamide analog methanandamide, aminoalkylindole JWH015 is considered an efficacious, specific and JWH015) increases intracellular calcium in these neurons. CB2 agonist (8). Surprisingly, JWH015 also stimulates GPR55, Examination of its signaling pathway in HEK293 cells transiently with 3 ␮M giving an average calcium rise of 100 nM in expressing GPR55 found the calcium increase to involve Gq,G12, hGPR55-HEK293 cells (n ϭ 6, Fig.
    [Show full text]
  • Bioinformatics Unmasks the Maneuverers of Pain Pathways In
    www.nature.com/scientificreports OPEN Bioinformatics Unmasks the Maneuverers of Pain Pathways in Acute Kidney Injury Received: 4 March 2019 Aprajita Gupta 1, Sanjeev Puri 2 & Veena Puri 1 Accepted: 31 July 2019 Acute Kidney injury (AKI) is one of the leading health concerns resulting in accumulation of nitrogenous Published: xx xx xxxx as well as non-nitrogenous wastes in body and characterised by a rapid deterioration in kidney functions. Besides the major toll from the primary insult in the kidney, consequential extra-renal secondary insults endowed with the pathways of infammatory milieu often complicates the disease outcome. Some of the known symptoms of AKI leading to clinical reporting are fatigue, loss of appetite, headache, nausea, vomiting, and pain in the fanks, wherein proinfammatory cytokines have been strongly implicated in pathogenesis of AKI and neuro-infammation. Taking in account these clues, we have tried to decode the neuro-infammation and pain perception phenomenon during the progression of AKI using the pathway integration and biological network strategies. The pathways and networks were generated using bioinformatics software viz. PANTHER, Genomatix and PathVisio to establish the relationship between immune and neuro related pathway in AKI. These observations envisage a neurol-renal axis that is predicted to involve calcium channels in neuro-infammatory pathway of AKI. These observations, thus, pave a way for a new paradigm in understanding the interplay of neuro- immunological signalling in AKI. Acute kidney injury (AKI) is a clinical event associated with a rapid loss of kidney function, leading to high mor- bidity and mortality1. Every year about 2 million people die from AKI due to late detection of disease or paucity of efective therapeutic interventions2.
    [Show full text]
  • Design, Synthesis, and Pharmacological Evaluation of Novel Quinolone Aryl Sulfonamide Derivatives As Potent GPR55 Antagonists †
    Extended Abstract Design, Synthesis, and Pharmacological Evaluation of Novel Quinolone Aryl Sulfonamide Derivatives as † Potent GPR55 Antagonists Paula Morales 1,2,*, Laura Figuerola-Asencio 1, Dow H. Hurst 2, Pingwei Zhao 3, Mary E. Abood 3, Patricia H. Reggio 2 and Nadine Jagerovic 1 1 Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain 2 Department of Chemistry and Biochemistry, UNC Greensboro, Greensboro, NC 27402, USA 3 Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] † Presented at the 2nd Molecules Medicinal Chemistry Symposium (MMCS): Facing Novel Challenges in Drug Discovery, Barcelona, Spain, 15–17 May 2019. Published: 2 September 2019 Abstract: Docking studies of identified GPR55 ligands using a GPR55 inactive state model allow rationalizing key structural features involved in ligand–receptor binding. On this molecular basis, we have designed novel quinolone sulfonamide derivatives with optimized potency and efficacy. These novel molecules compounds are being synthesized and evaluated using a β-arrestin recruitment assay in CHO cells overexpressing human GPR55 and βarr2-GFP. Keywords: GPR55; antagonist; docking; cannabinoids The orphan Class A G-protein-coupled receptor GPR55 has been proposed as a potential member of the cannabinoid receptor family. This receptor has been implicated in numerous physiopathological conditions, such as metabolic disorders, inflammatory and neuropathic pain, regulation of vascular functions, bone physiology, cancer, and motor coordination. Diverse studies point towards the phospholipid LPI (lysophosphatidylinositol) as the endogenous ligand for GPR55. In addition, diverse chemical entities, endogenous, phytogenic, and synthetic cannabinoid ligands among them have been shown to modulate this receptor.
    [Show full text]