Reconciling Taxonomy and Phylogeny in Hermit-Crab Symbiotic Anemones (Cnidaria: Actiniaria: Hormathiidae)

Total Page:16

File Type:pdf, Size:1020Kb

Reconciling Taxonomy and Phylogeny in Hermit-Crab Symbiotic Anemones (Cnidaria: Actiniaria: Hormathiidae) Organisms Diversity & Evolution (2019) 19:567–583 https://doi.org/10.1007/s13127-019-00414-2 ORIGINAL ARTICLE Description of Calliactis tigris sp. nov.: reconciling taxonomy and phylogeny in hermit-crab symbiotic anemones (Cnidaria: Actiniaria: Hormathiidae) Luciana C. Gusmão1 & E. Rodríguez1 & Marymegan Daly2 Received: 22 April 2019 /Accepted: 11 August 2019 /Published online: 22 August 2019 # Gesellschaft für Biologische Systematik 2019 Abstract The symbiosis between sea anemones and hermit crabs is ubiquitous in the marine environment (except in the poles), occurring from shallow to deep waters; it involves one or more anemones living on a shell inhabited by a hermit crab. The anemone-crab partnership is a mutualism in which hermit crabs provide a hard substrate, increased access to oxygenated waters and food supply, in exchange for defense by the anemone. The vast majority of the sea anemone partners belong to three genera in family Hormathiidae: Adamsia, Calliactis, Paracalliactis. Given the remarkable nature of the symbiosis, hormathiid partners have been hypothesized to represent a monophyletic group. This has been rejected by Gusmão and Daly et al. (2010) and confirmed by our phylogenetic analysis using molecular markers (12S, 16S, 18S, 28S, COIII). We expand the results of Gusmão and Daly et al. (2010) by finding a monophyletic Paracalliactis, which was left untested in their analyses. Thus, characters of taxonomic significance associated to the symbiotic habit are interpreted as functional rather than phylogenetic. We reconcile taxonomy and the present evolutionary framework to avoid defining taxonomic groups based on characters prone to convergence. We formalize the synonymy of Adamsia and Calliactis and provide updated diagnoses for the valid genera Calliactis and Paracalliactis to bring more stability to the group. Under this new framework, we describe Calliactis tigris sp. nov. from Australia based on 21 specimens collected off the coast of New South Wales and Queensland and differentiate it from congeners and other hermit crab symbionts recorded in the Pacific Ocean. Keywords Symbiosis . Mutualism . Convergence . Adamsia . Paracalliactis . Australia Introduction hermit crab (Gusmão and Daly 2010). The anemone-crab partnership is a mutualism (Brooks and Gwaltney 1993; The symbiosis between sea anemones and hermit crabs is Mainardi and Rossi 1969) in which hermit crabs provide a ubiquitous in the marine environment (except in the poles), hard substrate that prevents the anemone’s burial and increase occurring from shallow to deep waters; it involves one or access to positive conditions, including oxygenated waters more anemones living on a gastropod shell inhabited by a and food supply (Williams and McDermott 2004). In ex- change, the anemones defend the crab from predators using their nematocysts (Ross 1971, 1974a; Ross and Boletzky Electronic supplementary material The online version of this article 1979;Christidisetal.1997). The presence of predators en- (https://doi.org/10.1007/s13127-019-00414-2) contains supplementary courages acquisition of anemones by the crab in the laboratory material, which is available to authorized users. (Balasch and Mengual 1973; Bach and Herrnkind 1980;Ross * Luciana C. Gusmão and Boletzky 1979) and reinforces the operational trigger of [email protected] this association in nature with crabs carrying one or more anemones more likely to survive encounters with predators 1 (Ross and Boletzky 1979; Brooks 1989). Some anemones Division of Invertebrate Zoology, American Museum of Natural “ ” History, Central Park West at 79th Street, New York, NY 10024, may also protect the crab by producing a living cloak (i.e., USA carcinoecium) that expands the living space of the crab 2 Museum of Biological Diversity, Ohio State University, 1315 bypassing the necessity to change to bigger shells as they Kinnear Road, Columbus, OH 43215, USA grow (Ross 1974a;Fautin1992;Dalyetal.2004). 