Structure and Oxidation Kinetics of the Si„100…-Sio2 Interface

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Oxidation Kinetics of the Si„100…-Sio2 Interface PHYSICAL REVIEW B VOLUME 59, NUMBER 15 15 APRIL 1999-I Structure and oxidation kinetics of the Si„100…-SiO2 interface Kwok-On Ng and David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849 ~Received 28 October 1998! We present first-principles calculations of the structural and electronic properties of Si~001!-SiO2 interfaces. We first arrive at reasonable structures for the c-Si/a2SiO2 interface via a Monte Carlo simulated annealing applied to an empirical interatomic potential, and then relax these structures using first-principles calculations within the framework of the density-functional theory. We find a transition region at the interface, having a thickness on the order of 20 Å, in which there is some oxygen deficiency and a corresponding presence of suboxide Si species ~mostly Si12 and Si13). Distributions of bond lengths and bond angles, and the nature of the electronic states at the interface, are investigated and discussed. The behavior of atomic oxygen in a-SiO2 is also investigated. The peroxyl linkage configuration is found to be lower in energy than interstitial or threefold configurations. Based on these results, we suggest a possible mechanism for oxygen diffusion in a- SiO2 that may be relevant to the oxidation process. @S0163-1829~99!08115-1# I. INTRODUCTION model would introduce significant stress across the interface. A very recent paper by Pasquarello et al.18 has used first- Understanding the atomic structure of ultrathin silicon di- principles molecular dynamics to generate a model interface oxide films on Si~100! substrates is an outstanding problem structure. The generated structure reveals an unexpected ex- of great importance for microelectronic applications.1,2 The cess of silicon atoms at the interface, but it shows no bond- thickness of these films in commercial devices has dropped ing defects. A recent experimental paper suggests an abrupt well below 100 Å. Film thicknesses of 40 Å and below are interface model,19 as opposed to the graded interface sug- now being explored in experimental devices. Although such gested from earlier papers.8,9 Additional uncertainty has been ultrathin oxide films are in wide use, and considerable infor- generated by other studies about the interpretation of the mation about them has been amassed using a variety of dif- suboxide peaks observed.12,13 ferent experimental techniques,1,3–6 there is little consensus Another aspect that is of great interest is the oxidation about the microscopic structure and oxidation kinetics of the kinetics for thin films. The formation of thick oxide films films. Among the factors that have so far hindered detailed (.200 Å! is well-described phenomenologically by the 20 studies of the interface are the amorphous nature of the SiO2 Deal-Grove model, in which molecular oxygen diffuses to region, the difficulty of probing a buried interface, and the the SiO2 /Si interface and reacts with silicon at the interface. dependence of sample properties on preparation conditions. This model predicts a parabolic dependence of oxidation As a result, several issues relating to the detailed chemical time versus oxide thickness. However, it is well known that structure of the interface, and to the oxidation mechanism of the Deal-Grove model breaks down for the case of ultrathin thin oxide films, continue to be controversial. films (,100 Å!; in this case, the oxidation kinetics have Photoemission spectroscopy ~PES! or x-ray photoelectron been shown to be faster than would be expected from the spectroscopy ~XPS! have been the major experimental tech- linear relationship.5,14,21,22 However, there is little consensus niques used to study the interface structure. These experi- about the mechanisms of oxidation kinetics in this case. Sev- ments indicate the presence of a transition region of suboxi- eral phenomenological models have been proposed.22–24 dized Si near the interface, with all three intermediate partial Some of them fit the experimental data on oxidation kinetics oxidation states observed. However, different experiments quite satisfactorily with a large number of fitting parameters. suggest conflicting pictures of the structure.7–13 For example, However, most of the models are without direct experimental PES experiments indicate that the total suboxide is about two support. An analysis of kinetic results alone does not allow monolayers,7,8 while XPS results suggest it is 1-ML thick.9 one to distinguish among different models. A few key prob- Hattori11 argues in his paper that the total suboxide should be lems associated with the oxidation mechanism still remain 1 ML. Using medium-energy ion-scattering spectroscopy unresolved. For example, it is uncertain