1. Prokaryote Habitats, Relationships & Biomes Important Metabolic

Total Page:16

File Type:pdf, Size:1020Kb

1. Prokaryote Habitats, Relationships & Biomes Important Metabolic 3/9/2020 Chapter 4: PROKARYOTIC DIVERSITY 1. Prokaryote Habitats, Relationships & Biomes 2. Proteobacteria 3. Gram-negative and Phototropic Non-Proteobacteria 4. Gram-Positive Bacteria 5. Deeply Branching Bacteria 6. Archaea 1 1. Prokaryote Habitats, Relationships & Biomes 2 Important Metabolic Terminology Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: phototroph – uses light as an energy source • all photosynthetic organisms chemotroph – acquires energy from organic or inorganic molecules • organotrophs – get energy from organic molecules • lithotrophs – get energy from inorganic molecules 3 1 3/9/2020 …more Important Terminology Carbon Source: autotroph – uses CO2 as a carbon source • e.g., photoautotrophs or chemoautotrophs heterotroph – requires an organic carbon source • e.g., chemoheterotroph – gets energy & carbon from organic molecules Oligotrophs require few nutrients, the opposite of eutrophs or copiotrophs Facultative vs Obligate (or Strict): facultative – “able to, but not requiring” • e.g., facultative anaerobes can survive w/ or w/o O2 obligate – “absolutely requires” • e.g., obligate anaerobes cannot survive in O2 4 Symbiotic Relationships Symbiotic relationships (close, direct interactions) between different organisms in nature are of several types: • e.g., humans have beneficial bacteria in their digestive tracts that also benefit from the food we eat (mutualism) 5 Microbiomes All the microorganisms that inhabit a particular organism or environment (e.g., human or soil microbiome): 6 2 3/9/2020 Classification in the Bacterial Domain We will look at important genera from a variety of bacterial groups classified largely on staining & rRNA sequences (ribotyping): Gram-negative Bacteria • Proteobacteria • Nonproteobacteria & Phototrophic Bacteria Gram-positive Bacteria • High G+C (Actinobacteria) • Low G+C (Firmicutes) Deeply Branching Bacteria 7 2. Proteobacteria Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Deltaproteobacteria Epsilonproteobacteria 8 Alphaproteobacteria Most are oligotrophs: Rhizobium Rhizobium • nitrogen fixation in soil Pathogenic genera: Rickettsia • intracellular pathogens • typhus, Rocky Mountain spotted fever Chlamydia R. rickettsii • C. trachomatis – most common STD 9 3 3/9/2020 Betaproteobacteria Most are eutrophs: Thiobacillus • oxidize H2S to sulfate is soil Pathogenic genera: • important in sulfur cycle Neisseria • gonorrhea (N. gonorrheae) • meningococcal meningitis (N. meningitidis) Bordetella • whooping cough (B. pertussis) N. meningitidis 10 Gammaproteobacteria Largest & most diverse class of Proteobacteria, including many enteric bacteria and human pathogens: Escherichia Vibrio • E. coli • cholera (V. cholerae) Legionella • legionnaires disease (L. pneumophila) Pseudomonas • opportunistic pathogens Salmonella • typhoid fever, foodborne L. pneumophila salmonellosis 11 Deltaproteobacteria Small class of Proteobacteria containing soil bacteria that reduce sulfate (Desulfovibrio) and the Myxobacteria that form unusual “fruiting bodies”: Myxobacteria 12 4 3/9/2020 Epsilonproteobacteria Smallest class of Proteobacteria containing microaerophilic species that are typical helical or vibrioid in shape : Pathogenic genera: Helicobacter • H. pylori – peptic ulcers Campylobacter • various species cause blood poisoning, intestinal illness (e.g., C. jejuni) H. pylori 13 3. Gram-Negative & Phototropic Non-Proteobacteria 14 Spirochetes Very thin, highly coiled bacteria that are hard to see under the microscope and harder to culture: Treponema • T. pallidum – syphilis Borrelia • B. burgdorferi – Lyme disease 15 5 3/9/2020 The CFB Group Grouped based on DNA similarity and