TRAINING MANUAL.Cdr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Twenty Years of Surveillance for Eastern Equine Encephalitis Virus In
Oliver et al. Parasites & Vectors (2018) 11:362 https://doi.org/10.1186/s13071-018-2950-1 RESEARCH Open Access Twenty years of surveillance for Eastern equine encephalitis virus in mosquitoes in New York State from 1993 to 2012 JoAnne Oliver1,2*, Gary Lukacik3, John Kokas4, Scott R. Campbell5, Laura D. Kramer6,7, James A. Sherwood1 and John J. Howard1 Abstract Background: The year 1971 was the first time in New York State (NYS) that Eastern equine encephalitis virus (EEEV) was identified in mosquitoes, in Culiseta melanura and Culiseta morsitans. At that time, state and county health departments began surveillance for EEEV in mosquitoes. Methods: From 1993 to 2012, county health departments continued voluntary participation with the state health department in mosquito and arbovirus surveillance. Adult female mosquitoes were trapped, identified, and pooled. Mosquito pools were tested for EEEV by Vero cell culture each of the twenty years. Beginning in 2000, mosquito extracts and cell culture supernatant were tested by reverse transcriptase-polymerase chain reaction (RT-PCR). Results: During the years 1993 to 2012, EEEV was identified in: Culiseta melanura, Culiseta morsitans, Coquillettidia perturbans, Aedes canadensis (Ochlerotatus canadensis), Aedes vexans, Anopheles punctipennis, Anopheles quadrimaculatus, Psorophora ferox, Culex salinarius, and Culex pipiens-restuans group. EEEV was detected in 427 adult mosquito pools of 107,156 pools tested totaling 3.96 million mosquitoes. Detections of EEEV occurred in three geographical regions of NYS: Sullivan County, Suffolk County, and the contiguous counties of Madison, Oneida, Onondaga and Oswego. Detections of EEEV in mosquitoes occurred every year from 2003 to 2012, inclusive. EEEV was not detected in 1995, and 1998 to 2002, inclusive. -
Mosquito Species Identification Using Convolutional Neural Networks With
www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1. -
Caracterização Molecular Do Isolado Viral AR115: Evidência Da Circulação De Vírus Do Sorogrupo Gamboa No Sudeste Do Brasil
14 INSTITUTO EVANDRO CHAGAS NÚCLEO DE ENSINO E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM VIROLOGIA Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil ANANINDEUA 2018 15 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Orientadora: Prof.ª Dr.ª Ana Cecília Ribeiro Cruz ANANINDEUA 2018 16 Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca do Instituto Evandro Chagas Costa, Aline Gonçalves da. Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil./ Aline Gonçalves da Costa. – Ananindeua, 2018. 54 f.: il.; 30 cm Orientadora: Dra. Ana Cecília Ribeiro Cruz Dissertação (Mestrado em Virologia) – Instituto Evandro Chagas, Programa de Pós-Graduação em Virologia, 2018. 1. Classificação. 2. Arbovírus. 3. Ortobunyavírus. 4. Artropodes. I. Cruz, Ana Cecília Ribeiro, orient. II. Instituto Evandro Chagas. III. Título. CDD: 579.2562 17 Aline Gonçalves da Costa Caracterização molecular do isolado viral AR115: evidência da circulação de vírus do sorogrupo Gamboa no sudeste do Brasil Dissertação apresentada ao Programa de Pós- Graduação em Virologia do Instituto Evandro Chagas, para obtenção do título de Mestre em Virologia Aprovado em: 10/01/2018 BANCA EXAMINADORA Profa. Dra. Daniele Barbosa de Almeida Medeiros Instituto Evandro Chagas Prof. Dr. Carlos Alberto Marques de Carvalho Instituto Evandro Chagas Dra. Adriana Ribeiro Carneiro Folador Universidade Federal do Pará Dr. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Nuevos Registros De Especies De Mosquitos (Diptera: Culicidae) De La Comarca
doi.org/10.21640/ns.v12i25.2651 Ciencias Naturales e Ingenierías Nuevos registros de especies de mosquitos (Diptera: Culicidae) de la Comarca Lagunera de Durango, México New records of mosquito species (Diptera: Culicidae) in La Comarca Lagunera, Durango, Mexico Rafael Vázquez-Marroquín1,2 Mónica Duarte-Andrade1 Luis M. Hernández-Triana3 Aldo I. Ortega-Morales4 Rahuel J. Chan-Chable1 1 Universidad Autónoma Agraria Antonio Narro, Postgrado en Ciencias en Producción Agropecuaria, Unidad Laguna 2 Instituto de Salud del Estado de Chiapas, Distrito de Salud No. X, Motozintla 3 Animal and Plant Health Agency, Virology Department, Rabies and Viral Zoonoses (VI1), London 4 Universidad Autónoma Agraria Antonio Narro, Departamento de Parasitología, Unidad Laguna Autor para correspondencia: Rafael