exactly where oxi- ~MEIS! to study the interface, Gusev and co-workers14,15 dation takes place, and the mechanism of oxygen diffusion have studied sequential isotopic exposures of oxygen and through the a-SiO2 region is not clear. found that the growth mechanism of interfaces depends on In this paper, we choose to address two main issues, the thickness of the films. Further complicating the task has namely, the microscopic structure of Si/SiO2 near the inter- been the lack of suitable interface models, which serve as face and the behavior of atomic oxygen in a-SiO2. First, we reference points for analysis of spectroscopic results. Theo- arrive at plausible structures for the Si/SiO2 interface by per- retical papers by Pasquarello et al.16,17 have attempted to forming Monte Carlo simulated annealing using an empirical construct interface models by attaching tridymite, a crystal- potential. Then we relax these structures and study their line form of SiO2,toSi~100!. Although different suboxide properties via first-principles density-functional calculations. states can be created, one would expect such an artificial We obtain the statistical distribution of suboxide species near 0163-1829/99/59~15!/10132~6!/$15.00PRB 59 10 132 ©1999 The American Physical Society PRB 59 STRUCTURE AND OXIDATION KINETICS OF THE . 10 133 the interface region, and find a graded transition region with a width of about 10 Å. Second, for excess atomic oxygen in a-SiO2, we compare the energy of the interstitial and peroxyl bridge configurations. It is found that the latter is always lower in energy. This suggests a possible mechanism of oxy- gen hopping among neighboring Si–Si bonds. The plan of the paper is as follows. Section II gives a brief description of the technique used to perform the calcu- lations. In Sec. III we present our study on the microscopic structure of the Si/SiO2 interface, and Sec. IV contains the results on oxidation kinetics of atomic oxygen in a-SiO2.We summarize the paper in Sec. V. II. METHODS Our theoretical analysis consists mainly of two parts. In the first part, we employ Metropolis Monte Carlo ~MC! simulations together with an empirical model potential rep- resenting the structural energies to arrive, via simulated an- nealing, at candidate structures for the c-Si/a-SiO2 interface. In the second part of the analysis, these candidate structures are relaxed and analyzed using first-principles plane-wave pseudopotential calculations. Because the structures of inter- est involve coordination changes, we have followed Hamann25 in employing a generalized gradient approxima- tion ~GGA! to the exchange-correlation potential, specifi- cally that of Perdew, Burke, and Ernzerhof ~PBE!.26 For use in generating the c-Si/a-SiO2 interface structures FIG. 1. The WWW bond-switching move ~Ref. 28! used in the within the MC approach, we designed a simple empirical- Monte Carlo simulations. ~a! Initial configuration. Atoms 1 and 4 potential model for the structural energy that is roughly are first neighbors, and atoms 1 and 7 are second neighbors. ~b! based on the formalism of Keating.27 The only degrees of After bond switch. Atoms 1 and 7 are now first neighbors, while freedom that appear in this model are the Si atom coordi- atoms 1 and 4 are second neighbors. nates; a direct Si–Si bond is designated as a ‘‘short’’ ~S! 28 bond, while a Si–O–Si bridge configuration is designated as rithm of Wooten, Winer, and Weaire ~WWW!. To random- ize the structure, one of the second neighbors of a randomly a ‘‘long’’ ~L! bond. In this way, the whole c-Si/a-SiO2 struc- ture is replaced by a network of ‘‘short’’ and ‘‘long’’ bonds chosen atom is switched to become its first neighbor, and between Si atoms. Its energy is taken to be that first neighbor becomes the second neighbor ~see Fig. 1!. Notice that the bonds being switched can be either S or L 1 1 bonds. For the bond conversion moves, a randomly chosen S E5 k~i!~d 2d~i!!21 k~ij!~c 2c~ij!!2. ~1! 2( r i 0 2( u ij 0 or L bond is swapped with a neighboring bond of opposite i iÞ j type. In all of the discrete moves, the total number of S and (i) L bonds are conserved, meaning that the number of oxygen The first term represents the bond stretching term, where kr (i) S 2 S atoms in the system does not change during the MC simula- and d0 take values kr 59.08 eV/Å and d052.35 Å for a L 2 L tions. After each move, the structure is relaxed within the ‘‘short’’ bond, or kr 51.89 eV/Å and d053.04 Å for a ‘‘long’’ bond. Similarly, the second term represents the Keating-like model, and the energy difference between the relaxed structures before and after the move is computed. bond-bending term, where k(ij) takes values kSS53.58 eV, u u The Metropolis algorithm is then employed to decide kSL53.81 eV, and kLL54.03 eV, where i and j are summed u u whether the new structure is to be accepted.
