The Diverse Lizards of Oz the Australia Has a Great Diversity of Lizards – As Many As 47 Different Species Have Editor Been Found Living in a Single Sand Dune

Total Page:16

File Type:pdf, Size:1020Kb

The Diverse Lizards of Oz the Australia Has a Great Diversity of Lizards – As Many As 47 Different Species Have Editor Been Found Living in a Single Sand Dune No.78 June 2003 Notes from The diverse lizards of Oz the Australia has a great diversity of lizards – as many as 47 different species have Editor been found living in a single sand dune. Conditions which mammals find so harsh are apparently not such a disadvantage for reptiles. Next to birds, lizards are among the most commonly encountered Next to Antarctica, Australia is the have reptiles exploited an environment vertebrate animals in the driest continent on earth – 75 percent largely uninhabitable for other animals. savannas. Indeed, the diversity of of it is arid or semi-arid. The climate is lizards in the tropical savannas is erratic, with long, irregular dry and wet The great diversity of reptile species particularly rich, exploiting cycles determined by the effects of El may be due to the long-term stability, numerous habitats from Nino and La Nina. Successful animals and great size, of the Australian woodlands to sandstone must cope with unreliable rainfall and continent. Those animals which cope escarpments, rainforests and prolonged periods of shortages, but well with harsh conditions have had semi-arid zones, many endemic to take advantage of unpredictable times plenty of time to evolve into different just small areas. This Tropical of plenty. In addition, Australia’s soils species exploiting different ecological Topics looks at some of the more are also nutrient-poor with low niches. This diversity may even be widespread and common species. productivity, and fires are frequent. fostered by shortages, favouring large numbers of specialist species which This issue also looks at Energy efficiency is thus the key to have adapted to localised conditions crocodiles. Although not lizards, long-term survival. Mammals and birds over fewer, more widely distributed they are lizard-like in many generate their own heat from food, species which might have evolved in a respects and are important using up to 90 percent of their energy more benign environment. reptiles of the savanna intake for this purpose. Reptiles, waterways. Visitors to tropical however, tap into the abundant solar Reptiles have fared much better than Australia must always be aware – energy to fuel their activities. They are mammals and birds following the and beware – of these fascinating also much more water efficient (see arrival of Europeans in Australia. but potentially dangerous p. 2). When times are lean, since they Over 12 percent of mammals have animals. do not need to eat to maintain body become extinct and over 17 percent heat, reptiles can reduce their have declined, compared with just I would like to thank Russell Best, metabolism and go into a state of one possible reptile extinction. Queensland Parks and Wildlife suspended animation for prolonged Medium-sized mammals weighing Service, and Tony Griffiths, Key periods. between 35g and 5.5kg have been Centre for Tropical Wildlife worst affected. During droughts, Management, Northern Territory The combination of poor soils and dry larger mammals and birds can often University, for their help with this climate is believed to have led to the move to wetter areas. Smaller issue. evolution of plants with tough, thick, mammals, however, have probably chemical-laden leaves and relatively always lived a boom/bust existence – Contents: few plant-eaters. Instead, the those lucky enough to retreat to vegetation is broken down by termites, wetter refuges eventually able to Page 1: The diverse lizards of Oz which thrive in Australia, providing an recolonise areas where less fortunate Page 2: What makes lizards tick? abundant food source for reptiles. Just animals died out. Nowadays, these House guests; Frills in the fire as mangroves don’t need salt but have refuges attract cattle which compete Page 3: Crocodiles developed strategies for living where for the same resources. In addition, Pages 4&5: Lizards in the no other plants can rabbits have severely reduced savanna compete, so too ground cover and foxes and feral cats Page 6: Questions & answers are serious predators. Changed fire Facts and stats; Tourist Talk regimes also make life difficult for Page 7: Out and about many mammals and birds. Reptiles Page 8: Bookshelf seem more resilient to the same pressures. What makes lizards tick? Lizards are efficient creatures. Instead of consuming food to Geckos, legless lizards and skinks will readily drop their tails generate energy, most use solar power, basking in sunshine or when threatened, the wriggling appendage serving as a sleeping in a warm spot to power up their ‘batteries’ for the distraction while the owner makes its getaway. Fracture planes day’s (or night’s) activities. Some lizards, such as dragons, are between certain vertebrae at the top of the tail allow it to able to raise their ribs and angle their bodies to increase the detach easily when pulled apart by special muscles. This body surface exposed and can become darker to absorb more sacrificial offering is easily regrown. Tails of dragons and heat. This strategy, known as active thermoregulating, is not goannas can also break off, but do not do so as readily and an option for some lizards which live in closed forests. tend not to regrow. Instead, they thermoregulate passively, or ‘thermoconform’, their body temperature simply conforming to that of the air All dragons, goannas and Australian geckos lay eggs but around them. some skinks give birth to live young. Viviparity, as this is known, is more common in cool-climate reptiles, perhaps