Vázquez-Marroquín, E-mail: [email protected] Resumen Introducción: Un número notable de mosquitos tienen gran importancia médica y veterinaria debido a que transmiten numerosos patógenos que causan enfermedades en los animales y los seres humanos, por lo que conocer su taxonomía y distribución es fundamental para aplicar estrategias de control correctas. El objetivo de este estudio fue determinar la presencia de especies de mosquitos y su distribución en la Comarca Lagunera del estado de Durango, México. Método: Entre agosto y noviembre de 2018 fueron colectados mosquitos adultos utilizando aspiradores de campo (Insectzookas) en diferentes sitios de reposo en cuatro municipios. También se tomaron muestras de los hábitats acuáticos para la colecta de etapas inmaduras. Los especímenes adultos se mataron utilizando cámaras letales con vapores de trietilamina, mientras que las larvas y las pupas se almacenaron en tubos individuales para obtener los estadios adultos y las exuvias asociadas. -
Theobald 1903 1.Pdf
A MONOGRAPH OFTHE CULICIDAE OF THE WORLD. GENERAL NOTES. Several notes of general interest have been made and sent by correspondents that can scarcely be incorporated in the systematic part of this book. These are presented here. THE RELATIVEFREQUENCE OF CULICINAAND ANOPHELINA. It is interesting to note the relative frequence of these two sections of the CFulicidae. In most cases observations made personally during the past two years show that in Great Rritain the Anophelina, where they occur at all, are relatively more abundant in habitations than Culex. At Great Staughton during August the numbers counted in a privy in the morning were as follows during the week ending the 26th :-- 20th . 10 AM. Culex 12 ; Anopheles 37 21st . ,) . Culex 20; Anopheles 15 22nd . Culex 7 : Anopheles 40 23rd . ,; Culex 12; Anoiheles 17 24th . ,, :: Culex 2 ; Anopheles 7 25th . ,, . Culex 30; Anopheles 14 26th . ), .* Culex 8; Anopheles 27 eThe species were Cu1e.x pipi3iens and Anopheles mncuLpennk’ At Wye, again, observations were made during August, VOL. III. B September and October, again in a privy and also in a bed- room. AUGUST. Between In privy. In beihoom 12th . ~&~OA.IVI. Culex 4; Anopheles 6 . Culex 2 ; Anopheles 5 13th . ,, . Culex 1; Anbpheles 8 . Culex 1; Anopheles 6 14th . ,, . Culex 7;‘ Anopheles 15 . Culex 1; Anopheles 3 15th . ,, . Culex 3; Anopheles 3 . Culex 5; Anopheles 12 16th . ,, . Culex 7 ; Anopheles 12 . Culex 8 ; Anopheles 12 17th . ,, . Culex 9 ; Anopheles 8 . Culex 2 ; Anopheles 9 18th . ,, ., Culex 1; Anopheles 4 . Culex 3 ; Anopheles 4 SEPTEI+IBER. In prhy. In bedroom. 3rd . Culex 12 ; Anopheles 3 . -
Table of Contents
Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner -
Biology and Control of Aquatic Plants
BIOLOGY AND CONTROL OF AQUATIC PLANTS A Best Management Practices Handbook Lyn A. Gettys, William T. Haller and Marc Bellaud, editors Cover photograph courtesy of SePRO Corporation Biology and Control of Aquatic Plants: A Best Management Practices Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration Foundation, Marietta, Georgia ISBN 978-0-615-32646-7 All text and images used with permission and © AERF 2009 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, by photocopying, recording or otherwise, without prior permission in writing from the publisher. Printed in Gainesville, Florida, USA October 2009 Dear Reader: Thank you for your interest in aquatic plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology and Control of Aquatic Plants: A Best Management Practices Handbook. The mission of the AERF, a not for profit foundation, is to support research and development which provides strategies and techniques for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One of the ways the Foundation accomplishes the mission is by providing information to the public on the benefits of conserving aquatic ecosystems. The handbook has been one of the most successful ways of distributing information to the public regarding aquatic plant management. The first edition of this handbook became one of the most widely read and used references in the aquatic plant management community. This second edition has been specifically designed with the water resource manager, water management association, homeowners and customers and operators of aquatic plant management companies and districts in mind. -
Pesticide Discharge Management Plan
