Theobald 1903 1.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sampling Adults by Animal Bait Catches and by Animal-Baited Traps
Chapter 5 Sampling Adults by Animal Bait Catches and by Animal-Baited Traps The most fundamental method for catching female mosquitoes is to use a suit able bait to attract hungry host-seeking individuals, and human bait catches, sometimes euphemistically called landing counts, have been used for many years to collect anthropophagic species. Variations on the simple direct bait catch have included enclosing human or bait animals in nets, cages or traps which, in theory at least, permit the entrance of mosquitoes but prevent their escape. Other attractants, the most widely used of which are light and carbon dioxide, have also been developed for catching mosquitoes. In some areas, especially in North America, light-traps, with or without carbon dioxide as a supplement, have more or less replaced human and animal baits as a routine sampling method for several species (Chapter 6). However, despite intensive studies on host-seeking behaviour no really effective attractant has been found to replace a natural host, and consequently human bait catches remain the most useful single method of collecting anthropophagic mosquitoes. Moreover, although bait catches are not completely free from sampling bias they are usually more so than most other collecting methods that employ an attractant. They are also easily performed and require no complicated or expensive equipment. HUMAN BAIT CATCHES Attraction to hosts Compounds used by mosquitoes to locate their hosts are known as kairomones, that is substances from the emitters (hosts) are favourable to the receiver (mosquitoes) but not to themselves. Emanations from hosts include heat, water vapour, carbon dioxide and various host odours. -
A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh). -
A Synopsis of the Mosquitoes of Missouri and Their Importance from a Health Perspective Compiled from Literature on the Subject
A Synopsis of The Mosquitoes of Missouri and Their Importance From a Health Perspective Compiled from Literature on the Subject by Dr. Barry McCauley St. Charles County Department of Community Health and the Environment St. Charles, Missouri Mark F. Ritter City of St. Louis Health Department St. Louis, Missouri Larry Schaughnessy City of St. Peters Health Department St. Peters, Missouri December 2000 at St. Charles, Missouri This handbook has been prepared for the use of health departments and mosquito control pro- fessionals in the mid-Mississippi region. It has been drafted to fill a perceived need for a single source of information regarding mosquito population types within the state of Missouri and their geographic distribution. Previously, the habitats, behaviors and known distribution ranges of mosquitoes within the state could only be referenced through consultation of several sources - some of them long out of print and difficult to find. It is hoped that this publication may be able to fill a void within the literature and serve as a point of reference for furthering vector control activities within the state. Mosquitoes have long been known as carriers of diseases, such as malaria, yellow fever, den- gue, encephalitis, and heartworm in dogs. Most of these diseases, with the exception of encephalitis and heartworm, have been fairly well eliminated from the entire United States. However, outbreaks of mosquito borne encephalitis have been known to occur in Missouri, and heartworm is an endemic problem, the costs of which are escalating each year, and at the current moment, dengue seems to be making a reappearance in the hotter climates such as Texas. -
Plasmodium Vivax Malaria in Cambodia
Am. J. Trop. Med. Hyg., 95(Suppl 6), 2016, pp. 97–107 doi:10.4269/ajtmh.16-0208 Plasmodium vivax Malaria in Cambodia Sovannaroth Siv,1 Arantxa Roca-Feltrer,2 Seshu Babu Vinjamuri,1 Denis Mey Bouth,3 Dysoley Lek,1 Mohammad Abdur Rashid,3 Ngau Peng By,2 Jean Popovici,4 Rekol Huy,1 and Didier Menard4* 1National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia; 2Malaria Consortium Cambodia, Phnom Penh, Cambodia; 3World Health Organization, Country Office, Phnom Penh, Cambodia; 4Institute Pasteur in Cambodia (IPC), Phnom Penh, Cambodia Abstract. The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. fa lci pa rum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. fal cipar um elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. BACKGROUND The following review presents in detail the past and current situation of the vivax malaria in Cambodia, malaria The Kingdom of Cambodia, which lies in the center of the control activities, and interventional measures currently Indochina peninsula in southeastern Asia has a population implemented by the CNM along with relevant recommenda- of 15,840,251 (in 2015) consisting of 2.2 million households, tions. -