includes the following genera: Cytophaga Fusobacterium Bacteroides • most are anaerobic rods • Some are potentially pathogenic (Cytophaga, Fusobacterium), others are beneficial (Bacteroides) Bacteroides 16 Cyanobacteria Gram-negative, oxygenic photoautotrophs + • produce vast amounts of oxygen gas via photosynthesis, fix nitrogen (N2 NH4 ) Anabaena • carry out nitrogen fixation in non-photosynthetic heterocysts Vegetative cell Sheath Heterocyst Akinete Anabaena Oscillatora 17 Purple & Green Bacteria Obligately anaerobic, anoxygenic photoautotrophs Green and Purple non-sulfur bacteria • use organic molecules as a source of electrons (not H2O) Green and Purple sulfur bacteria • use H2S as a source of electrons • elemental sulfur is then released (green sulfur bacteria) or forms inclusions (purple sulfur bacteria) 18 6 3/9/2020 4. Gram-Positive Bacteria 19 Classification of Gram-Positive Bacteria Gram-positive bacteria are grouped based on DNA similarity: Low G+C Gram-positive bacteria (Firmicutes) • contains many serious pathogens High G+C Gram-positive bacteria (Actinomycetes) • characterized by branching filaments • includes some pathogens 20 Actinobacteria (High G+C) Streptomyces • important soil bacteria, recycle nutrients • many produce antibiotics (erythromycin, tetracycline) Corynebacterium C. diphtheria • diphtheria (C. diphtheria) Mycobacterium • contain mycolic acids in cell wall (stain acid-fast) • tuberculosis (M. tuberculosis), leprosy (M. leprae) Streptomyces Bifidobacterium • significant member of beneficial gut microbiota 21 7 3/9/2020 Firmicutes (Low G+C)… Streptococcus S. pyogenes • strep throat (S. pyogenes) Staphylococcus • MRSA (S. aureus) S. aureus C. difficile *Bacillus • anthrax (B. anthracis) *Clostridium *produce • tetanus (C. tetani) endospores • botulism (C. botulinum) • colitis (C. difficile) 22 …more Firmicutes Lactobacillus • species used in fermented food products (e.g., yogurt, buttermilk, pickles) • part of normal, healthy microbiota in human mouth, digestive tract, vagina colonies Mycoplasma • very small (less than 1 mm) • no cell wall (stain Gram-negative) • obligate intracellular pathogens Mycoplasma 23 5. Deeply Branching Bacteria 24 8 3/9/2020 What Are “Deeply Branching Bacteria”? Bacteria very close to the base of the phylogenetic tree: • members of the domain Bacteria that diverged very early, ~3.5 billion years ago Last Common Universal Ancestor 25 Genera of “Deeply Branching Bacteria” Acetothermus • deepest branching bacteria known to date D. radiodurans • thermophiles and hyperthermophiles Aquifex • adapted to harshest conditions on planet (e.g., thermal oceanic vents that reach 138oC!) Deinococcus • D. radiodurans known as “Conan the Bacterium” for the extremes of heat, UV, radioactivity, etc, it can survive 26 6. Archaea 27 9 3/9/2020 The Domain Archaea Highly diverse group of prokaryotes first classified in 1977 by Carl Woese and George Fox: • have metabolic processes, rRNA sequences and other features more closely resembling eukaryotes • e.g., initiate translation with methionine (as do eukaryotes) rather than N-formyl methionine as do the Bacteria • cell walls made of material other than peptidoglycan • have unusual membrane lipids • much larger genomes that bacteria 28 Two Main Phyla Sulfolobus Crenarchaeota • most are hyperthermophiles, some acidophiles Euryarchaeota • includes the methanogens, halophiles, a few thermophiles Other Phyla • Korarchaeota, Nanoarchaeota, Thaumarchaeota • based on environmental RNA **NO known archaeon causes disease in humans or animals!** 29 Key Terms for Chapter 4 • aerobic vs anaerobic • facultative vs obligate • phototroph, chemotroph, organotroph, lithotroph • autotroph, heterotroph, oligotroph, eutroph • symbiosis: mutualism, amensalism, commensalism, neutralism, parasitism • thermophile, halophile 30 10.
