Development of Genetic Probes for Rapid Assessment of the Impacts of Marine Invasive Species on Native Biodiversity – Maoricolpus Roseus

Total Page:16

File Type:pdf, Size:1020Kb

Development of Genetic Probes for Rapid Assessment of the Impacts of Marine Invasive Species on Native Biodiversity – Maoricolpus Roseus Gazameda gunnii Development of genetic probes for rapid assessment of the impacts of marine invasive species on native biodiversity – Maoricolpus roseus Jawahar Patil, Rasanthi Gunasekera, Felicity McEnnulty and Nicholas Bax Final Report for the Department of Environment and Heritage by CSIRO Marine Research November 2004 NHT Genetic Probe Development for Maoricolpus roseus i ” Commonwealth of Australia 2004 ISBN 1 876996 85 4 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to the publisher. Publisher: Australian Government Department of the Environment and Heritage John Gorton Building King Edward Terrace Parkes ACT 2600 Australia This publication is also available as a PDF document on the Department of the Environment and Heritage website at: http://www.deh.gov.au/coasts/publications/index.html#pests Authorship: This report is an independent review prepared for the Department of the Environment and Heritage by CSIRO Marine Research. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Commonwealth Government or the Minister for the Environment and Heritage. The Commonwealth does not accept responsibility for the accuracy or completeness of the contents of this publication, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Development of genetic probes for rapid assessment of the impacts of marine invasive species on native biodiversity-Maoricolpus roseus. Bibliography. Includes index. ISBN 1 876996 85 4. 1. Maoricolpus roseus - Australia. 2. Aquatic pests - Control - Australia. 3. Pest introduction - Australia. I. Patil, Jawahar G., 1965- . II. Australia. Dept. of Environment and Heritage. III. CSIRO. Marine Research. 594.30994 NHT Genetic Probe Development for Maoricolpus roseus EXECUTIVE SUMMARY The New Zealand Screw shell Maoricolpus roseus unintentionally introduced to south- eastern Tasmania in the 1920s, has now spread out to the 80 metre depth contour off the eastern Victorian and New South Wales coasts and is found as far north as Botany Bay (Bax et al., 2003). This species has colonized more habitat than any other high- impact benthic marine pest in Australia and the risk of its further spread and establishment is very likely owing to its wide temperature and depth tolerance. This project was initiated to develop genetic probes for the rapid detection and assessment of this species as a prelude to determining its impacts on the native flora and fauna as well as to fill our knowledge gaps in its phenology and life history strategies. In particular it is important to know whether this species has a planktonic life history stage that could lead to its dispersal in ships’ ballast water. Obtaining suitable samples of the M. roseus and its closely related species from Australia and its native range in New Zealand, although trivial, were time consuming and samples were often not forthcoming. Specifically, difficulties were encountered in obtaining samples of the native screw shell Gazameda gunnii, which took special attempts involving dedicated divers and a scientific cruise. Maoricolpus roseus samples were obtained from 6 and 2 locations in Australia and New Zealand respectively with the majority of the shells collected being empty. Three sets of gene probes were developed, each of which targeted a unique region in the mitochondrial COI locus. All the three sets of probes were tested against as many closely related species as could be obtained and the reaction conditions optimized for maximum sensitivity and specificity. Further sequence comparison of COI locus of M. roseus and members of Cerithioidea, including the native Australian turritellids, Gazameda iredalei, G. gunnii and Turitella terebra suggest significant differences which should permit the design of specific probes for M. roseus and perhaps for the others such as the G. gunnii. In light of limited sequence variation within and between M. roseus roseus and M. roseus manukauensis, we attempted to amplify the entire mitochondrial genome of M. roseus. In all 13224bp of the expected ~15000 bp of the mtDNA was sequenced and characterized. It is hoped that this information will assist in fine scale genetic discrimination between populations of M. roseus as well as in identifying source population of introduction into Australian waters. A nested polymerase chain reaction (PCR) was used to analyse environmental plankton samples collected in the Derwent Estuary between August 2003 and June 2004. The results suggest that the species does have a planktonic larval existence prior to settlement. Results also support earlier beliefs that the species is predominantly a spring-summer spawner, although M. roseus was detected in plankton samples on two occasions in winter months. The presence of M. roseus in the plankton and water available for ships’ ballast suggests that the risk of this species being spread by shipping may need to be iii managed within the National System for Prevention and Management of Marine Pest Incursions. NHT Genetic Probe Development for Maoricolpus roseus CONTENTS Executive Summary ...............................................................................................................iii 1 Introduction .................................................................................................................... 1 1.1 Background ............................................................................................................... 