568 Gusmão L.C. et al. Most sea anemone partners belong to three genera within examination, longitudinal and cross-sectional serial sections family Hormathiidae Carlgren 1932: Adamsia Forbes 1840, 10 μm thick were made using standard paraffin techniques Calliactis Verrill 1869, and Paracalliactis Carlgren 1928a. and stained with Heidenhain’s Azan Stain (Presnell and These genera have been hypothesized to represent a single Schreibman 1997). Undischarged cnidae capsules were iden- monophyletic group given the remarkable nature of the symbi- tified and measured in squash preparations of tissue from col- otic behavior exhibited by the partners (e.g., Ross 1974b;Ates umn, tentacles, actinopharynx, filaments, and acontia of five 1997). This idea was supported by the related morphological preserved specimens using differential interference microsco- adaptations seen in the hormathiid partners that form a morpho- py (DIC) at × 1000 magnification. Except for the rarer types, logical complex whose members are distinguished by a mosaic at least 20 capsules were measured. The presence of each type of characters (Hand 1975;Dalyetal.2004). Attributes of the of cnidae in each tissue was confirmed in histological slides. symbiosis, such as the adaptation of the pedal disc to life on a We follow a nematocyst terminology that combines the clas- shell and secretion of a carcinoecium, unite members of sification of Weill (1934) modified by Carlgren (1940), thus Adamsia and Paracalliactis and distinguish them from those differentiating “basitrichs” from “b-mastigophores” with that in Calliactis. On the other hand, both Calliactis and Adamsia of Schmidt (1969, 1972, 1974) which captures the underlying differ from Paracalliactis in having cinclides in the column. variation seen in “rhabdoids” (see Gusmão et al. 2018 for Carlgren (1928b) described the genus Paracalliactis as biolog- more details). We include photographs of each type of nema- ical intermediate between Adamsia and Calliactis. Because no tocyst for reliable comparison across terminologies and taxa support for the monophyly of hormathiid hermit-crab symbiotic (see Fautin 1988). Higher-level classification for Actiniaria anemones was recovered in the multilocus analysis of Gusmão follows Rodríguez et al. (2014). and Daly et al. (2010), similarities in morphology and behavior among these symbiotic anemones have to be interpreted as Molecular data collection and analysis related to the ways in which a symbiotic habit arises and is maintained, not to shared evolutionary history. Genomic DNA was isolated from approximately 25 mg of tis- Here, we reconcile the taxonomy of hormathiid hermit- sue of one specimen of Calliactis tigris sp. nov. and crab symbionts with the present evolutionary framework for Paracalliactis sp. using the Qiagen DNeasy kit. Whole geno- the group provided by the phylogenetic analyses of five nu- mic DNA was amplified using published primers and standard clear and mitochondrial markers (12S, 16S, 18S, 28S, COIII). protocols (e.g., Geller and Walton 2001; Daly et al. 2008; We formalize the findings of Gusmão and Daly et al. (2010) Lauretta et al. 2014) for three mitochondrial markers (12S, confirmed in our analysis, particularly the synonymy of gen- 16S, COIII) and two nuclear markers (18S, 28S). PCR products era Adamsia and Calliactis. We also expand the results of were cleaned with the Thermo Scientific Fermentas clean-up Gusmão and Daly et al. (2010) by finding a monophyletic protocol using Exonuclease I and FastAP thermosensitive alka- Paracalliactis, which was left untested in their analyses. line phosphatase per manufacturer’s specifications, but with Updated diagnoses for the valid symbiotic hormathiid genera shrimp alkaline phosphatase replaced by FastAP™. A total of Calliactis and Paracalliactis areprovidedtohelpwithtaxo- 5 μL of cleaned PCR product, at a concentration of 25 ng of nomic identification and bring more stability to this wide- product for every 200 base pairs (bp) of marker length, was spread group of sea anemones. Finally, we describe cycle-sequenced in an ABI BigDye® Terminator v3.1 Calliactis tigris sp. nov. from Australia based on 21 specimens (Applied Biosystems) reaction following