Recommended publications
  • Q Fever in Small Ruminants and Its Public Health Importance
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever.
    [Show full text]
  • Coxiella Burnetii
    SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Coxiella burnetii American Society for Microbiology (ASM) Revised March 2016 For latest revision, see web site below: https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Expert: David Welch, Ph.D. Medical Microbiology Consulting Dallas, TX [email protected] ASM Sentinel Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS [email protected] Association of Public Health Peter H. Gilligan, Ph.D. m Laboratories University of North Carolina [email protected] Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic Laboratory at the [email protected] [email protected] University of Iowa [email protected] Larry Gray, Ph.D. Alice Weissfeld, Ph.D. TriHealth Laboratories and Microbiology Specialists Inc. Harvey Holmes, PhD University of Cincinnati College Houston, TX Centers for Disease Control and of Medicine [email protected] Prevention Cincinnati, OH om [email protected] [email protected] David Welch, Ph.D.
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Aerobic Respiration
    Life is based on redox • All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: + - C6H12O6 + 6 H2O ==> 6 CO2 + 24 H +24 e oxidation electron donor (aka energy source) + - (O2+ 4H + 4e ==> 2H2O) x6 reduction electron acceptor --------------------------------------- C6H12O6 + 6 O2 ==> 6 CO2 + 6 H2O overall reaction (24 electrons) Types of bacterial metabolisms • While eukaryotes only reduce O2 and oxidize organic compounds, prokaryotes can use a variety of electron donors and acceptors, organic and inorganic. - • Aerobic respiration: e acceptor is O2 - • Anaerobic respiration: e acceptor is not O2 • Fermentation: e- donor and acceptor are organic molecules • Chemolithotrophy: e- donor and acceptor are inorganic molecules • Phototrophy: e- donor is light and e- acceptor is either organic or inorganic all microorganisms energy source? chemical light chemotroph phototroph carbon source? carbon source? organic organic CO CO compound 2 compound 2 chemoheterotroph chemoautotroph photoheterotroph photoautotroph e- acceptor? Nitrifying and sulfur- use H O to reduce CO ? oxidizing bacteria 2 2 green non-sulfur and O Other than O 2 2 purple non-sulfur bacteria anoxygenic oxygenic photosynthesis: photosynthesis: green sulfur and most bacteria Organic Inorganic cyanobacteria compound compound purple sulfur bacteria fermentative organism anaerobic respiration: nitrate, sulfate, Fe(III) Aerobic or anaerobic respiration Chemolithotrophy Important molecules Redox Electron Carrier: for example the
    [Show full text]
  • Purple Bacteria and Their Relatives”
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1988, p. 321-325 Vol. 38, No. 3 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2* AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 Kid, Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I, Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a, p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. Phylogenetic interpretations derived from the study of the interim while the phylogenetic data are being integrated ribosomal ribonucleic acid (rRNA) sequences and oligonu- into formal bacterial taxonomy. It does not appear to be cleotide catalogs provide an important factual base for inappropriate or confusing to use the protean prefix because arrangements of higher taxa of bacteria (25, 26). A recent of the genus Proteus among the Proteobacteria; the reasons workshop organized by the International Committee on for use are clear enough. Systematic Bacteriology recognized that a particularly di- This new class is so far only definable in phylogenetic verse but related group of gram-negative bacteria, including terms.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Chapter 20 the Proteobacteria