A Classification System for Mosquito Life Cycles: Life Cycle Types for Mosquitoes of the Northeastern United States
June, 2004 Journal of Vector Ecology 1 Distinguished Achievement Award Presentation at the 2003 Society for Vector Ecology Meeting A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States Wayne J. Crans Mosquito Research and Control, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, U.S.A. Received 8 January 2004; Accepted 16 January 2004 ABSTRACT: A system for the classification of mosquito life cycle types is presented for mosquito species found in the northeastern United States. Primary subdivisions include Univoltine Aedine, Multivoltine Aedine, Multivoltine Culex/Anopheles, and Unique Life Cycle Types. A montotypic subdivision groups life cycle types restricted to single species. The classification system recognizes 11 shared life cycle types and three that are limited to single species. Criteria for assignments include: 1) where the eggs are laid, 2) typical larval habitat, 3) number of generations per year, and 4) stage of the life cycle that overwinters. The 14 types in the northeast have been named for common model species. A list of species for each life cycle type is provided to serve as a teaching aid for students of mosquito biology. Journal of Vector Ecology 29 (1): 1-10. 2004. Keyword Index: Mosquito biology, larval mosquito habitats, classification of mosquito life cycles. INTRODUCTION strategies that do not fit into any of the four basic temperate types that Bates described in his book. Two There are currently more than 3,000 mosquito of the mosquitoes he suggested as model species occur species in the world grouped in 39 genera and 135 only in Europe and one of his temperate life cycle types subgenera (Clements 1992, Reinert 2000, 2001). -
West Nile Virus in the Region of Peel 2002
West Nile Virus in the Region of Peel 2002 ADULT MOSQUITO SURVEILLANCE Introduction The West Nile virus survives by circulating between bird and mosquito populations. A female mosquito can acquire the infection by obtaining a blood meal from an infected bird and after a two-to-three week incubation period, can then pass the infection by injecting its saliva into another host (bird, horse, human or other animal) when it takes a blood meal.7 Once in the new host, the virus can multiply, causing illness and possibly death. There are 74 known species of mosquitoes in Canada;3 57 of these have been identified in Ontario.7 According to Health Canada, only 10 species have been found to be infected by WNV in this country.3 The most important “amplification” species in Ontario are thought to be Culex pipiens and Culex restuans. The most important “bridge vector” mosquitoes are highly dependant on local conditions. Coquillettidia perturbans and Aedes vexans may be the most important bridge vectors in Peel because of their high numbers. Three other species of mosquitoes (Culex salinarius, Ochlerotatus triseriatus and Ochlerotatus trivittatus) may be more important in the transmission of WNV to humans in Peel, than their small numbers suggest because of their high infection rates and aggressive biting of people. The purpose of mosquito surveillance programs is to monitor mosquito populations associated with WNV, determine the level of WNV activity among these species and use this information to make decisions regarding the risk for transmission to humans and the need to implement mosquito control plans. -
Analysis of Entomological Surveillance Data to Predict West Nile Virus Cases in Connecticut
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Public Health Theses School of Public Health 1-1-2019 Analysis Of Entomological Surveillance Data To Predict West Nile Virus Cases In Connecticut Lena Marie Tayo [email protected] Follow this and additional works at: https://elischolar.library.yale.edu/ysphtdl Part of the Public Health Commons Recommended Citation Tayo, Lena Marie, "Analysis Of Entomological Surveillance Data To Predict West Nile Virus Cases In Connecticut" (2019). Public Health Theses. 