1 1.2 Objectives ................................................................................................................. 1 2. Methods ......................................................................................................................... 3 2.1 Sample collection ....................................................................................................... 3 2.2 DNA extraction and sequencing ..................................................................................... 3 2.3 “ Maoricolpus roseus –specific” primer design ................................................................... 4 2.4 Detection of larval Maoricolpus roseus ........................................................................... 4 2.5 Detection of Maoricolpus roseus in plankton samples ....................................................... 5 2.6 Amplification and sequencing of partial mitochondrial genome ........................................... 5 3. Results .......................................................................................................................... 7 3.1 Sample collection ....................................................................................................... 7 3.2 DNA Extraction and PCR amplification. ........................................................................ 9 3.3 Sequence Analysis .................................................................................................... 11 3.4 Specificity of the PCR assay ...................................................................................... 16 3.5 Detection of larval Maoricolpus roseus ......................................................................... 18 3.6 Detection of Maoricolpus roseus in environmental samples .............................................. 19 3.7 Sequence of partial mitochondrial genome ..................................................................... 20 4. Discussion .................................................................................................................... 22 4.1 Significance of Maoricolpus roseus in Australia ................................................................ 22 4.2 Probe development, specificity and sensitivity ............................................................... 23 4.2 Mapping the mitochondrial genome ............................................................................. 25 4.3 Testing for a planktonic life history ............................................................................. 26 5. Conclusion ................................................................................................................... 26 6. References .................................................................................................................... 28 Appendix A - Acknowledgements ............................................................................................ 31 Appendix B – Detailed consultancy workplan ............................................................................ 32 Appendix C – Researchers contacted for samples ........................................................................ 33 Appendix D – Turritellid species overlapping Maoricolpus roseus in Australian waters (Wilson 1993) ...................................................................................................................................... 36 35 v Introduction 1 1 INTRODUCTION 1.1 Background The economic cost of aquatic exotic species is significant (Pimental et al., 2000). The extent of the introduced marine species problem in Australia became apparent with the outbreaks of highly visible introduced species
Recommended publications
  • Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
    Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron
    [Show full text]
  • Malacologist57corr.Pdf
    Number 57 (August 2011) The Malacologist Page 1 NUMBER 57 AUGUST 2011 Annual Award Winner Alexandra Zieritz describes her work . Variability, function and phylogenetic significance of unionoid shell characters Freshwater mussels of the order Unionoida show a wide parasitic levels of both modern and ancient unionoid populations. variability in shell features (Fig. 1), but our understanding Continued on page 3 of which factors determine which trends in shell morphol- ogy is poor. The aim of my PhD thesis was to improve our knowledge on the phylogenetic significance and functional morphologies of unionoid shell characters; or in other words, to answer the question “Why does a mussel look the way it does?”. A good understanding of morphological differences between and within species is not only needed to resolve unanswered questions on unionoid evolution but can also be helpful for other fields of research, including palaeontology, ecology and conservation of these highly threatened animals. Intraspecific patterns in shell morphologies and their use for palaeontological reconstructions If we knew which environmental conditions or other fac- tors a given shell morphotype is associated with, we could reconstruct a mussel’s (former) habitat and/or biological characteristics by merely looking at its shell. Taxa produc- ing hard parts that persist in sedimentary deposits can addi- tionally be used to recover information about ancient popu- lations and environments. Unfortunately, our incomplete understanding of which factors cause which patterns in morphology has so far limited the use of unionoids in such reconstructions of both the present and the past. This is where I come in: Applying a novel morphometric tech- nique (Fourier shape analysis), I detected the first consis- tent habitat-associated trend in shell shape (Zieritz & Aldridge, 2009).