    Fig. 20.21 Chapter 20 purple photosynthetic sulfur bacteria The Proteobacteria may have arose from a single photosynthetic ancestor 16S rRNA shows five distinct lineages 12-27-2011 12-28-2011 Class α-proteobacteria Most are oligotrophic (growing at low nutrient level) Fig. 20.11 Genus Rhizobium motile rods often contain poly-β- hydroxybutyrate (PHB) granules become pleomorphic under adverse conditions grow symbiotically as nitrogen- fixing bacteroids (Æ ammonium) within root nodule cells of legumes Genus Agrobacterium Figure 20.12 transform infected plant cells (crown, roots, and stems) into autonomously proliferating tumors Agrobacterium tumefaciens causes crown gall disease by means of tumor-inducing (Ti) plasmid Crown gall (冠癭) of a tomato plant Agrobacterium Ti (tumor inducing) plamid Transfer the T-DNA to plant and lower fungi Can also mobilize other plasmid with to plant cells A vector used for transgenic plant Fig. 29.13 Genus Brucella important human and animal pathogen (zoonosis) Brucellosis- undulant fever 波型熱 A select agent as biocrime ingestion of contaminated food (milk products); inhalation, via skin wound, rare person-to-person Acute form: flu-like symptom; undulant form: undulant fever, arthritis, and testicular inflammation, neurologic symptom may occur; chronic form: chronic fatigue, depression, and arthritis Class β-proteobacteria Nitrogen metabolism Nitrifying bacteria- Nitrification oxidation of ammonium to nitrite, nitrite further oxidized to nitrate Nitrobacter (α-proteobacteria) Nitrosomonas (β-proteobacteria) Nitrosococcus (γ-proteobacteria) Nitrogen Fixation Burkholderia and Ralstonia (β-proteobacteria) both form symbiotic associations with legumes both have nodulation genes (nod) a common genetic origin with rhizobia (α-proteobacteria) obtained through lateral gene transfer Order Burkholderiales Burkholderia cepacia degrades > 100 organic molecules very active in recycling organic material plant and human pathogen (nosocomial pathogen) a particular problem for cystic fibrosis patients B.
    [Show full text]
  • Non-Coding Rnas of the Q Fever Agent, Coxiella Burnetii
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Non-coding RNAs of the Q fever agent, Coxiella burnetii Indu Ramesh Warrier The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Warrier, Indu Ramesh, "Non-coding RNAs of the Q fever agent, Coxiella burnetii" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4620. https://scholarworks.umt.edu/etd/4620 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NON-CODING RNAS OF THE Q FEVER AGENT, COXIELLA BURNETII By INDU RAMESH WARRIER M.Sc (Med), Kasturba Medical College, Manipal, India, 2010 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Cellular, Molecular and Microbial Biology The University of Montana Missoula, MT August, 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Michael F. Minnick, Chair Division of Biological Sciences Stephen J. Lodmell Division of Biological Sciences Scott D. Samuels Division of Biological Sciences Scott Miller Division of Biological Sciences Keith Parker Department of Biomedical and Pharmaceutical Sciences Warrier, Indu, PhD, Summer 2015 Cellular, Molecular and Microbial Biology Non-coding RNAs of the Q fever agent, Coxiella burnetii Chairperson: Michael F. Minnick Coxiella burnetii is an obligate intracellular bacterial pathogen that undergoes a biphasic developmental cycle, alternating between a small cell variant (SCV) and a large cell variant (LCV).
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Proteomics-Driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S
    crossmark Research © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S Ryszard A. Zielke‡, Igor H. Wierzbicki‡, Benjamin I. Baarda‡, Philip R. Gafken§, Olusegun O. Soge¶, King K. Holmes¶ʈ, Ann E. Jerse**, Magnus Unemo‡‡, and Aleksandra E. Sikora‡§§ Expanding efforts to develop preventive gonorrhea vac- exposed, secreted via naturally released membrane ves- cines is critical because of the dire possibility of untreat- icles, and elicited bactericidal antibodies that cross-re- able gonococcal infections. Reverse vaccinology, which acted with a panel of temporally and geographically di- includes genome and proteome mining, has proven very verse isolates. In addition, analysis of polymorphisms at successful in the discovery of vaccine candidates against the nucleotide and amino acid levels showed that these many pathogenic bacteria. However, progress with this vaccine candidates are highly conserved among N. gon- approach for a gonorrhea vaccine remains in its infancy. orrhoeae strains. Finally, depletion of BamA caused a loss Accordingly, we applied a comprehensive proteomic plat- of N. gonorrhoeae viability, suggesting it may be an es- form—isobaric tagging for absolute quantification cou- sential target. Together, our data strongly support the use pled with two-dimensional liquid chromatography and of proteomics-driven discovery of potential vaccine tar- mass spectrometry—to identify potential gonococcal gets as a sound approach for identifying promising gono- vaccine antigens. Our previous analyses focused on cell coccal antigens. Molecular & Cellular Proteomics 15: envelopes and naturally released membrane vesicles de- 10.1074/mcp.M116.058800, 2338–2355, 2016.
