Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial

Total Page:16

File Type:pdf, Size:1020Kb

Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial marine drugs Review Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial Teofil Jesionowski 1,*, Małgorzata Norman 1, Sonia Z˙ ółtowska-Aksamitowska 1, Iaroslav Petrenko 2, Yvonne Joseph 3 ID and Hermann Ehrlich 2,* 1 Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; [email protected] (M.N.); [email protected] (S.Z.-A.)˙ 2 Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09559 Freiberg, Germany; [email protected] 3 Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; [email protected] * Correspondence: teofi[email protected] (T.J.); [email protected] (H.E.); Tel.: +48-61-665-3720 (T.J.); +49-3731-39-2867 (H.E.) Received: 30 January 2018; Accepted: 6 March 2018; Published: 9 March 2018 Abstract: The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics. Keywords: marine sponge; spongin; aquaculture; hybrid material; dyes 1. Introduction Sponges, belonging to the phylum, Porifera, are the phylogenetically oldest multicellular organisms [1], with an evolution dating back to the Precambrian. Currently (2018), there are 8848 valid species described in the World Porifera Database [2], which occur in marine and freshwater habitats. These aquatic animals are currently described in four classes: Demospongiae, Calcarea, Hexactinellida and Homoscleromorpha, based essentially on morphological data and molecular and genetic analyses. Demospongiae is the largest sponge class, including about 80% of all living sponges (nearly 7000 species worldwide), divided into three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha [3]. The focusses of this review are representatives of demosponges which belong exclusively to the subclass, Keratosa, whose mineral-free skeletons consist of “horny” or “keratose” fibers [4,5]. These fibers are known to consist of the halogenated scleroprotein, spongin. Recently the taxonomic name, Keratosa, has been assigned to the group formed by the Dictyoceratida and Dendroceratida orders in the new phylogenetic tree [6–8]. Dictyoceratida are defined as sponges with well-developed, anastomosing spongin fiber skeletons, which are hierarchically organized into primary, secondary and sometimes tertiary fibers, and make up a significant proportion of the body volume [9]. Since ancient times, these sponges have been recognized as “bath sponges” [10]. A typical example is the Mediterranean bath sponge Spongia officinalis, which is also known as an iconic species with high socioeconomic value [11]. Thus, when we speak about bath sponges, it must be clear that we Mar. Drugs 2018, 16, 88; doi:10.3390/md16030088 www.mdpi.com/journal/marinedrugs Mar. Drugs 20182018,, 1616,, x 88 FOR PEER REVIEW 2 of 23 with high socioeconomic value [11]. Thus, when we speak about bath sponges, it must be clear that are referring to the whole organism (body and skeleton) (Figure1). This is because so-called “marketed we are referring to the whole organism (body and skeleton) (Figure 1). This is because so-called sponges” represent cell- and tissue-free, depigmented and demineralized skeletal constructs (Figure2), “marketedMar. Drugs sponges” 2018, 16, x FOR represent PEER REVIEW cell- and tissue-free, depigmented and demineralized2 ofskeletal 23 which have been defined in the scientific literature as “commercial sponges” [12]. These commercial constructs (Figure 2), which have been defined in the scientific literature as “commercial sponges” sponges represent the main source of the “sponge industry” [13]. [12]. Thesewith high commercial socioeconomic sponges value represent [11]. Thus, the when ma inwe source speak aboutof the bath “sponge sponges, industry” it must be[13]. clear that we are referring to the whole organism (body and skeleton) (Figure 1). This is because so-called “marketed sponges” represent cell- and tissue-free, depigmented and demineralized skeletal constructs (Figure 2), which have been defined in the scientific literature as “commercial sponges” [12]. These commercial sponges represent the main source of the “sponge industry” [13]. Figure 1. Photo of the typical representative of Dictyoceratida demosponges, known also by the Figure 1. Photo of the typical representative of Dictyoceratida demosponges, known also by the common name “bath sponges”. commonFigure name 1. Photo “bath of sponges”. the typical representative of Dictyoceratida demosponges, known also by the common name “bath sponges”. Figure 2. Typical example of a “commercial sponge” after initial bleaching. Figure 2. Typical example of a “commercial sponge” after initial bleaching. Figure 2. Typical example of a “commercial sponge” after initial bleaching. Mar. Drugs 2018, 16, 88 3 of 23 Mar. Drugs 2018, 16, x FOR PEER REVIEW 3 of 23 According to Laubenfels and Storr, “the commercial sponge is the macerated and dried skeleton of one of theAccording