the manufacturer’s collected off the coast of New South Wales and Queensland protocols. Cycle sequencing products were cleaned using and differentiate it from congeners as well as other hermit crab Centri-Sept columns (Princeton Separations; following the symbionts recorded in the Pacific Ocean. manufacturer’s protocol) containing DNA-grade Sephadex (G-50 fine; GE Healthcare) and later sequenced using PCR amplification primers on an ABI 3770x at the in-house facilities Material and methods of the American Museum of Natural History (AMNH). Forward and reverse sequences were assembled and edited in Morphological study Geneious v.10.0.9 (Kearse et al. 2012) and blasted against the nucleotide database of GenBank to confirm the successful am- The description of Calliactis tigris sp. nov. was based on 21 plification of target marker/organism. specimens collected in eastern Australia (Fig. 1) deposited in Newly generated sequences have been deposited in the Australian Museum (AM G.15586, AM G.16897, AM GenBank and combined into a dataset of sequences included G.16907, AM G.17482-17486, AM G.17489, AM in Rodríguez et al. (2014), Larson and Daly (2016), and Daly G.17491). External and internal morphology is described et al. (2017) with selected taxa within the suborder based on formalin-fixed specimens that were examined Anenthemonae Rodríguez and Daly, 2014 used
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Fishery Bulletin of the Fish and Wildlife Service V.55
    CHAPTER VIII SPONGES, COELENTERATES, AND CTENOPHORES Blank page retained for pagination THE PORIFERA OF THE GULF OF MEXICO 1 By J. Q. TIERNEY. Marine Laboratory, University of Miami Sponges are one of the dominant sessile inverte­ groups. The. floor of the Gulf between the bars brate groups in the Gulf of Mexico: they extend is sparsely populated. The majority of the ani­ from the intertidal zone down to the deepest mals and plants are concentrated on the rocky Parts of the basin, and almost all of the firm or ledges and outcroppings. rocky sections of the bottom provide attachment The most abundant sponges on these reefs are for them. of several genera representing most of the orders Members of the class Hyalospongea. (Hexacti­ of the class Demospongea. Several species of nellidea) are, almost without exception, limited to Ircinia are quite common as are Verongia, Sphecio­ the deeper waters of the Gulf beyond the 100­ spongia, and several Axinellid and Ancorinid fathom curve. These sponges possess siliceous sponges; Cliona is very abundant, boring into spicules in which (typically) six rays radiate from molluscan shells, coral, and the rock itself. The II. central point; frequently, the spicules are fused sponge population is rich both in variety and in ~gether forming a basket-like skeleton. Spongin number of individuals; for this reason no attempt 18 never present in this group. is made to discuss it in taxonomic detail in this In contrast to the Hyalospongea, representa­ r~sum~. ti\Tes of the clasa Calcispongea are seldom, if Some of the sponges of the Gulf are of world­ ~\Ter, found in deep water.
    [Show full text]
  • The Validity of Anthothoe Chilensis (Actiniaria, Sagartiidae) and Its Distribution in Southern Hemisphere
    . THE VALIDITY OF ANTHOTHOE CHILENSIS (ACTINIARIA, SAGARTIIDAE) AND ITS DISTRIBUTION IN SOUTHERN HEMISPHERE Adriana C. Excoffon^ Maria Júlia C. Belém^ Maurício O. Zamponi^'^ Erika Schlenz^ ABSTRACT Anthothoe chilemis (Lesson, 1830) is redescribed based on specimens collected from the intertidal of Rio de Janeiro (Brazil) and Mar dei Plata (Argentina). The geographic distribution is amplified to the Southwest Atlantic Ocean. The type species of the genus, A. stimpsoni (Verrill, 1870) is considered a junior subjective synonym of A. chilensis. KEYWORDS. Sagartiidae, Anthothoe chilensis, redescription, distribution, synonymy. INTRODUCTION CARLGREN (1949) listed four species: Anthothoe stimpsoni (Verrill, 1870), A. austraUensis Carlgren, 1949, A. vagrans (Stuckey, 1909) and A. panamensis Carlgren, 1949, in the genus Anthothoe Carlgren, 1938. A. panamensis should be considered as "species inquirenda", since CARLGREN (1951: 433) identified doubtfuUy two specimens from the Gulf of California as "A. panamensis (Verrill) " CARLGREN (1950a, 1959) ixdinsíexveá Actinothoe albocincta Hutton, 1878 and Actinothoe chilensis Lesson, 1830, respectively, to the genus Anthothoe. The genus is considered as endemic to the Southern Hemisphere. 