    [Show full text]
  • Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks
    RESEARCH ARTICLE Bacterial Profiling Reveals Novel “Ca. Neoehrlichia”, Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks Alexander W. Gofton1*, Stephen Doggett2, Andrew Ratchford3, Charlotte L. Oskam1, Andrea Paparini1, Una Ryan1, Peter Irwin1* 1 Vector and Water-borne Pathogen Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia, 2 Department of Medical Entomology, Pathology West and Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia, 3 Emergency Department, Mona Vale Hospital, New South Wales, Australia * [email protected] (AWG); [email protected] (PI) Abstract OPEN ACCESS In Australia, a conclusive aetiology of Lyme disease-like illness in human patients remains Citation: Gofton AW, Doggett S, Ratchford A, Oskam elusive, despite growing numbers of people presenting with symptoms attributed to tick CL, Paparini A, Ryan U, et al. (2015) Bacterial bites. In the present study, we surveyed the microbial communities harboured by human-bit- Profiling Reveals Novel “Ca. Neoehrlichia”, Ehrlichia, ing ticks from across Australia to identify bacteria that may contribute to this syndrome. and Anaplasma Species in Australian Human-Biting Ticks. PLoS ONE 10(12): e0145449. doi:10.1371/ Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial journal.pone.0145449 16S rRNA genes in DNA samples from individual Ixodes holocyclus (n = 279), Amblyomma Editor: Bradley S. Schneider, Metabiota, UNITED triguttatum (n = 167), Haemaphysalis bancrofti (n = 7), and H. longicornis (n = 7) ticks. STATES The 16S amplicons were sequenced on the Illumina MiSeq platform and analysed in Received: October 12, 2015 USEARCH, QIIME, and BLAST to assign genus and species-level taxonomies.
    [Show full text]
  • 7.014 Lectures 16 &17: the Biosphere & Carbon and Energy Metabolism
    MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Lectures 16 &17: The Biosphere & Carbon and Energy Metabolism Simplified Summary of Microbial Metabolism The metabolism of different types of organisms drives the biogeochemical cycles of the biosphere. Balanced oxidation and reduction reactions keep the system from “running down”. All living organisms can be ordered into two groups1, autotrophs and heterotrophs, according to what they use as their carbon source. Within these groups the metabolism of organisms can be further classified according to their source of energy and electrons. Autotrophs: Those organisms get their energy from light (photoautotrophs) or reduced inorganic compounds (chemoautotrophs), and their carbon from CO2 through one of the following processes: Photosynthesis (aerobic) — Light energy used to reduce CO2 to organic carbon using H2O as a source of electrons. O2 evolved from splitting H2O. (Plants, algae, cyanobacteria) Bacterial Photosynthesis (anaerobic) — Light energy used to reduce CO2 to organic carbon (same as photosynthesis). H2S is used as the electron donor instead of H2O. (e.g. purple sulfur bacteria) Chemosynthesis (aerobic) — Energy from the oxidation of inorganic molecules is used to reduce CO2 to organic carbon (bacteria only). -2 e.g. sulfur oxidizing bacteria H2S → S → SO4 + - • nitrifying bacteria NH4 → NO2 → NO3 iron oxidizing bacteria Fe+2 → Fe+3 methane oxidizing bacteria (methanotrophs) CH4 → CO2 Heterotrophs: These organisms get their energy and carbon from organic compounds (supplied by autotrophs through the food web) through one or more of the following processes: Aerobic Respiration (aerobic) ⎯ Oxidation of organic compounds to CO2 and H2O, yielding energy for biological work.
    [Show full text]