sponge animalsto Laubenfels that has and no Storr, proper “the spicules. commercial It must sponge be from is the a macerated species whose and skeletondried skeleton consists of one of the sponge animals that has no proper spicules. It must be from a species whose skeleton of spongin fibers, and furthermore, these fibers must continue to be elastic or ‘spongy’ even after consists of spongin fibers, and furthermore, these fibers must continue to be elastic or ‘spongy’ even having been dried” [12]. Traditionally commercial sponges were isolated from diverse representatives after having been dried” [12]. Traditionally commercial sponges were isolated from diverse of the genera Spongia (S. obliqua, S. officinalis, S. barbara, S. barbara dura, S. anclotea, S. sterea, S. graminea, representatives of the genera Spongia (S. obliqua, S. officinalis, S. barbara, S. barbara dura, S. anclotea, S. S. graminea tampa, S. cheiris, S. lamella, S. zimocca) and Hippospongia (H. gossypina, H. lachne, H. kerion, sterea, S. graminea, S. graminea tampa, S. cheiris, S. lamella, S. zimocca) and Hippospongia (H. gossypina, H. H.lachne, communis H. ).kerion, They H. differ communis in fiber). They morphology, differ in porosityfiber morphology, and size. For porosity example, and specimenssize. For example, of S. sterea ofspecimens up to 75 centimeters of S. sterea of in up size to have 75 centimeters been reported in size [12 have]. been reported [12]. TheThe construct construct of of a a commercial commercial spongesponge consistsconsists of a a network network of of spongin spongin fibers fibers which which can can be befrom from 5 to5 to 100 100 microns microns in in diameter diameter depending depending onon thethe spongesponge species (Figure (Figure 3).3). The The meshes meshes are are almost almost rectangularrectangular in in outline, outline, with with dimensions dimensions varyingvarying fromfrom 100 microns to to a a millimeter. millimeter. Figure 3. Schematic view of the principal structural motive found in bath sponges. The SEM images Figure 3. Schematic view of the principal structural motive found in bath sponges. The SEM images to to the right represent the morphological features of the spongin-based skeletal construct. the right represent the morphological features of the spongin-based skeletal construct. Although the use of commercial sponges began several thousand years ago, studies on their chemistryAlthough with the reference use of commercial to spongin spongesas a biological began material several thousanddate back yearsonly to ago, the studies18th century. on their chemistryUnfortunately, with referencethe pathways to spongin of spongin’s as a biologicalbiosynthesis material in bath datesponges back as only well to asthe the 18thgenomics, century. Unfortunately,proteomics and the protein pathways sequences of spongin’s of this unique biosynthesis biopolymer, in bath are spongesstill unknown. as well To as date, the spongin genomics, proteomics(named also and fibrous protein skeleton, sequences pseudokeratin, of this unique neurokeratin, biopolymer, horny are protein, still unknown. collagen-like To date,protein spongin and (namedscleroprotein) also fibrous has no skeleton, clear chemical pseudokeratin, definition neurokeratin, [14]. In this review, horny protein,we focus collagen-like on the history protein of andcommercial scleroprotein) sponges, has including no clear a chemical brief analysis definition of the [economic14]. In this aspects review, of the we sponge focus industry on the history and ofmarine commercial farming sponges, of bath including sponges as a a brief source analysis for the of renewable the economic biomaterial aspects sp ofongin. the sponge Next, we
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Dictyoceratida, Demospongiae): Comparison of Two Populations Living Under Contrasted Environmental Conditions
    Sexual Reproduction of Hippospongia communis (Lamarck, 1814) (Dictyoceratida, Demospongiae): comparison of two populations living under contrasted environmental conditions. Zarrouk Souad, Alexander Ereskovsky, Karim Mustapha, Amor Abed, Thierry Perez To cite this version: Zarrouk Souad, Alexander Ereskovsky, Karim Mustapha, Amor Abed, Thierry Perez. Sexual Repro- duction of Hippospongia communis (Lamarck, 1814) (Dictyoceratida, Demospongiae): comparison of two populations living under contrasted environmental conditions. Marine Ecology, Wiley, 2013, 34, pp.432-442. 10.1111/maec.12043. hal-01456660 HAL Id: hal-01456660 https://hal.archives-ouvertes.fr/hal-01456660 Submitted on 13 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE Sexual reproduction of Hippospongia communis (Lamarck, 1814) (Dictyoceratida, Demospongiae): comparison of two populations living under contrasting environmental conditions Souad Zarrouk1,2, Alexander V. Ereskovsky3, Karim Ben Mustapha1, Amor El Abed2 & Thierry Perez 3
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels.