1 Laboratório de Biologia de Cnidarios. Departamento de Ciências Marinas. Faculdad de Ciências Exactas y Naturales. UNMP. Funes 3250. 7600. Mar dei Plata. Argentina. 2. Universidade Federal do Rio de Janeiro. Caixa Postal 24.030; CEP 20522-970, Rio de Janeiro, RJ, Brasil. (CNPq researcher). 3. CONICET researcher. 4. Departamento de Zoologia. Instituto de Biociências, Universidade de São Paulo, Caixa Postal 1 1 .294; CEP 05422-970, São Paulo, SP, Brasil. Iheringia, Sér. Zool., Porto Alegre, (82): 107-1 18,1 1 abr. 1997 108 EXCOFFQN; BELÉM; ZAMPONI & SCHLENZ This paper deals with the redescription ofA.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C
    Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C.-P., Gusky, M., Gutow, L., Heiber, W., Jantschik, P., Krieg, H.J., Krone, R., Nehmer, P., Reichert, K., Reiss, H., Schröder, A., Witt, J. & Zettler, M.L. (2013): Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere. – In: Becker, N.; Haupt, H.; Hofbauer, N.; Ludwig, G. & Nehring, S. (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. – Münster (Landwirtschaftsverlag). – Na- turschutz und Biologische Vielfalt 70 (2): S. 81-176. Die Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeres- organismen (ISBN 978-3-7843-5330-2) ist zu beziehen über BfN-Schriftenvertrieb – Leserservice – im Landwirtschaftsverlag GmbH 48084 Münster Tel.: 02501/801-300 Fax: 02501/801-351 http://www.buchweltshop.de/bundesamt-fuer-naturschutz.html bzw. direkt über: http://www.buchweltshop.de/nabiv-heft-70-2-rote-liste-gefahrdeter-tiere-pflanzen-und- pilze-deutschlands-bd-2-meeresorganismen.html Preis: 39,95 € Naturschutz und Biologische Vielfalt 70 (2) 2013 81 –176 Bundesamtfür Naturschutz Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere 4. Fassung, Stand Dezember 2007, einzelne Aktualisierungenbis 2012 EIKE RACHOR,REGINE BÖNSCH,KARIN BOOS, FRITZ GOSSELCK, MICHAEL GROTJAHN, CARMEN- PIA GÜNTHER, MANUELA GUSKY, LARS GUTOW, WILFRIED HEIBER, PETRA JANTSCHIK, HANS- JOACHIM KRIEG,ROLAND KRONE, PETRA NEHMER,KATHARINA REICHERT, HENNING REISS, ALEXANDER SCHRÖDER, JAN WITT und MICHAEL LOTHAR ZETTLER unter Mitarbeit von MAREIKE GÜTH Zusammenfassung Inden hier vorgelegten Listen für amMeeresbodenlebende wirbellose Tiere (Makrozoo- benthos) aus neun Tierstämmen wurden 1.244 Arten bewertet. Eszeigt sich, dass die Verhältnis- se in den deutschen Meeresgebietender Nord-und Ostsee (inkl.
    [Show full text]
  • R on Anew British Sea Anemone. by T
    [ 880 ~ r On aNew British Sea Anemone. By T. A~ Stephenson, D.Se., Department of Zoology, University Oollege, London With 1 Figure in the Text. IT is a curious fact that the majority of the British anemones had been discovered by 1860, and that half of them, as listed at that date, had been established during a burst of energy on the part of Gosse and his collectingfriends. Gosseadded 28 speciesto the BritishFauna himself. It is still more surprising that since Gosse ceased work, no authentic new ones have been added, other than more or less offshore forms, with'the ex- ception of Sagartia luci()3,'and this species appears to have been imported from abroad. There is, however, an anemone which occurs on the Break- water and Pier at Plymouth, which has not yet been described. Dr. Allen tells me it has been on the Breakwater as long as he can remember, and to him I am indebted for the details of its habitat given further on. Whether it occurs elsewhere than in the Plymouth district and has been seen but mistaken for the young of Metridiurn dianthus, is as yet unknown. The anemone in question, which is the subject of this paper, is a small creature, bright orange or fawn in colour, and presenting at first sight some resemblance to. young specimens of certain colour-varieties of Metridium. When the two forms are observed carefully, however, and irnder heaJ:thy conditions, it becomes evident that they are perfectly distinct from each other; and a study of their anatomy bears out this fact.