Lizards are also efficient users of water. Their dry scaly skin because the warmer temperatures inside the mother’s body reduces moisture loss, those living in the hottest areas lead to better development of the young. tending to have compact bodies to minimise loss and/or restricting most activities to hours of darkness. In addition, Most lizards are silent, but geckos chatter and squawk, some reptiles do not use water to flush nitrogenous wastes from the species making the characteristic and sometimes startling body as urine, like mammals do, but convert them to a form ‘gecko’ call which has given them their name. Legless lizards which can be dumped as solid dung. may make a high-pitched squeak and some skinks produce a soft squeak. House guests Frills in the fire Geckos are among the Dubious Fires are common in savanna woodlands so how do they most familiar of dtella affect the frilled lizards which live there? Researchers found tropical animals, that, on the whole, fires benefited these lizards, mainly by living in our houses, removing ground cover and allowing them a better view of scuttling around our ceilings, swarming around our outside potential prey. However, different types of fires have different lights to pounce on dazzled insects and conducting their effects. Fires occurring early in the dry season are less intense affairs behind our picture frames. and do not seem to threaten the frilled lizards, which avoid them by staying in tree canopies. Late dry season fires, on the Several species of geckos qualify as ‘house’ geckos, having other hand, are much more dangerous killing up to 30 percent adopted humans as co-habiters. The dubious dtella (Gehyra of the lizards. Many of those studied chose to leave their dubia) is found widely in Queensland and northern New treetop retreats and seek shelter in termite mounds – a South Wales. Varying in colour from pale pinkish to brown successful strategy which saved their lives. Many, however, with darker markings, it can also be found in the wild on trees stayed in the trees which was much more hazardous. and in rock crevices. Nonetheless, areas burnt by late dry season fires seem to Another species, the house gecko (Hemidactylus frenatus) is provide more food for frilled lizards. Generally, abundance of an import from Asia which has hitched a lift with travelling invertebrates in the lizards’ stomachs decreases – termites by humans. It is now found at the tip of Cape York Peninsula, in more than 40 percent – but there is an increase in numbers of urban areas like Cairns and in the Northern Territory where it ants, which seem more active and abundant in burnt areas. is spreading from Darwin to settlements along the road south Importantly, however, the lack of vegetation cover means that towards Alice Springs. It seems to be dependent on human the lizards can find more, and larger, prey. habitation. This gecko can change colour, becoming pale at night and dark during the day. Although similar in appearance When compared, frilled lizards from areas unburnt for many to the dubious dtella it can be distinguished by its slightly years were not in as good condition as those from regularly spiny tail. It also has a distinctive loud scolding call; native burnt areas; areas unburnt for prolonged periods tended to house geckos make only a soft chattering call. have low populations of frilled lizards. On the whole, areas which are burnt regularly in the early dry season are most The nocturnal lifestyle of geckos prevents them from basking likely to benefit these lizards by in the sun as most lizards do to raise their body temperatures. increasing food supplies but not Instead, they choose daytime retreats which are warmed by threatening the animals’ lives. the sun, particularly in the afternoon, so that they are full of Although late season fires seem energy by sunset. to provide more food, they also Medical researchers are intrigued by Competition for kill off such a large proportion of how a gecko is able to grow a new tail suitable spots can the lizards that the population is without the fluid retention and swelling be fierce, leading unlikely to be sustainable if (lymphoedema) frequently associated to fights between such fires are too frequent.
Recommended publications
  • Resource Allocation to Reproduction in Animals
    Biol. Rev. (2014), 89, pp. 849–859. 849 doi: 10.1111/brv.12082 Resource allocation to reproduction in animals Sebastiaan A. L. M. Kooijman1,∗ and Konstadia Lika2 1Department of Theoretical Biology, VU University Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands 2Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece ABSTRACT The standard Dynamic Energy Budget (DEB) model assumes that a fraction κ of mobilised reserve is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). All DEB parameters have been estimated for 276 animal species from most large phyla and all chordate classes. The goodness of fit is generally excellent. We compared the estimated values of κ with those that would maximise reproduction in fully grown adults with abundant food. Only 13% of these species show a reproduction rate close to the maximum possible (assuming that κ can be controlled), another 4% have κ lower than the optimal value, and 83% have κ higher than the optimal value. Strong empirical support hence exists for the conclusion that reproduction is generally not maximised. We also compared the parameters of the wild chicken with those of races selected for meat and egg production and found that the latter indeed maximise reproduction in terms of κ, while surface-specific assimilation was not affected by selection. We suggest that small values of κ relate to the down-regulation of maximum body size, and large values to the down-regulation of reproduction. We briefly discuss the ecological context for these findings.