    [Show full text]
  • Sponge Fauna in the Sea of Marmara
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 16: 51-59 (2016) DOI: 10.4194/1303-2712-v16_1_06 RESEARCH PAPER Sponge Fauna in the Sea of Marmara Bülent Topaloğlu1,*, Alper Evcen2, Melih Ertan Çınar2 1 Istanbul University, Department of Marine Biology, Faculty of Fisheries, 34131 Vezneciler, İstanbul, Turkey. 2 Ege University, Department of Hydrobiology, Faculty of Fisheries, 35100 Bornova, İzmir, Turkey. * Corresponding Author: Tel.: +90.533 2157727; Fax: +90.512 40379; Received 04 December 2015 E-mail: [email protected] Accepted 08 February 2016 Abstract Sponge species collected along the coasts of the Sea of the Marmara in 2012-2013 were identified. A total of 30 species belonging to 21 families were found, of which four species (Ascandra contorta, Paraleucilla magna, Raspailia (Parasyringella) agnata and Polymastia penicillus) are new records for the eastern Mediterranean, while six species [A. contorta, P. magna, Chalinula renieroides, P. penicillus, R. (P.) agnata and Spongia (Spongia) nitens] are new records for the marine fauna of Turkey and 12 species are new records for the Sea of Marmara. Sponge specimens were generally collected in shallow water, but two species (Thenea muricata and Rhizaxinella elongata) were found at depths deeper than 100 m. One alien species (P. magna) was found at 10 m depth at station K18 (Büyükada). The morphological and distributional features of the species that are new to the Turkish marine fauna are presented. Keywords: Porifera, Benthos, Invertebrate, Turkish Straits System. Marmara Denizi Sünger Faunası Özet Bu çalışmada, Marmara Denizi ve kıyılarında 2012-2013 yılları arasında toplanan Sünger örnekleri tanımlanmıştır.
    [Show full text]
  • Species Boundaries, Reproduction And
    SPECIES BOUNDARIES, REPRODUCTION AND CONNECTIVITY PATTERNS FOR SYMPATRIC TETHYA SPECIES ON NEW ZEALAND TEMPERATE REEFS MEGAN RYAN SHAFFER A thesis submitted to the Victoria University of Wellington In fulfilment of the requirements for the degree of Doctor of Philosophy VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui 2019 This thesis was conducted under the supervision of: Professor James J. Bell (Primary supervisor) & Professor Simon K. Davy (Co-supervisor) Victoria University of Wellington Wellington, New Zealand ABSTRACT Understanding the evolutionary forces that shape populations in the marine environment is critical for predicting population dynamics and dispersal patterns for marine organisms. For organisms with complex reproductive strategies, this remains a challenge. Sponges fulfil many functional roles and are important components of benthic environments in tropical, temperate and polar oceans. They have evolved diverse reproductive strategies, reproducing both sexually and asexually, and thus provide an opportunity to investigate complicated evolutionary questions. This PhD thesis examines sexual and asexual reproduction in two common golf-ball sponges in central New Zealand (Tethya bergquistae and T. burtoni), with particular focus on how the environment influeunces these modes of reproduction, and further, how they shape species delineations and connectivity patterns. New Zealand waters are projected to experience increases in temperature and decreases in nutrients over the next century, and therefore these species may be experience changes in basic organismal processes like reproduction due to climate change, requiring adaptation to local environments. Therefore, this work has important implications when considering how reproductive phenology, genetic diversity and population structure of marine populations may change with shifts in climate.
