Electronic Structure and Bonding in Pyrrolic Macrocycle-Supported Complexes of Actinides
Total Page:16
File Type:pdf, Size:1020Kb
Electronic Structure and Bonding in Pyrrolic Macrocycle-Supported Complexes of Actinides A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering. 2018 Kieran Thomas Patrick O’Brien School of Chemistry Contents Contents Section Page number List of tables 5 List of figures 9 Abstract 15 Declaration 16 Copyright Statement 17 Publications 18 Abbreviations 19 Acknowledgements 23 Part I. Introduction Chapter 1. Theoretical background and methodology 26 1. Aims and objectives 26 2. Quantum chemistry 27 3. Density functional theory 33 4. Mulliken and Hirshfeld population analysis 37 5. Natural bond orbital analysis 39 6. The quantum theory of atoms in molecules 41 7. Energy decomposition analysis 46 8. Nucleus-independent chemical shifts 46 9. References 48 Chapter 2. Organometallic chemistry of the f-elements 52 1. Background and chemistry of organoactinides 52 2. Computational organometallic chemistry of the f- 56 elements 2.1. DFT and orbital-based partition methods 57 1 Contents 2.2. QTAIM analysis of organometallics of the f-block 62 elements 2.3. Non-partition-based methods – EDA and NICS 63 analysis 3. Recent developments in carbocyclic organoactinide 65 chemistry 3.1. The trans-calix[2]benzene[2]pyrrolide ligand 66 4. References 69 Chapter 3. Methodology 77 1. Model complexes 77 2. Computational methodology 80 3. References 82 Part II. Results and Discussion Chapter 4. Geometry optimisations and electronic 85 structures 1. Geometry optimisations of Th(IV) complexes 86 2. Geometry optimisations of U(III) complexes 91 3. Geometry optimisations of Th(III) complexes 98 4. Partial charge analyses of Th(IV), U(III) and Th(III) 101 complexes 5. QTAIM analysis 107 6. NBO analysis 116 6.1. Transition metal complexes 125 7. Mulliken population analysis of the An-X interaction 138 8. Nucleus-independent chemical shift analysis 143 9. Mulliken population analysis of the An-arene 149 interaction 10. Conclusions and future work 153 11. References 157 2 Contents Chapter 5. The strength of the An-X interactions 159 1. Introduction 159 2. Methodologies 159 3. Results 162 4. Heterolytic reactions 165 5. Homolytic reactions 170 6. Functional dependence of QTAIM vs bond energies 177 7. QTAIM metrics vs EDA data for [LAnX]n+ complexes 180 7.1. QTAIM metrics vs EDA data for [LAnX’]n+ complexes 184 7.2. QTAIM metrics vs EDA data for [LAnX*]n+ complexes 188 7.3. QTAIM metrics vs EDA data for [LAnX’’]n+ complexes 190 7.4. QTAIM metrics vs EDA data for [LAnX**]n+ 194 complexes 7.5. QTAIM metrics vs EDA data for [LAnX†]n+ complexes 195 8. Conclusions and future work 199 9. References 201 Chapter 6. Bimetallic L2-/4- alkyl and alkynyl complexes 202 1. Introduction 202 2. Computational details 204 3. Results – Complexes 1 and 2 204 4. Complexes 3, 4 and 5 208 5. Complexes 6 and 7 212 5.1 Dipoles of Th6 and Th7 215 5.2 Molecular orbitals of Th6 and Th7 217 5.3 Comparisons with M(IV) and other An(IV) centres 227 for 6 5.4 Comparisons with other An(IV) centres for 7 237 6. Conclusions and future work 245 7. References 248 3 Contents Chapter 7. Overall conclusions and future work 249 1. Geometry optimisations and electronic structures 249 2. The strength of the An-X interactions 250 3. Bimetallic L2-/4- alkyl and alkynyl complexes 251 4. Concluding remarks 252 5. References 254 Appendix 255 1. PBE0 Cartesian coordinates (Å) and SCF energies 256 (Hartrees) of all complexes studied in chapter 4. 