1897. https://elischolar.library.yale.edu/ysphtdl/1897 This Open Access Thesis is brought to you for free and open access by the School of Public Health at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Public Health Theses by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Analysis of Entomological Surveillance Data to Predict West Nile Virus Cases in Connecticut Lena Marie Tayo Yale School of Public Health, Epidemiology of Microbial Diseases Master of Public Health, 2019 Advisors Leonard Munstermann, PhD Philip Armstrong, PhD ACKNOWLEDGEMENTS I gratefully acknowledge the Connecticut Agricultural Experiment Station (CAES) and Dr. Philip Armstrong for providing all mosquito surveillance and human cases data. Thanks to my thesis advisors Dr. Philip Armstrong and Dr. Leonard Munstermann for providing expert guidance and collaborating with me on this project. I also acknowledge the Statistics Lab (StatLab) at the Yale School of Public Health and Maile Phillips for her statistics advice and guidance. Thanks to my friends and family who supported me during the writing of this thesis and over the last two years. -
Insecticides Susceptibility, Enzyme Activity And
Int. J. Entomol. Res. 02 (01) 2014. 33-40 Available Online at ESci Journals International Journal of Entomological Research ISSN: 2310-3906 (Online), 2310-5119 (Print) http://www.escijournals.net/IJER INSECTICIDES SUSCEPTIBILITY, ENZYME ACTIVITY AND EXPRESSION OF RESISTANT GENE (GST) IN TWO POTENTIAL MALARIA VECTORS, ANOPHELES JAMESII AND ANOPHELES BARBIROSTRIS FROM MIZORAM, INDIA aKhawlhring Vanlalhruaia*, aGuruswami Gurusubramanian, bNachimuthu S. Kumar a Departments of Zoology, Mizoram University, Aizawl- 796 004, Mizoram India. b Department of Biotechnology, Mizoram University, Aizawl- 796 004, Mizoram India. A B S T R A C T Anopheles jamesii and Anopheles barbirostris are the two dominant and potential vectors of malaria in Mizoram. These mosquito populations are continuously being exposed directly or indirectly to different insecticides including the most effective pyrethroids and Dichloro-diphenyl-trochloroethane. Therefore, there is a threat of insecticide resistance development. We subjected these vectors to insecticides bioassay by currently using pyrethroids viz. deltamethrin and organochlorine viz. DDT. An attempt was also made to correlate the activities of certain detoxifying enzymes such as α- esterase, β-esterase and glutathione-S transferase (GST) with the tolerance levels of the two vectors. The results of insecticide susceptibility tests and their biochemical assay are significantly correlated (P<0.05) as there is elevation of enzyme production in increasing insecticides concentrations. Characterization of GSTepsilon-4 gene resulted that An .jamesii and An. barbirostris able to express resistant gene. Keywords: Index, Anopheles, Control, Malaria, Disease, Mosquitoes, Resistance. INTRODUCTION An. tessellatusand An. varunaare potential vectors Mosquitoes (Diptera: Culicidae) and mosquito-borne (Limrat et al., 2001, Perera et al., 2008). -
Diptera: Culicidae
Tisgratog et al. Parasites & Vectors 2012, 5:114 http://www.parasitesandvectors.com/content/5/1/114 RESEARCH Open Access Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae) in a malaria endemic area of western Thailand: baseline site description Rungarun Tisgratog1, Chatchai Tananchai1, Waraporn Juntarajumnong1, Siripun Tuntakom2, Michael J Bangs3, Vincent Corbel4 and Theeraphap Chareonviriyaphap1* Abstract Background: Host feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods. Methods: Adult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC), outdoor HLC, and outdoor cattle-bait collections (CBC). Results: A total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%), followed by Anopheles maculatus complex (19.68%) and Anopheles dirus complex (0.33%). An. minimus s.s. comprised virtually all (> 99.8 percent) of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60%) versus inside structures. Significantly (P < 0.0001) more An. -
The Mosquitoes of Minnesota, with Special Reference to Their Biologies
Technical Bulletin 126 November 1937 The Mosquitoes of Minnesota, With Special Reference to Their Biologies William B. Owen University of Minnesota Agricultural Experiment Station Accepted for publication July 1937. The Mosquitoes of Minnesota, With Special Reference to Their Biologies William B. Owen University of Minnesota Agricultural Experiment Station Accepted for publication July 1937. CONTENTS Page 1. Introduction 3 Economic importance 4 Disease transmission 6 Methods of study 7 -II. Ecological relationships 8 Topography and climate of Minnesota 8 Vegetational regions 10 Larval habitats and associations 11 _III. Biology and taxonomy 16 External characters used 16 Systematic treatise 19 Species of mosquitoes found in Minnesota 20 Keys for identification of Minnesota mosquitoes 21 Description of species 30 IV. Summary 73 V. Literature cited 74 The Mosquitoes of Minnesota, with Special Reference to Their Biologies WILLIAM B. OwEN1 I. INTRODUCTION The mosquito