Recommended publications
  • April 16, 1963 M. TANENBAUM 3,085,981
    April 16, 1963 M. TANENBAUM 3,085,981 Filed March 25, 1960 CDsY /W/AW7OAP M. 74WEWABAVMM A^ 477OAPAVE/ 3,085,981 United States Patent Office Patented Apr. 16, 1963 2 3,085,981 FIG. 1 is a sectional view of a portion of a typical FERRIMAGNETCCRYSTALS garnet crystal having surface characteristics after rough Morris Tanenbaum, Madison, N.J., assignor to Bell Tele polishing; phone Laboratories, Incorporated, New York, N.Y., a FIG. 2 is a sectional view of a portion of the same corporation of New York crystal during the first phase of the treatment of the Filed Mar. 25, 1960, Ser. No. 17,539 invention; 1. Claim. (C. 252-62.5) FIG. 3 is a sectional view of a portion of the same crystal at a subsequent stage of the operation; This invention relates to an improved ferrimagnetic FIG. 4 is a sectional view of a portion of the desired structure, particularly in ferrimagnetic garnets. More O finished crystal; and specifically, it relates to a structure wherein the demag FIG. 5 is a schematic view of an appropriate apparatus netizing effects on the crystal surface are minimized. used in obtaining the desired crystal. With the advent of more perfect crystal growing tech Referring to FIGS. 1 through 4 which show the crystal niques, particularly with respect to ferrimagnetic gar in various stages of treatment according to the invention, nets, superior resonance characteristics have been found 5 numeral 1 refers to the ferrimagnetic interior layer and to depend more and more on the surface characteristics 2 denotes the crystal surface.
    [Show full text]
  • Subsurface Oxide Plays a Critical Role in CO2 Activation by Cu(111)
    Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2 Marco Favaroa,b,c,1, Hai Xiaod,e,1, Tao Chengd,e, William A. Goddard IIId,e,2, Junko Yanoa,f,2, and Ethan J. Crumlinb,2 aJoint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; bAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; dJoint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125; eMaterials and Process Simulation Center, California Institute of Technology, Pasadena CA 91125; and fMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by William A. Goddard III, May 9, 2017 (sent for review January 26, 2017; reviewed by Charles T. Campbell and Bruce E. Koel) A national priority is to convert CO2 into high-value chemical sorbed form of CO2 was stabilized by a partial negative charge products such as liquid fuels. Because current electrocatalysts are δ− induced by electron capture (CO2 ) (Fig. 1A) (7, 8). The same not adequate, we aim to discover new catalysts by obtaining a experiments showed that no physisorption is observed upon detailed understanding of the initial steps of CO2 electroreduc- increasing the temperature of the Cu substrate to room temper- tion on copper surfaces, the best current catalysts. Using ambient ature
    [Show full text]
  • Gas-Phase Boudouard Disproportionation Reaction Between Highly Vibrationally Excited CO Molecules
    Chemical Physics 330 (2006) 506–514 www.elsevier.com/locate/chemphys Gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules Katherine A. Essenhigh, Yurii G. Utkin, Chad Bernard, Igor V. Adamovich *, J. William Rich Nonequilibrium Thermodynamics Laboratories, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43202, USA Received 3 September 2006; accepted 21 September 2006 Available online 30 September 2006 Abstract The gas-phase Boudouard disproportionation reaction between two highly vibrationally excited CO molecules in the ground elec- tronic state has been studied in optically pumped CO. The gas temperature and the CO vibrational level populations in the reaction region, as well as the CO2 concentration in the reaction products have been measured using FTIR emission and absorption spectroscopy. The results demonstrate that CO2 formation in the optically pumped reactor is controlled by the high CO vibrational level populations, rather than by CO partial pressure or by flow temperature. The disproportionation reaction rate constant has been determined from the measured CO2 and CO concentrations using the perfectly stirred reactor (PSR) approximation. The reaction activation energy, 11.6 ± 0.3 eV (close to the CO dissociation energy of 11.09 eV), was evaluated using the statistical transition state theory, by comparing the dependence of the measured CO2 concentration and of the calculated reaction rate constant on helium partial pressure. The dispro- À18 3 portionation reaction rate constant measured at the present conditions is kf =(9±4)· 10 cm /s. The reaction rate constants obtained from the experimental measurements and from the transition state theory are in good agreement.