    [Show full text]
  • Ecology Assessment Report – 11SP237009 Report
    Ecology Assessment Report – 11SP237009 Report Release Notice This document is available through the Australia Pacific LNG (Australia Pacific LNG) Upstream Phase 1 Project controlled document system TeamBinder™. The responsibility for ensuring that printed copies remain valid rests with the user. Once printed, this is an uncontrolled document unless issued and stamped Controlled Copy. Third-party issue can be requested via the Australia Pacific LNG Upstream Phase 1 Project Document Control Group. Document Conventions The following terms in this document apply: • Will, shall or must indicate a mandatory course of action • Should indicates a recommended course of action • May or can indicate a possible course of action. Document Custodian The custodian of this document is the Australia Pacific LNG Upstream Phase 1 Project – Environmental Approvals Manager. The custodian is responsible for maintaining and controlling changes (additions and modifications) to this document and ensuring the stakeholders validate any changes made to this document. Deviations from Document Any deviation from this document must be approved by the Australia Pacific LNG Upstream Phase 1 Project – Environmental Approvals Manager. Doc Ref: Q-4300-15-RP-009 Revision: 0 Page 2 of 48 Approvals, Land and Stakeholder Team, Australia Pacific LNG Upstream Phase 1 Uncontrolled when printed unless issued and stamped Controlled Copy. Ecology Assessment Report – 11SP237009 Report Table of Contents 1. Introduction ..........................................................................................
    [Show full text]
  • Ecology and Behaviour of Burton's Legless Lizard (Lialis Burtonis, Pygopodidae) in Tropical Australia
    Asian Herpetological Research 2013, 4(1): 9–21 DOI: 10.3724/SP.J.1245.2013.00009 Ecology and Behaviour of Burton’s Legless Lizard (Lialis burtonis, Pygopodidae) in Tropical Australia Michael WALL1, 2 and Richard SHINE1* 1 School of Biological Sciences A08, University of Sydney, NSW 2006, Australia 2 Current address: 4940 Anza St. No. 4, San Francisco, CA 94121, USA Abstract The elongate, functionally limbless flap-footed lizards (family Pygopodidae) are found throughout Australia, ranging into southern New Guinea. Despite their diversity and abundance in most Australian ecosystems, pygopodids have attracted little scientific study. An intensive ecological study of one pygopodid, Burton’s legless lizard (Lialis burtonis Gray 1835), was conducted in Australia’s tropical Northern Territory. L. burtonis eats nothing but other lizards, primarily skinks, and appears to feed relatively infrequently (only 20.8% of stomachs contained prey). Ovulation and mating occur chiefly in the late dry-season (beginning around September), and most egg-laying takes place in the early to middle wet-season (November–January). Females can lay multiple clutches per year, some of which may be fertilised with stored sperm. Free-ranging L. burtonis are sedentary ambush foragers, with radio-tracked lizards moving on average < 5 m/day. Most foraging is done diurnally, but lizards may be active at any time of day or night. Radiotracked lizards were usually found in leaf-litter microhabitats, a preference that was also evident in habitat-choice experiments using field enclosures. Lizards typically buried themselves in 6–8 cm of litter; at this depth, they detect potential prey items while staying hidden from predators and prey and avoiding lethally high temperatures.