fauna of Minnesota, although not restricted to this region, has never been the object of a detailed study in the North Central States. Any rational control measure designed to alleviate the scourge of these pests must be based on a thorough knowledge of the life his- tories, habits, and bionomics of the species involved. The object of this study has been to determine the relative importance of the species oc- curring in the state and to investigate their biologies under the prevailing environmental conditions. An effort has also been made to point out available sources of information and to present keys for the determina- tion of species found, or likely to be found, in this region as aids to others who may continue the study. -
Reinert Anopheline Eggs
European Mosquito Bulletin 28 (2010), 103-142 Journal of the European Mosquito Control Association ISSN 1460-6127; w.w.w.e-m-b.org First published online 20 July 2010 List of anopheline species with published illustrations and/or descriptions of eggs (Diptera: Culicidae: Anophelinae) John F. Reinert Center for Medical, Agricultural and Veterinary Entomology (CMAVE), United States Department of Agriculture, Agricultural Research Service, 1600/1700 SW 23rd Drive, Gainesville, Florida 32608-1067, and collaborator Walter Reed Biosystematics Unit, National Museum of Natural History, Smithsonian Institution, Washington, D.C. (e-mail: [email protected]) Abstract Species of the mosquito subfamily Anophelinae with published illustrations and/or morphol- ogical descriptions of the egg stage are listed with their literature citations. Species of the subfamily have the egg stage better known than those in most tribes of family Culicidae. Key words: Diptera, Culicidae, Anophelinae, Anopheles, Bironella, Brugella, Chagasia, Cellia, Kerteszia, Lophopodomyia, Nyssorhynchus, Stethomyia, mosquito, eggs Introduction A listing of species with published illustrations and/or descriptions of eggs in the mosquito subfamily Anophelinae is provided below and includes literature citations. Many of the publications include descriptive information in addition to the illustrations of the egg, however, some descriptions are very brief. Descriptive information on eggs sometimes is included in keys. The identification of anopheline species, subspecies, varieties, races, synonyms, etc. utilized in the cited literature is reported in the following list. Qu & Zhu (2008) provided recent information on several species that had been synonymized or resurrected from synonymy. The latest listing of currently valid species and generic-level taxa reported in the Mosquito Taxonomic Inventory (http://mosquito-taxonomic-inventory.info, accessed 30 June 2010) was utilized. -
Annual Report 2015 Anti Malaria Campaign
Annual Report 2015 Anti Malaria Campaign Annual Report 2015 Anti Malaria Campaign Ministry of Health 2 Anti Malaria Campaign No. 555/5 , 3rd Floor, Public Health Building, Narahenpita, Sri Lanka. Telephone : +94 11 58408/2368173/2368174 Fax : +94 11 2 368 360 e-Mail : [email protected] Website :http://www.malariacampaign.gov.lk 2015 3 Contributors Dr Hemantha Herath, Director, Anti Malaria Campaign Dr Risintha Premaratne, Deputy Director, Anti Malaria Campaign, National coordinator for WHO malaria free certification Dr Devani Ranaweera, Consultant Community Physician, Anti Malaria Campaign Dr Manjula Danansuriya, Consultant Community Physician, Anti Malaria Campaign Dr I E Gunaratne, Senior Registrar, Community Medicine, Anti Malaria Campaign Dr M Marasinghe, Registrar, Community Medicine, Anti Malaria Campaign Dr Hamsananthy Jeevatharan ,Registrar, Community Medicine, Anti Malaria Campaign Dr N Saravanabavan ,Registrar, Community Medicine, Anti Malaria Campaign Dr Priyani Dharmawardena, Medical Officer, Anti Malaria Campaign Dr L R Gunasekara, Medical Officer, Anti Malaria Campaign Dr P H P D Somaratne, Medical Officer, Anti Malaria Campaign Dr U Tittagala,Registered Medical Officer, Anti Malaria Campaign Ms Kumudu Gunasekera, Parasitologist, Anti Malaria Campaign Ms Mihirini Hewavitharane, Entomologist, Anti Malaria Campaign Ms Jeewani Harishchandra, Entomologist, Anti Malaria Campaign Staffs/Statistic Unit, Anti Malaria Campaign Regional Malaria officers and staff Project Director and staff, GFATM Project, Ministry of Health Texts were compiled by Anti Malaria Campaign Team Supervised by Director, Anti Malaria Campaign 4 Contents Page No. Table and Figures 6 Foreword 8 Acknowledgement 9 Introduction 10 Epidemiology 12 Parasitological surveillance 16 Vector surveillance 20 Vector Control Activities 34 Infrastructure and Human Resources 36 Foreign Funded Projects 39 5 Table and Figures Tables Page No.