    [Show full text]
  • Oxidation State Slides.Key
    Oxidation States Dr. Sobers’ Lecture Slides The Oxidation State Also known as the oxidation number The oxidation state is used to determine whether an element has been oxidized or reduced. The oxidation state is not always a real, quantitative, physical constant. The oxidation state can be the charge on an atom: 2+ - MgCl2 Mg Cl Oxidation State: +2 -1 2 The Oxidation State For covalently bonded substances, it is not as simple as an ionic charge. A covalent bond is a sharing of electrons. The electrons are associated with more than one atomic nuclei. This holds the nuclei together. The electrons may not be equally shared. This creates a polar bond. The electronegativity of a covalently bonded atom is its ability to attract electrons towards itself. 3 Example: Chlorine Sodium chloride is an ionic compound. In sodium chloride, the chloride ion has a charge and an oxidation state of -1. The oxidation state of sodium is +1. 4 Example: Chlorine In a chlorine molecule, the chlorine atoms are covalently bonded. The two atoms share electrons equally and the oxidation state is 0. 5 Example: Chlorine The two atoms of a hydrogen chloride molecule are covalently bonded. The electrons are not shared equally because chlorine is more electronegative than hydrogen. There are no ions but the oxidation state of chlorine in HCl is -1 and the oxidation state of hydrogen is +1. 6 7 Assigning Oxidation States See the handout for the list of rules. Rule 1: Free Elements Free elements have an oxidation state of zero Example Oxidation State O2(g) 0 Fe(s) 0 O3(g) 0 C(graphite) 0 C(diamond) 0 9 Rule 2: Monatomic Ions The oxidation state of monatomic ions is the charge of the ion Example Oxidation State O2- -2 Fe3+ +3 Na+ +1 I- -1 V4+ +4 10 Rule 3: Fluorine in Compounds Fluorine in a compound always has an oxidation state of -1 Example Comments and Oxidation States NaF These are monatomic ions.
    [Show full text]
  • Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications
    nanomaterials Review Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications Hocheon Yoo 1,2,† , Keun Heo 3,† , Md. Hasan Raza Ansari 1,2 and Seongjae Cho 1,2,* 1 Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea; [email protected] (H.Y.); [email protected] (M.H.R.A.) 2 Graduate School of IT Convergence Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea 3 Department of Semiconductor Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Two-dimensional materials have garnered interest from the perspectives of physics, materi- als, and applied electronics owing to their outstanding physical and chemical properties. Advances in exfoliation and synthesis technologies have enabled preparation and electrical characterization of various atomically thin films of semiconductor transition metal dichalcogenides (TMDs). Their two-dimensional structures and electromagnetic spectra coupled to bandgaps in the visible region indicate their suitability for digital electronics and optoelectronics. To further expand the potential applications of these two-dimensional semiconductor materials, technologies capable of precisely controlling the electrical properties of the material are essential. Doping has been traditionally used to effectively change the electrical and electronic properties of materials through relatively simple processes. To change the electrical properties, substances that can donate or remove electrons are Citation: Yoo, H.; Heo, K.; added. Doping of atomically thin two-dimensional semiconductor materials is similar to that used Ansari, M..H.R.; Cho, S.