    [Show full text]
  • Download Full Article 1.6MB .Pdf File
    Memoirs of the National Museum of Victoria https://doi.org/10.24199/j.mmv.1962.25.10 ADDITIONS TO MARINE MOLLUSCA 177 1 May 1962 ADDITIONS TO THE MARINE MOLLUSCAN FAUNA OF SOUTH EASTERN AUSTRALIA INCLUDING DESCRIPTIONS OF NEW GENUS PILLARGINELLA, SIX NEW SPECIES AND TWO SUBSPECIES. Charles J. Gabriel, Honorary Associate in Gonchology, National Museum of Victoria. Introduction. It has always been my conviction that the spasmodic and haphazard collecting so far undertaken has not exhausted the molluscan species to be found in the deeper waters of South- eastern Australia. Only two large single collections have been made; first by the vessel " Challenger " in 1874 at Station 162 off East Moncoeur Island in 38 fathoms. These collections were described in the " Challenger " reports by Rev. Boog. Watson (Gastropoda) and E. A. Smith (Pelecypoda). In the latter was included a description of a shell Thracia watsoni not since taken in Victoria though dredged by Mr. David Howlett off St. Francis Island, South Australia. In 1910 the F. I. S. " Endeavour " made a number of hauls both north and south of Gabo Island and off Cape Everard. The u results of this collecting can be found in the Endeavour " reports. T. Iredale, 1924, published the results of shore and dredging collections made by Roy Bell. Since this time continued haphazard collecting has been carried out mostly as a hobby by trawler fishermen either for their own interest or on behalf of interested friends. Although some of this material has reached the hands of competent workers, over the years the recording of new species has probably been delayed.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Soft-Bottom Benthic Communities Otago Harbour and Blueskin Bay
    ISSN 0083-7903, 80 (Print) ISSN 2538-1016; 80 (Online) ISS 0083-7903 Soft-bottom Benthic Communities m• Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER New Zealand Oceanographic Institute Memoir 80 1981 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Soft-bottom Benthic Communities Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER Portobello Marine Laboratory, Portobello, New Zealand New Zealand Oceanographic Institute Memoir 80 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ ISSN 0083-7903 Received for publication: July 1974 <O Crown Copyright 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page LIST OF FIGURES 4 LIST OFTABLES 4 ABSTRACT 5 INTRODUCTION 6 SAMPLINGAND LABORA TORY METHODS 6 THEBENTinC ENVIRONMENT 7 General description and sample locations 7 Water temperature and salinity 8 Tides and currents 13 Sediments 14 Pollution 14 THEBENTiilC CoMMUNITIES. 14 Harbour mud corr.munity 14 Harbour fine sand community 15 Harbour stable shell-sand community 15 Harbour unstable sand community 16 Shallow off-shore fine sand community 20 DISCUSSION 21 The classification of benthic communities in a shallow-water deposit environment 21 The effect of shell and macroscopic algae on species composition 22 Patternsof diversity 24 Comparison with other shallow-water soft-bottom communities 28 ACKNOWLEDGMENTS 31 REFERENCES 31 APPENDICES 33 1.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIOXS. 227 AEEANGEMENT FAMILIES OF MOLLUSKS. PREPARED FOR THE SMITHSONIAN INSTITUTION BY THEODORE GILL, M. D., Ph.D. WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION, FEBRUARY, 1871. ^^1 I ADVERTISEMENT. The following list has been prepared by Dr. Theodore Gill, at the request of the Smithsonian Institution, for the purpose of facilitating the arrangement and classification of the Mollusks and Shells of the National Museum ; and as frequent applica- tions for such a list have been received by the Institution, it has been thought advisable to publish it for more extended use. JOSEPH HENRY, Secretary S. I. Smithsonian Institution, Washington, January, 1871 ACCEPTED FOR PUBLICATION, FEBRUARY 28, 1870. (iii ) CONTENTS. VI PAGE Order 17. Monomyaria . 21 " 18. Rudista , 22 Sub-Branch Molluscoidea . 23 Class Tunicata , 23 Order 19. Saccobranchia . 23 " 20. Dactjlobranchia , 24 " 21. Taeniobranchia , 24 " 22. Larvalia , 24 Class Braehiopoda . 25 Order 23. Arthropomata , 25 " . 24. Lyopomata , 26 Class Polyzoa .... 27 Order 25. Phylactolsemata . 27 " 26. Gymnolseraata . 27 " 27. Rhabdopleurse 30 III. List op Authors referred to 31 IV. Index 45 OTRODUCTIO^. OBJECTS. The want of a complete and consistent list of the principal subdivisions of the mollusks having been experienced for some time, and such a list being at length imperatively needed for the arrangement of the collections of the Smithsonian Institution, the present arrangement has been compiled for that purpose. It must be considered simply as a provisional list, embracing the results of the most recent and approved researches into the systematic relations and anatomy of those animals, but from which innova- tions and peculiar views, affecting materially the classification, have been excluded.