2. PBE0 Cartesian coordinates (Å) and SCF energies 264 (Hartrees) of all complexes studied in chapter 5. 3. PBE0 (unless stated otherwise) Cartesian coordinates 278 (Å) and SCF energies (Hartrees) of all complexes studied in chapter 6. 4 List of tables List of tables Chapter 4 Page number Table 4.1. Key bond lengths of thorium and uranium 88 complexes with experimental data. 4.2 Key bond angles of thorium and uranium 88 complexes with experimental data 4.3 MAD analysis for PBE and PBE0 for N(av) 96 4.4 MAD analysis for PBE and PBE0 for An-Ar1 96 4.5 MAD analysis for PBE and PBE0 for An-Ar2 97 4.6 MAD analysis for PBE and PBE0 for An-X 97 4.7 MAD analysis for PBE and PBE0 for Ar-An-Ar 97 4.8 MAD analysis for PBE and PBE0 for N-An-N 98 4.9 MAD analysis for PBE and PBE0 for interplanar 98 angles 4.10 Key bond lengths and angles for Th(III) complexes 99 4.11 Differences of bond lengths for LUIIIX and [LThIVX]+ 100 4.12 Partial charges for Th(IV) complexes 102 4.13 Partial charges for U(III) complexes 102 4.14 Partial charges for Th(III) complexes 102 4.15 QTAIM metrics for [LAnX]n+ 107 4.16 R2 values from trends in figures 4.21 to 4.23. 112 4.17 QTAIM metrics for [LAnNH2]n+ 113 4.18 R2 values from trends in figures 4.24 to 4.26. 115 4.19 NBO data for Th(IV) and Th(III) 117 4.20 R2 values for figure 4.26. 119 4.21 R2 values for figure 4.27. 120 4.22 R2 values for figures 4.28 to 4.30. 122 4.23 R2 values for figures 4.31 to 4.33 125 4.24 M-X bond lengths for Hf(IV) and W(III) 127 5 List of tables 4.25 QTAIM metrics for [LMX]n+ 129 4.26 NBO data for Hf(IV) and W(III) 133 4.27 Mulliken KS-MO data for [LAnX]n+ An centre 138 4.28 Mulliken KS-MO data for [LAnX]n+ X ligand 139 4.29 R2 values for figures 4.49 to 4.51 142 4.30 NICS data for [LThX]+ 145 4.31 Mulliken KS-MO data for [LAnX]n+ An-arene 150 4.32 HOMO energies for [LAnX]n+ 153 Chapter 5 Page number Table 5.1 Key bond lengths for [LAnX]n+ 161 5.2 Key bond angles for [LAnX]n+ 161 5.3 SCF energies ZPE and thermal corrections for the 162 [LThIVX]+ 5.4 SCF energies ZPE and thermal corrections for the 162 LThIIIX 5.5 SCF energies ZPE and thermal corrections for the 163 LUIIIX 5.6 Energies of molecular ionic fragments with ZPE 163 and thermal corrections 5.7 Energies of molecular radical fragments with ZPE 164 and thermal corrections 5.8 Heterolytic bond enthalpies and Gibbs free 165 energies for [LThIVX]+ 5.9 Heterolytic bond enthalpies and Gibbs free 165 energies for LThIIIX 5.10 Heterolytic bond enthalpies and Gibbs free energies 166 for LUIIIX 5.11 Homolytic bond enthalpies and Gibbs free energies for 171 IV + [LTh X] 5.12 Homolytic bond enthalpies and Gibbs free 171 energies for LThIIIX 6 List of tables 5.13 Homolytic bond enthalpies and Gibbs free 172 energies for LUIIIX 5.14 QTAIM charge and interaction energies for Th(IV) 176 and Th(III) 5.15 PBE ΔE values for [LAnX]n+ 178 5.16 