    [Show full text]
  • Some Unusual, Astronomically Significant Organic Molecules
    'lL-o Thesis titled: Some Unusual, Astronomically Significant Organic Molecules submitted for the Degree of Doctor of Philosophy (Ph,D.) by Salvatore Peppe B.Sc. (Hons.) of the Department of Ghemistty THE UNIVERSITY OF ADELAIDE AUSTRALIA CRUC E June2002 Preface Gontents Contents Abstract IV Statement of Originality V Acknowledgments vi List of Figures..... ix 1 I. Introduction 1 A. Space: An Imperfect Vacuum 1 B. Stellff Evolution, Mass Outflow and Synthesis of Molecules 5 C. Astronomical Detection of Molecules......... l D. Gas Phase Chemistry.. 9 E. Generation and Detection of Heterocumulenes in the Laboratory 13 L.2 Gas Phase Generation and Characterisation of Ions.....................................16 I. Gas Phase Generation of Ions. I6 A. Positive Ions .. I6 B. Even Electron Negative Ions 17 C. Radical Anions 2t tr. Mass Spectrometry 24 A. The VG ZAB 2}lF Mass Spectrometer 24 B. Mass-Analysed Ion Kinetic Energy Spectrometry......... 25 III. Characterisation of Ions.......... 26 A. CollisionalActivation 26 B. Charge Reversal.... 28 C. Neutralisation - Reionisation . 29 D. Neutral Reactivity. JJ rv. Fragmentation Behaviour ....... 35 A. NegativeIons.......... 35 Preface il B. Charge Inverted Ions 3l 1.3 Theoretical Methods for the Determination of Molecular Geometries and Energetics..... ....o........................................ .....39 L Molecular Orbital Theory........ 39 A. The Schrödinger Equation.... 39 B. Hartree-Fock Theory ..44 C. Electron Correlation ..46 D. Basis sets............ .51 IL Transition State Theory of Unimolecular Reactions ......... ................... 54 2. Covalently Bound Complexes of CO and COz ....... .........................58 L Introduction 58 tr. Results and Discussion........... 59 Part A: Covalently bound COz dimers (OzC-COr)? ............ 59 A. Generation of CzO¿ Anions 6I B. NeutralCzO+........
    [Show full text]
  • High-Pressure Synthesis of Boron-Rich Chalcogenides B12S and B12se
    High-pressure synthesis of boron-rich chalcogenides B12S and B12Se 1,2 1 3,4 Kirill A. Cherednichenko, Vladimir A. Mukhanov, Aleksandr Kalinko, 1, and Vladimir L. Solozhenko 1,* 1 LSPM–CNRS, Université Sorbonne Paris Nord, Villetaneuse, 93430, France 2 Department of Physical and Colloid Chemistry, Gubkin University, Moscow, 119991, Russia 3 Photon Science – Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany 4 Institute of Solid State Physics, University of Latvia, Riga, LV-1063, Latvia * [email protected] ABSTRACT Two boron-rich chalcogenides B12S and B12Se isostructural to α-rhombohedral boron were synthesized by chemical reaction of the elements at high-pressure – high-temperature conditions. The crystal structures and stoichiometries of both compounds were confirmed by Rietveld refinement and elemental analysis. The experimental Raman spectra of B12S and B12Se were investigated for the first time. All observed Raman bands have been attributed to the theoretically calculated phonon modes, and the mode assignment has been performed. INTRODUCTION Boron-rich compounds isostructural to the α-rhombohedral boron (α-B12) have become the subject of extensive theoretical 1-11 and experimental 12-23 studies due to their unusual properties and potential technical applications.14,18,24 One of the most attractive features of boron-rich compounds is their outstanding mechanical properties. For instance, the reported hardness values of boron 25-31 suboxide (B12O2) varies from 24 to 45 GPa. Thus, boron suboxide is believed to be the hardest known oxide. Numerous works have been devoted to the investigation of its phase stability,3,32 compressibility,32-34 phonon 35-37 and thermal 34,38 properties, etc.