    [Show full text]
  • Stylohates: a Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae)1
    Pacific Science (1980), vol. 34, no. 4 © 1981 by The University Press of Hawaii. All rights reserved Stylohates: A Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae) 1 DAPHNE FAUTIN DUNN,2 DENNIS M. DEVANEY,3 and BARRY ROTH 4 ABSTRACT: Anatomy and cnidae distinguish two species of deep-sea ac­ tinians that produce coiled, chitinous shells inhabited by hermit crabs of the genus Parapagurus. The actinian type species, Stylobates aeneus, first assigned to the Mollusca, occurs around Hawaii and Guam with P. dofleini. Stylobates cancrisocia, originally described as Isadamsia cancrisocia, occurs off east Africa with P. trispinosus. MANY MEMBERS OF THE ORDER Actiniaria pedal disk secretes a chitinous cuticle over attach obligately or facultatively to gas­ the small mollusk shell which the pagurid tropod shells inhabited by hermit crabs. had initially occupied and to which the small Some of these partnerships seem to be actinian had first attached, often extending strictly phoretic, the normally sedentary sea the cuticular material beyond the lip of the anemone being transported by the motile shell (Balss 1924, Faurot 1910, Gosse 1858). hermit crab (Ross 1971, 1974b). The re­ This arrangement affords the crab mainly lationships between other species pairs are mechanical protection (Ross 1971). mutualistic, the anemone gaining motility Carlgren (I928a) described as a new genus while protecting its associate from predation and species Isadamsia cancrisocia (family (Balasch and Mengual 1974; Hand 1975; Actiniidae), an actinian attached to a shell McLean and Mariscal 1973; Ross 1971, occupied by a hermit crab, from four speci­ 1974b; Ross and von Boletsky 1979). As the mens collected by the Deutschen Tiefsee­ crustacean grows, it must move to increas­ Expedition (1898-1899) at 818 m in the ingly larger shells.
    [Show full text]
  • Diversity and Distribution of Sea-Anemones (Cnidaria : Actiniaria) in the Estuaries and Mangroves of Odisha, India
    ISSN 0375-1511 Rec. zool. Surv. India: 113(Part-3): 113-118,2013 DIVERSITY AND DISTRIBUTION OF SEA-ANEMONES (CNIDARIA : ACTINIARIA) IN THE ESTUARIES AND MANGROVES OF ODISHA, INDIA SANTANU MITRA* AND J.G. PATTANAYAK Zoological Survey of India 27, J. L. Nehru Road, Kolkata-700 016, West Bengal, India * [email protected] INTRODUCTION anemone Paracondylactis sinensis (Carlgren) was Actiniarians, popularly called as 'Sea­ collected by digging the sandy mud 20-25 cm around the specimens up to depth of about 70-120 Anemones', belongs to the phylum Cnidaria form cm depending on the size of the anemone. The an important group of intertidal invertebrate animals were detached from the substratum by distinguished by their habit, habitat and beautiful lifting the basal disc manually and narcotized colouration. This group was not elaborately with 1 % formalin for the period of 6-8 hours. The studied from India. However Annandale (1907 & narcotized anemones with fully expanded 1915), Carlgren (1925 & 1949), Parulekar (1968 & condition were preserved in 10% formalin for 1990), Seshyia and Cuttress (1971), Misra (1975 & further studies. 1976) and Bairagi (1998, 2001) worked on this SYSTEMATIC ACCOUNTS group and a total 40 species of sea anemones belongs to 33 genera and 17 families so far Phylum CNIDARIA Class ANTHOZOA recorded from India. During the recent faunal Subclass HEXACORALLIA survey (2010-2011) of Estuaries and Mangrove Order ACTINIARIA fringed coastal districts of Odisha, the authors Family EDW ARDSIIDAE encountered a quite good number of specimens of 1. Edwardsia jonesii Seshaiya & Cuttress, 1969 this group. After proper identification these 2. Edwardsia tinctrix Annandale, 1915 reveals 5 species belonging to 4 genera and 3 Family HALIACTIIDAE families.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Estudio De Las Toxinas De La Anémona De Mar Anthothoe Chilensis (Lesson