    [Show full text]
  • Effects of Commer Effects of Commercial Otter Cial Otter Cial
    American Fisheries Society Symposium 41:439–460, 2005 © 2005 by the American Fisheries Society Effects of Commercial Otter Trawling on Benthic Communities in the Southeastern Bering Sea ELOISE J. BROWN,1 BRUCE FINNEY, AND SUE HILLS Institute of Marine Science, University of Alaska Fairbanks, 245 O’Neill Building, Post Office Box 757220, Fairbanks, Alaska 99775, USA MICHAELA DOMMISSE Monash University, Department of Geography and Environmental Science, Post Office Box 11A, Clayton 3168, Australia Abstract. The effects of commercial bottom trawling for yellowfin sole Limanda aspera on benthic communities were investigated in a sandy habitat exposed to high wave and tidal disturbance at 20–30 m depth in the southeastern Bering Sea. We compared an area that has been closed to commercial trawling for 10 years with an adjacent area that is now open to commercial trawling. In addition, we examined the immediate effects of experimental trawling on benthic community structure in the area closed to trawling. The fished area was characterized by reduced macrofauna density, biomass, and richness relative to the closed (unfished) area, but diversity was not different. Interannual variability of macrofauna assemblages was high in the system, yet assemblages in the two areas were distinguished using multivariate analyses and dominant taxa. After 10 years, sessile taxa (e.g., Maldanidae polychaetes) were prevalent in the closed area, and mobile scavengers (e.g., Lysianassidae amphipods) were more common in the fished area. Immediate responses of macrofauna to experimental trawling were subtle (i.e., reduced richness, absence of rare taxa, and patchy changes in assemblage biomass), but no differences were detected relative to controls for density, diversity, or total biomass.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • 2020+Anderson+&+Allmon+P3.Pdf
    Palaeogeography, Palaeoclimatology, Palaeoecology 544 (2020) 109623 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo High calcification rates and inferred metabolic trade-offs in the largest turritellid gastropod, Turritella abrupta (Neogene) T ⁎ Brendan M. Andersona,b, , Warren D. Allmona a Paleontological Research Institution, 1259 Trumansburg Rd, Ithaca, NY 14850, USA b West Virginia University, Department of Geology & Geography, 98 Beechurst Ave Brooks Hall, Morgantown, WV 26505-4912, USA ARTICLE INFO ABSTRACT Editor: Isabel Montanez Turritella abrupta (Miocene-Pliocene) is the largest species known from the diverse Jurassic-Recent gastropod Keywords: family Turritellidae. In addition to having achieved long length and substantial width, the species produces Biomineralization shells of exceptional thickness, even before secondary shell deposition. We investigated the paleoecology of this Extinction species through analysis of drilling and peeling frequencies with comparisons to co-occurring turritellid species. Isotopic sclerochronology We used oxygen isotopic sclerochronology to infer the growth rate and lifespan of T. abrupta and to make Life history comparisons with other modern and fossil tropical species, including the living species Turritella terebra, with the Predation first sclerochronologies for both of these species presented herein. We find that T. abrupta was fast-growing, long-lived, and comparatively effective at resisting predation. T. abrupta was notably widespread geographically and temporally, but was a relatively rare component of faunas when compared with co-occurring turritellids. High rates of shell carbonate construction (in excess of 35 g in the first year of life) likely depended on habitats conducive to calcification. Late Miocene cooling and eastern Pacific carbonate limitation are implicated in the range contraction and eventual extinction of this species.
    [Show full text]
  • Review and Assessment of the Literature on Marine Benthic Molluscs (Amphineura, Bivalvia, Gastropoda) in Newfoundland and Labrador Waters
    NAFO Sci. Coun. Studies, 10 93-108 Review and Assessment of the Literature on Marine Benthic Molluscs (Amphineura, Bivalvia, Gastropoda) in Newfoundland and Labrador Waters Kent D. Gilkinson Fudge, Lane and Associates Ltd., 607 Torbay Road P. O. Box 9370, Stn B, St. John's, Newfoundland, Canada A1A 2Y3 Abstract A review of the existing literature on marine benthic molluscs (Amphineura, Bivalvia, Gastropoda) in the Newfoundland-Labrador region indicated that at least 158 species, representing 69 fami lies, have been referenced in reports of scientific investigations. Less than one-third of these reports have appeared in the primary literature, while the remainder exist as manuscript reports and university theses. Several species (e.g. Mytilus edulis and Placopecten magellanicus) have been studied intensively, but most species have received only very cursory attention. Specific inventories of molluscs are rare. Most zoo benthic surveys which include molluscs fall into one of three categories: fisheries-related investigations, resource assessment studies, and environmental impact studies. Additionally, the literature contain numerous academic (university) studies. Analysis of the geographic distribution of research effort indicated that most of the work was concentrated in southeastern Newfoundland (Avalon Peninsula) in proximity to the major institutions at SI. John's, Newfoundland. Introduction and future fisheries but also in terms of the trophic roles of the various organisms in the ecosystems. In a Since the mid-1970's, there have been several liter­ biogeographical sense, the distributional aspects con­ ature reviews which pertain to the coastal resources of tribute to further understanding of the ecotone posi­ Newfoundland and Labrador as a result of offshore oil tion which the Newfoundland-Labrador region explorations (MacLaren, MS 1977; South et al., MS occupies between boreal and subarctic environments.