    [Show full text]
  • Phylogenetic Analyses of Marine Sponges Within the Order Verongida: a Comparison of Morphological and Molecular Data
    Invertebrate Biology 126(3): 220–234. r 2007, The Authors Journal compilation r 2007, The American Microscopical Society, Inc. DOI: 10.1111/j.1744-7410.2007.00092.x Phylogenetic analyses of marine sponges within the order Verongida: a comparison of morphological and molecular data Patrick M. Erwin and Robert W. Thackera University of Alabama at Birmingham, Birmingham, Alabama 35294, USA Abstract. Because the taxonomy of marine sponges is based primarily on morphological characters that can display a high degree of phenotypic plasticity, current classifications may not always reflect evolutionary relationships. To assess phylogenetic relationships among sponges in the order Verongida, we examined 11 verongid species, representing six genera and four families. We compared the utility of morphological and molecular data in verongid sponge systematics by comparing a phylogeny constructed from a morphological character matrix with a phylogeny based on nuclear ribosomal DNA sequences. The morphological phylogeny was not well resolved below the ordinal level, likely hindered by the paucity of characters available for analysis, and the potential plasticity of these characters. The molec- ular phylogeny was well resolved and robust from the ordinal to the species level. We also examined the morphology of spongin fibers to assess their reliability in verongid sponge tax- onomy. Fiber diameter and pith content were highly variable within and among species. Despite this variability, spongin fiber comparisons were useful at lower taxonomic levels (i.e., among congeneric species); however, these characters are potentially homoplasic at higher taxonomic levels (i.e., between families). Our molecular data provide good support for the current classification of verongid sponges, but suggest a re-examination and potential reclas- sification of the genera Aiolochroia and Pseudoceratina.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Embryonic Development of Verongid Demosponges Supports the Independent Acquisition of Spongin Skeletons As an Alternative to the Siliceous Skeleton
    Biological Journal of the Linnean Society, 2009, 97, 427–447. With 14 figures Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of spongesbij_1202 427..446 MANUEL MALDONADO* Department of Marine Ecology, Centro de Estudios Avanzados de Blanes, Acceso Cala St Francesc 14, Blanes 17300, Girona, Spain Received 26 June 2008; accepted for publication 29 October 2008 Approximately 85% of extant sponges (phylum Porifera) belong to the class Demospongiae, which contains 14 taxonomic orders. In the orders Verongida, Dictyoceratida, and Dendroceratida, jointly referred to as ‘keratose demosponges’, the skeleton does not contain siliceous spicules but only spongin fibres. This shared trait has encouraged placement of these orders together within Demospongiae, although their relationships remain uncer- tain. The present study documents for the first time embryo development in the order Verongida (Aplysina aerophoba), providing some clues for phylogenetic inference. Spawned eggs were enveloped by a follicle of maternal cells. Embryos and larvae were chimeric organisms, the blastocoel of which was filled with symbionts and maternal cells migrated from the follicle. The ultrastructure of epithelial larval cells revealed: (1) a basal apparatus characterized by a peculiar, angling accessory centriole; (2) a pear-shaped nucleus with a protruding beak connected to the rootlets of the basal body; and (3) a distinctive Golgi apparatus encircling the nuclear apex. Developmental and ultrastructural findings support the concept, in congruence with recent molecular studies, that Verongida are more closely related to Halisarcida (askeletal sponges) and Chondrosida (askeletal sponges + sponges with spongin + spiculate sponges) than to the remaining ‘keratose’ orders, making a monophyletic ‘supra-ordinal unit’ equivalent to a subclass (Myxospongia, new subclass).
    [Show full text]
  • Checklist of Sponges (Porifera) of the South China Sea Region
    Micronesica 35-36:100-120. 2003 Taxonomic inventory of the sponges (Porifera) of the Mariana Islands MICHELLE KELLY National Institute of Water & Atmospheric Research (NIWA) Ltd Private Bag 109-695 Newmarket, Auckland, New Zealand JOHN HOOPER Queensland Museum P.O. Box 3300 South Brisbane, Queensland 4101, Australia VALERIE PAUL1 AND GUSTAV PAULAY2 Marine Laboratory University of Guam Mangilao, Guam 96923 USA ROB VAN SOEST AND WALLIE DE WEERDT Institute for Biodiversity and Ecosystem Dynamics Zoologisch Museum University of Amsterdam P. O. Box 94766, 1090 GT Amsterdam, The Netherlands Abstract—We review the sponge fauna of the Mariana Islands based on new and existing collections, and literature records. 124 species of siliceous sponges (Class Demospongiae) and 4 species of calcareous sponges (Class Calcarea) have been identified to date, representing 73 genera, 44 families, within 16 orders. Several species are adventive. Approximately 30% (40) of the species encountered are undescribed, but not all are endemics, as the authors know them from other locations. Approximately 30% (38) of the species are known from diverse locations within the Indo West Pacific, but several well-known, widespread species are absent. The actual diversity of sponge fauna of the Marianas is considerably higher, as many species, especially cryptic and encrusting taxa, remain to be collected and studied. Introduction Our knowledge of the sponge fauna of the tropical Pacific has increased substantially in recent years, as a result of enhanced collecting effort driven in 1 current address: Smithsonian Marine Station at Fort Pierce, Fort Pierce FL 34949 2 corresponding author; current address: Florida Museum of Natural History, University of Florida, Gainesville FL 32611-7800, USA; email: [email protected] Kelly et al.: Sponges of the Marianas 101 part by pharmaceutical interests, and by the attention of a larger number of systematists working on Pacific sponges than ever before.
    [Show full text]