    [Show full text]
  • Structure-Property Relationships of Layered Oxypnictides
    AN ABSTRACT OF THE DISSERTATION OF Sean W. Muir for the degree of Doctor of Philosophy in Chemistry presented on April 17, 2012. Title: Structure-property Relationships of Layered Oxypnictides Abstract approved:______________________________________________________ M. A. Subramanian Investigating the structure-property relationships of solid state materials can help improve many of the materials we use each day in life. It can also lead to the discovery of materials with interesting and unforeseen properties. In this work the structure property relationships of newly discovered layered oxypnictide phases are presented and discussed. There has generally been worldwide interest in layered oxypnictide materials following the discovery of superconductivity up to 55 K for iron arsenides such as LnFeAsO1-xFx (where Ln = Lanthanoid). This work presents efforts to understand the structure and physical property changes which occur to LnFeAsO materials when Fe is replaced with Rh or Ir and when As is replaced with Sb. As part of this work the solid solution between LaFeAsO and LaRhAsO was examined and superconductivity is observed for low Rh content with a maximum critical temperature of 16 K. LnRhAsO and LnIrAsO compositions are found to be metallic; however Ce based compositions display a resistivity temperature dependence which is typical of Kondo lattice materials. At low temperatures a sudden drop in resistivity occurs for both CeRhAsO and CeIrAsO compositions and this drop coincides with an antiferromagnetic transition. The Kondo scattering temperatures and magnetic transition temperatures observed for these materials can be rationalized by considering the expected difference in N(EF)J parameters between them, where N(EF) is the density of states at the Fermi level and J represents the exchange interaction between the Ce 4f1 electrons and the conduction electrons.
    [Show full text]
  • OXIDE: ELECTRODE POTENTIAL from 20" to 30"; SOLUBILITY in NEUTRAL and ALKALINE SOLUTIONS at 25"G
    SOME THERMODYNmiG PROPERTIES OF SILVER(II)OXIDE: ELECTRODE POTENTIAL FROM 20" to 30"; SOLUBILITY IN NEUTRAL AND ALKALINE SOLUTIONS AT 25"G DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By JAMES FREDERICK BONK, B.S. The Ohio State University 1958 Approved by: Depart Chemistry AGKNOWLEDGM0JT The author wishes to express his sincere appreciation to Professor A. B. Garrett for his supervision and counsel during the course of this investigation. I wish to thank him for his interest in my welfare while I was a student at The Ohio State University and especially for his guidance and encouragement in my teaching career. I also wish to thank the DuPont Chemical Company for granting me the DuPont Teaching Fellowship for the 1956-1957 academic year. I wish to thank The Ohio State University for the Assistantship, Assistant Instructorship, and Instructorship granted me during the course of this investigation. TABLE OF CONTENTS Page I. INTRODUCTION 1 II. HISTORICAL a. Methods of Preparation of t/ Silver(II)oxide 2 b. Properties of Silver(II)oxide 7 c. Uses of Silver(II)oxide 13 III. THE SOLUBILITY OF SILVER(II)OXIDE IN NEUTRAL AND ALKALINE SOLUTIONS AT 25“G 1? a. Experimental 17 1. Preparation of Reagents 17 2. Preparation of Samples 19 3. Equilibration 23 4. Sedimentation 23 5. Filtration 23 6. Potentiometric Analysis 23 7. Analysis of Solid Phase 26 b. Solubility Data for Silver(II)oxide 27 c . Discussion 34 111 CONTENTS (continued) Page IV. A STUDY OF THE SILVER (I) OXIDE- SILVER (II) OXIDE ELECTRODE 39 a.
    [Show full text]
  • United States Patent [191 [11] Patent Number: 4,786,538 Saito Et Al
    United States Patent [191 [11] Patent Number: 4,786,538 Saito et al. [45] Date of Patent: Nov. 22, 1988 [54] OPTICAL RECORDING MEDIUM FORMED 4,500,889 2/1985 Wada et al. .. 430/945 OF CHALCOGENIDE OXIDE AND METHOD 4,579,807 4/1986 Blonder et al. ................ .. 346/1351 FOR PRODUCING THE SAME 4,645,685 2/1987 Murayama . [75] Inventors: Koichi Saito; Hideki Kobayashi, both FOREIGN PATENT DOCUMENTS 1 of Kurashiki; Junji Nakagawa, 54-3725 2/1979 Japan . Ichikawa; Yoichi Murayama, Tokyo, 58-7394 l/1983 Japan . all of Japan 58-158056 9/1983 Japan . 0203094 11/1983 Japan .............................. .. 346/1351 [73] Assignee: Kuraray Co., Ltd., Okayama, Japan 58-189850 11/1983 Japan . [21] Appl. No.: 82,909 60-179956 9/1985 Japan .............................. .. 346/1351 [22] Filed: Aug. 10, 1987 Primary Examiner-John E. Kittle Assistant Examiner-Betsy Bozzelli Attorney, Agent, or Firm-Armstrong, Nikaido, Related U.S. Application Data Marmelstein & Kubovcik [63] Continuation of Ser. No. 808,572, Dec. 13, 1985, aban doned. [57] ABSTRACT [30] Foreign Application Priority Data Metal tellurium is vaporized under the atmosphere of oxygen gas and/or inert gas formed into a plasma by a Dec. 13, 1984 [JP] Japan 59-264128 high frequency power to thereby form a tellurium oxide Dec. 13, 1984 [JP] Japan 59-264129 (TeOx, OéXéZ) layer. The tellurium oxide layer Dec. 13, 1984 [JP] Japan 59-264130 formed in accordance with the present method is stabi Dec. 13, 1984 [JP] lized, and a suboxide having a high sensitivity which has Dec. 13, 1934 [JP] , Japan been considered to be unsuitable as an optical recording Dec.