    [Show full text]
  • The Coastal Marine Mollusc Fauna of King Island, Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 148, 2014 17 THE COASTAL MARINE MOLLUSC FAUNA OF KING ISLAND, TASMANIA by Simon Grove and Robert de Little (with one text-figure, one plate, one table and an appendix) Grove, S & de Little, R. 2014 (19:xii: The coastal marine mollusc fauna of King Island, Tasmania.Papers and Proceedings of the Royal Society of Tasmania 148: 17–42. https://doi.org/10.26749/rstpp.148.17 ISSN 0080-4703. Rosny Collections and Research Facility, Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart Tasmania 7001 (SG*); PO Box 683, Port Arthur Tasmania 7182 (RdL). *Author for correspondence. Email: [email protected] The findings of a week-long survey of coastal marine molluscs around King Island are documented. In total, 408 species were recorded, 78 for the first time. King Island appears to be the only Tasmanian outpost for 44 species. Only two non-native species were found. A number of usually distinct species-pairs or groups appear to form intergrades around King Island. Along the island’s east coast, beached shells belonging to Quaternary-era sub-fossils were found, not all of which are represented in the contemporary local fauna. Following critical examination of published sources and museum specimens, a checklist of King Island’s coastal marine mollusc fauna is presented, comprising 619 species. It is likely that many more local species await discovery and documentation. Key Words: Mollusca, King Island, Tasmania INTRODUCTION METHODS King Island sits in western Bass Strait at around 40°S and Field surveys and follow-up identification 144°E, and is a geographical outlier relative to the rest of Tasmania: it includes the westernmost shorelines in Tasmania, Twenty-one discrete localities were surveyed during 13–19 as well as some of the northernmost.
    [Show full text]
  • ABSTRACTS in Alphabetical Order by Presenting Author
    ABSTRACTS in alphabetical order by presenting author 6-9 July 2004 Index of Authors and Abstracts (in alphabetical order by presenter) Allen, Simon Commercial platforms for marine science – Why re-invent the wheel? 13 Allen, Tim Finding a voice for Nemo – Opportunities for AMSA engagement in marine policy and public awareness 13 Ambo Rappe, Rohani & Maria J Schreider Possible consequences of fragmentation of seagrass bed on mobile epifauna 14 Anantharaman, Mohan Oil pollution regulations and oily water separator design to meet these requirements 14 Arendt, Michael D Data…Not just another bad, four-letter word when you have the right tools to manage it! 15 Awruch, CA, S Frusher & J Stevens Conventional and acoustic tagging studies on the draughtboard shark (Cephaloscyllium laticeps) in a scientific reserve in Tasmania 15 Baird, ME, PG Timko, JH Middleton & IM Suthers Biological response to wind forcing in the EAC 16 Bani, Ali, Natalie Moltschaniwskyj & Alan Jordan (Poster) Necessity of temporal and spatial management in recreational fisheries, sand flathead case 16 Bannister, Raymond, Christopher Battershill & Rocky de Nys Feeding biology of the tropical sponge Coscinoderma sp. on the Great Barrier Reef (GBR) 17 Barnes, Julia, Rhys Hauler & Chris Carter The effect of differing dietary protein:energy ratios on feed intake and growth of Atlantic salmon (Salmo Salar) at elevated temperature 17 Barnes, Peter Examination of processes affecting the distribution of the sponge, Suberites sp. in NSW coastal lakes 18 Bax, Nic & Piers Dunstan Evaluating
    [Show full text]