    ! !" ## $# %& '()* % $"+ ,"* ! "# $! %!$ &! ! ' ( !) $ * - . / 0 +' * , * * * 1 2 3 4)) 7 7 2 0 5 7 4 7 6 6 5 5 7 8 7 5 87 7 E 7 6-5 0 2 9 7 7 22 47 6-5 0 7 22 474 6-5 2 9 7 22 7 5 5 7 7 24 $: ;<,$ $$ ! !" 24 %& '()* 27 2$ ;! $ ="$ " !" 29 7 5 >5 7 7 32 ?77 5 680 7 32 ?747 5 6 5 7 32 ?7(7 >5 35 2"="$< !" 35 "$$! $ $ 37 "$$! $ @ !7 37 A 38 @$$< ="B 38 $"@" , =$"! %2 01 * 39 $$< $";#" 39 2"; $: #!B$ 39 2"; $: @@=A$ 39 2"; $: ="B$ 3E C $ "D !" 3E 5 #="; = % $$< @A$$*7 3E 7 5 7 42 "$$! & E$ $ $ C @ ! 42 $"@" , =$"! %2 01 * 44 $$< $";#" 45 2"; $: #!B$ 46 2"; $: @@=A$ 47 2"; $: ="B$ 48 C $ "D !" 49 5 #="; = % $$< @A$$*7 56 7 8 7 5E "$$! $ $ C @ !+ 5E $"@" , =$"! %2 0F * 62 $$< $";#" 62 $: #!B$ C @@=A$ 63 $: ="B$+ 64 5$ "D !" 64 E="; = " ; 66 7 7 6E 7 72 660 9 7 7 7 74 DEDICATORIA Mis padres Juan y Yojana, que son mis mejores guías Mis hermanos Sara, Juan y Yanet amigos incondicionales Mis abuelitas Mercedes Rosas por todo su cariño y consejos, y Luz Garcés A la memoria de mis abuelitos Melecio Quiroz y Jorge Garrido Por su ejemplo de perseverancia y optimismo… -'% (. */ 0 $1 ! " - 2 ! !" ## $# %& '()* % $"+ ,"* 3 -'% (. */ 0 $1 ! " - 0 5 0 5 Agradezco a Dios por la oportunidad de haber realizado y terminado satisfactoriamente este proyecto y por haber puesto en mi camino muchas personas extraordinarias que me han apoyado desinteresadamente. A mis padres Juan y Yojana, a mis hermanos Sara, Juan y Yanet, por su paciencia y comprensión en la espera de la culminación de este trabajo.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Anthopleura Radians, a New Species of Sea Anemone (Cnidaria: Actiniaria: Actiniidae)
    Research Article Biodiversity and Natural History (2017) Vol. 3, No. 1, 1-11 Anthopleura radians, a new species of sea anemone (Cnidaria: Actiniaria: Actiniidae) from northern Chile, with comments on other species of the genus from the South Pacific Ocean Anthopleura radians, una nueva especie de anémona de mar (Cnidaria: Actiniaria: Actiniidae) del norte de Chile, con comentarios sobre las otras especies del género del Océano Pacifico Sur Carlos Spano1,* & Vreni Häussermann2 1Genomics in Ecology, Evolution and Conservation Laboratory, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n Casilla 160-C, Concepción, Chile. 2Huinay Scientific Field Station, Chile, and Pontificia Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brazil 2950, Valparaíso, Chile. ([email protected]) *Correspondence author: [email protected] ZooBank: urn:lsid:zoobank.org:pub:7C7552D5-C940-4335-B9B5-2A7A56A888E9 Abstract A new species of sea anemone, Anthopleura radians n. sp., is described from the intertidal zone of northern Chile and the taxonomic status of the other Anthopleura species from the South Pacific are discussed. A. radians n. sp. is characterized by a yellow-whitish and brown checkerboard-like pattern on the oral disc, adhesive verrucae along the entire column and a series of marginal projections, each bearing a brightly-colored acrorhagus on the oral surface. This is the seventh species of Anthopleura described from the South Pacific Ocean; each one distinguished by a particular combination of differences related to their coloration pattern, presence of zooxanthellae, cnidae, and mode of reproduction. Some of these species have not been reported since their original description and thus require to be taxonomically validated.
    [Show full text]