    [Show full text]
  • The Infrared Absorption Spectrum of Carbon Sub Oxide
    AUGUST, 1937 JOURNAL OF CHEMICAL PHVSICS VOLUME 5 The Infrared Absorption Spectrum of Carbon Suboxide R. C. LORD, JR.* AND NORMAN WRIGHT Departments of Chemistry and Physics, University of Michigan, A nn Arbor, Michigan (Received "May 24, 1937) The infrared absorption spectrum of carbon suboxide vapor has been studied under low dispersion in the region from 2).1 to 25).1. The vibrational bands observed may be satisfactorily accounted for on the basis of a linear symmetric structure for the carbon suboxide molecule, in agreement with evidence obtained from Raman spectra and from electron diffraction investigations. ECENT studies of the structure of the material was prepared by the pyrolysis of R carbon suboxide molecule by electron dif­ diacetyl tartaric anhydride8 and was purified by fractiont ,2 and by ultraviolet absorption and two distillations in an all-glass system. Measure­ 3 Raman spectra - 5 have made desirable an in­ ments of the vapor pressure of the suboxide over vestigation of the molecule's absorption spectrum a range of temperatures up to O°C agreed in the infrared region. The information to be satisfactorily with those in the literature. 9 The gained from such an investigation should be absorption cell was filled by distilling the middle particularly helpful since the spectroscopic and fraction of the particular sampJe at hand into electron diffraction evidence indicates that the the evacuated ce1l, the desired pressure being most probable form of the carbon suboxide obtained by surrounding the distilling vessel molecule is one possessing a symmetry center. with a bath of acetone of the proper temperature.
    [Show full text]
  • Synthesis and Characterization of Tungsten Suboxide Wno3n−1 Nanotiles
    nanomaterials Article Synthesis and Characterization of Tungsten Suboxide WnO3n−1 Nanotiles Luka Pirker 1,† , Bojana Viši´c 1,2,*,† , Janez Kovaˇc 1 , SreˇcoD. Škapin 1 and Maja Remškar 1,3 1 Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; [email protected] (L.P.); [email protected] (J.K.); [email protected] (S.D.Š.); [email protected] (M.R.) 2 Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 3 Faculty for Mathematics and Physics, University of Ljubljana, Jadranska Ulica 19, 1000 Ljubljana, Slovenia * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: WnO3n−1 nanotiles, with multiple stoichiometries within one nanotile, were synthesized via the chemical vapour transport method. They grow along the [010] crystallographic axis, with the thickness ranging from a few tens to a few hundreds of nm, with the lateral size up to several µm. Distinct surface corrugations, up to a few 10 nm deep appear during growth. The {102}r crystallographic shear planes indicate the WnO3n−1 stoichiometries. Within a single nanotile, six stoichiometries were detected, namely W16O47 (WO2.938), W15O44 (WO2.933), W14O41 (WO2.928), W13O38 (WO2.923), W12O35 (WO2.917), and W11O32 (WO2.909), with the last three never being reported before. The existence of oxygen vacancies within the crystallographic shear planes resulted in the observed non-zero density of states at the Fermi energy. Keywords: tungsten oxides; nanotiles; nanomaterials Citation: Pirker, L.; Viši´c,B.; Kovaˇc, J.; Škapin, S.D..; Remškar, M. Synthesis and Characterization of Tungsten Suboxide WnO3n−1 1.
    [Show full text]