    [Show full text]
  • Hemidactylus Frenatus Across an Urban Gradient in Brisbane: Influence of Habitat and Potential for Impact on Native Gecko Species
    Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Author Newbery, Brock, Jones, Darryl Published 2007 Book Title Pest or Guest: The Zoology of Overabundance Copyright Statement © 2007 Royal Zoological Society of NSW. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the book link for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/18554 Link to published version http://www.rzsnsw.org.au/ Griffith Research Online https://research-repository.griffith.edu.au Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Brock Newbery1 and Darryl N. Jones1,2 1Suburban Wildlife Research Group, Australian School of Environmental Studies, Griffith University, Nathan, Qld. 4111, Australia. 2Corresponding author: Darryl Jones, [email protected] The Asian House Gecko Hemidactylus frenatus is an internationally significant invasive reptile which T has spread rapidly though the Pacific and elsewhere and has been implicated in the decline and extinction of a number of native gecko species. Although present in Darwin for some time, the C species has only recently become widespread in the Brisbane region. We investigated the density A and distribution of this and two native house-dwelling geckos in urban, suburban and bushland R environments within Brisbane. The spatially clumped insect resources associated with external light T sources were effectively utilised by both urban and suburban populations of Asian House Geckos, S suggesting likely competitive interactions between the species on structures where the species co-existed.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Mitochondrial Genomes of Two Polydora
    www.nature.com/scientificreports OPEN Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved Lingtong Ye1*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2 Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identifed an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identifed sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures. Abbreviations NCR Non-coding region PCG Protein-coding gene Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Fowlers Gap Biodiversity Checklist Reptiles
    Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life.
    [Show full text]
  • Action Statement Floraflora and and Fauna Fauna Guarantee Guarantee Act Act 1988 1988 No
    Action Statement FloraFlora and and Fauna Fauna Guarantee Guarantee Act Act 1988 1988 No. No. ### 108 Hooded Scaly-foot Pygopus nigriceps Description and Distribution The Hooded Scaly-foot Pygopus nigriceps belongs to the reptile family Pygopodidae, the legless or flap-footed lizards. Legless lizards are superficially snake-like; they lack forelimbs, and the hind limbs are reduced to a scaly flap just above the vent. Whilst their eyes are lidless and snake-like, there are several features that distinguish legless lizards from snakes. Most legless lizards have an obvious ear aperture, lacking in all snakes, and a broad fleshy tongue, compared to the deeply forked tongue of snakes. Most legless lizards also have a tail that, when unbroken, is considerably longer than their body. In contrast, the tail of snakes is considerably Hooded Scaly-foot, Pygopus nigriceps shorter than their body. The genus Pygopus Illustration by Peter Robertson Wildlife Profiles P/L © differs from other legless lizards on the basis of the combination of the following features: head covered with enlarged, symmetrical scales; smooth (compared to keeled) ventral scales; and the possession of eight or more preanal pores. Two species of Pygopus occur in Victoria. The Hooded Scaly-foot is a large legless lizard, attaining a total length of 475mm, and a snout- vent length of about 180mm. Females reach larger sizes than males. Variable in colour, the Hooded Scaly-foot may be pale grey to reddish-brown on the dorsal surface and whitish on the ventral surface. The dorsal scales may be dark-edged, forming a reticulated pattern, or individual pale and dark scales may form a vague longitudinal pattern.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Pirra Jungku Project Species Guide
    The Pirra Jungku Project is a collaboration between the Karajarri Rangers, Environs Kimberley Pirra Jungku Project and the Threatened Species Recovery Hub with funding from the Australian Government’s National Environmental Science Program and the species guide Western Australian Government’s NRM Program. Reptiles * Asterix means the animal can be tricky to ID. Take a good photo, or bring it back to camp for checking, but do this as a last resort. Don’t bring back any snakes, in case they are poisonous. Dragons Upright posture (stick their heads up), have small, rough scales, each leg has 5 clawed fingers/toes. MATT FROM MELBOURNE, AUSTRALIA CC BY 2.0 WIKIMEDIA COMMONS JESSSARAH MILLER LEGGE Slater’s ring-tailed dragon Central military dragon (Ctenophorus slaterii) (Ctenophorus isolepis) Rocky country. Reddish colour with black Sandy country. Very fast on ground. spots on back and dark rings on the tail. Reddish colour with white spots and stripes. JESSCHRISTOPHER MILLER WATSON CC BY SA 3.0 WIKIMEDIA COMMONS ARTHUR CHAPMAN NICOLAS RAKOTOPARE Pindan dragon Horner’s dragon Northern Pilbara tree dragon (Diporiphora pindan) (Lophognathus horneri) (Diporiphora vescus) Thin, slender body. Two long white stripes Ta-ta lizard. White stripe from lip to back legs. Lives in spinifex. Plain colour, sometimes down back that cross over black and orange Tiny white spot in ear. with orange tail, and long white and grey tiger stripes.* stripes down body.* CHRISTOPHERSARAH LEGGE WATSON CC BY SA 3.0 WIKIMEDIA COMMONS Dwarf bearded dragon (Pogona minor) Grey with flat body with spiny edges. Has small spines on either side of the jaw and on the back of the head.
    [Show full text]