Pesticide Discharge Management Plan 1. PDMP Team a. Person(s) responsible for managing pests in relation to pest management area: All operational and biological support staff along with the Director of Mosquito Management Services (Wade Brennan, 5531 Pinkney Ave. Sarasota, FL. 34233) b. Person(s) responsible for developing and revising PDMP John Eaton, Operations Supervisor, and Wade Brennan Environmental Scientist III, are the individuals responsible for monitoring changes in Federal and State regulatory agencies that govern mosquito control operations. c. John Eaton, and Wade Brennan, are the individuals responsible for developing, revising and implementing corrective actions and other effluent requirements d. Person(s) responsible for pesticide applications Persons (supervisors and above) who direct applicators these include: All Operational staff employed by Sarasota County Mosquito Management Services that hold a Public Health Pest Control License administered by Florida Department of Agriculture and Consumer Services are directly responsible for pesticide applications (because they can oversee uncertified applicators) additionally, Sarasota County’s awarded Contractors must have required state certification (s). 2. Pest Management Area Description Overview Sarasota County Mosquito Management Services (SCMMS) has been mitigating pestiferous nuisance host seeking mosquitoes of public health importance for over 60 years. A total of forty- four mosquito species are found in Sarasota County of which a dozen are in need of management through a typical peak mosquito season, April through November. When intervention action plans are developed and implemented more than one species is usually involved. Past and current mitigation strategies for both larval and adult mosquitoes have always been in full compliance with FIFRA conditions which have met water quality standards. -
Towards a Better Understanding of Rift Valley Fever Epidemiology in The
Balenghien et al. Veterinary Research 2013, 44:78 http://www.veterinaryresearch.org/content/44/1/78 VETERINARY RESEARCH REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean Thomas Balenghien1†, Eric Cardinale1,2†, Véronique Chevalier3†, Nohal Elissa4†, Anna-Bella Failloux5*†, Thiery Nirina Jean Jose Nipomichene4†, Gaelle Nicolas3†, Vincent Michel Rakotoharinome6†, Matthieu Roger1† and Betty Zumbo7† Abstract Rift Valley fever virus (Phlebovirus,Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007–2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean. Table of contents humans, symptoms vary from a flu-like syndrome to en- cephalitic, ocular or hemorrhagic syndrome. The case fa- 1. Disease and transmission tality rate of the latter form can be as high as 50% [3]. -
A Synopsis of the Mosquitoes of Missouri and Their Importance from a Health Perspective Compiled from Literature on the Subject
A Synopsis of The Mosquitoes of Missouri and Their Importance From a Health Perspective Compiled from Literature on the Subject by Dr. Barry McCauley St. Charles County Department of Community Health and the Environment St. Charles, Missouri Mark F. Ritter City of St. Louis Health Department St. Louis, Missouri Larry Schaughnessy City of St. Peters Health Department St. Peters, Missouri December 2000 at St. Charles, Missouri This handbook has been prepared for the use of health departments and mosquito control pro- fessionals in the mid-Mississippi region. It has been drafted to fill a perceived need for a single source of information regarding mosquito population types within the state of Missouri and their geographic distribution. Previously, the habitats, behaviors and known distribution ranges of mosquitoes within the state could only be referenced through consultation of several sources - some of them long out of print and difficult to find. It is hoped that this publication may be able to fill a void within the literature and serve as a point of reference for furthering vector control activities within the state. Mosquitoes have long been known as carriers of diseases, such as malaria, yellow fever, den- gue, encephalitis, and heartworm in dogs. Most of these diseases, with the exception of encephalitis and heartworm, have been fairly well eliminated from the entire United States. However, outbreaks of mosquito borne encephalitis have been known to occur in Missouri, and heartworm is an endemic problem, the costs of which are escalating each year, and at the current moment, dengue seems to be making a reappearance in the hotter climates such as Texas. -
MOSQUITOES of the SOUTHEASTERN UNITED STATES
L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No.