QTAIM PBE metrics 178 5.17 Th(IV)-X EDA energies 180 5.18 Th(III)-X EDA energies 180 5.19 U-X EDA energies 181 5.20 An-X EDA energies for [LAnX’]n+ 185 5.21 QTAIM metrics for [LAnX’]n+ 185 5.22 R2 values for EDA vs QTAIM for [LAnX’]n+ 186 5.23 R2 values for EDA vs QTAIM for [LThX]+ and 187 [LThX’]+ 5.24 R2 values for EDA vs QTAIM for LThX and LThX’ 187 5.25 R2 values for EDA vs QTAIM for LUX and LUX’ 187 5.26 An-X EDA energies for [LAnX*]n+ 198 5.27 QTAIM metrics for [LAnX*]n+ 198 5.28 R2 values for EDA vs QTAIM for [LAnX*]n+ 199 5.29 R2 values for EDA vs QTAIM for all [LAnX’]n+ and 190 [LAnX*]n+ 5.30 R2 values for EDA vs QTAIM for all [LThX’]n+ and 192 [LThX*]n+ 5.31 An-X EDA energies for [LAnX’’]n+ 193 5.32 QTAIM metrics for [LAnX’’]n+ 193 5.33 R2 values for EDA vs QTAIM for [LAnX’’]n+ 194 5.34 An-X EDA energies for [LAnX**]n+ 194 5.35 QTAIM metrics for [LAnX**]n+ 195 5.36 R2 values for EDA vs QTAIM for [LAnX**]n+ 195 5.37 An-X EDA energies for [LAnX†]n+ 196 5.38 QTAIM metrics for [LAnX†]n+ 196 5.39 R2 values for EDA vs QTAIM for [LAnX†]n+ 197 7 List of tables Chapter 6 Page number Table 6.1 M-N separation distances for complex 1 207 6.2 Li-N separation distances for different functionals 208 6.3 Energies of reaction for 1/2 to 3/4/5 209 6.4 Energies of reaction for 1 to 3/4/5 for different 211 methods 6.5 Bond lengths of Th6 for PBE0 and experimental data 213 6.6 SCF, enthalpy and Gibbs free energies of Th6 and Th7 214 6.7 SCF, enthalpy and Gibbs free energies of Th6’ and 214 Th7’ 6.8 ΔE, ΔH and ΔG values between a and b of 6 and 7 215 6.9 Dipole moments of Th6 and Th7 216 6.10 SCF energies in PCM model 216 6.11 Energy differences of a and b forms in PCM model 217 6.12 Selected MO energies for Th6 and Th7 218 6.13 Metal contributions to selected MOs (%, Mulliken 219 analysis) for Th6 and Th7 6.14 Selected MO energies for Th6’ and Th7’ 224 6.15 Metal contributions to selected MOs (%, Mulliken 224 analysis) for Th6’ and Th7’ 6.16 PBE energies for An6 complexes (An = Th-Am) 228 6.17 MO energies for An6 230 6.18 SOMO energies for open-shell An6 234 6.19 Total energy differences between An6a and An6b 235 for various combinations of MOs and SOMOs 6.20 PBE energies for An7 complexes (An = Th-Am) 238 6.21 MO energies for An7 239 6.22 SOMO energies for open-shell An7 242 6.23 Total energy differences between An7a and An7b 243 for various combinations of MOs and SOMOs 8 List of figures List of figures Chapter 1 Page number Figure 1.1 Schematic representation of model chemistries 36 according to Pople 1.2 Classification of all types of QTAIM critical points 43 possible in 3D space Chapter 2 Page number Figure 2.1 Representations of 5f and 6d-bonding interactions 54 in actinocenes 2.2 Representations of 5f and 6d-bonding interactions 55 in bis-arene and bis-C5H5 2.3 Chemical structure of [N’’2U]2(C6H6) 60 2.4 Chemical structure of TODGA 60 2.5 Neutral form of trans-calix[2]benzene[2]pyrrolide 66 2.6 Different bonding motifs of L2- and L4- with 67 various metal centres Chapter 3 Page number Figure 3.1 The simplified X ligands 77 3.2 [LAnX]n+ complex with labelled arene and pyrrole 78 rings 3.3 Schematic of M[LAnR] and LAnR’2 79 3.4 Schematic of the [LTh(CCSiMe3)2][NiPR3] 80