VIEPS/Mainz Deformation Microstructures Course 2000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of the Indian Ocean Mega-Undation
Tectonophysics - Elsevier Publishing Company, Amsterdam Printed in The Netherlands THE EVOLUTION OF THE INDIAN OCEAN MEGA-UNDATION (CAUSING THE: INDIGO-FUGAL SPREADING OF GONDWANA k’I<AGMENTS) R.W. VAN BI<MILlL;LEN Geological Institute, State University, Utrecht (The Netherlands) (Received April 1, 1965) In the first section the geomechanical model of mega-undations is elaborated: (1) The lower mantle may have a Newtonian viscosity, but the upper mantle? which is largely in a crystalline state, shows an Andradean viscosity, with hot-creep phenomena and the formation of lamellae separated by zones or planes of high strain rate. (2) Reliable solutions of the mechanics in the fault planes of earthquake foci indicate that the spreading of the mega-undations is characterized in the outer 400 km by the farther advance of the higher structural levels with re- spect to the underlying ones: whereas the movements in the foci of deep earth- quakes underneath the Japan Sea and South America indicate a reverse pro- cess, the lower blocks moving faster towards the Pacific than the overlying ones. This is explained by the geomechanical model of the mega-undations. (3) The crest of the mega-undations shifts in the course of time, either gradually or by steps. The effects of such shifts are discussed and illustrated. (4) Four stages of evolution of mega-undations are distinguished: (a) young, (b) early mature or precocious, (c) late mature or ripe, and (d) fossil mega-undations. These stages are illustrated by type examples. In the section on the development of the Indian Ocean Mega-Undation this geomechanical model is tested by an analysis of the geotectonic evolution of the Indian Ocean and the surrounding shields. -
The Geology of the Enosburg Area, Vermont
THE GEOLOGY OF THE ENOSBURG AREA, VERMONT By JOlIN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, State Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN No. 23 1964 TABLE OF CONTENTS PAGE ABSTRACT 7 INTRODUCTION ...................... 7 Location ........................ 7 Geologic Setting .................... 9 Previous Work ..................... 10 Method of Study .................... 10 Acknowledgments .................... 10 Physiography ...................... 11 STRATIGRAPHY ...................... 12 Introduction ...................... 12 Pinnacle Formation ................... 14 Name and Distribution ................ 14 Graywacke ...................... 14 Underhill Facics ................... 16 Tibbit Hill Volcanics ................. 16 Age......................... 19 Underhill Formation ................... 19 Name and Distribution ................ 19 Fairfield Pond Member ................ 20 White Brook Member ................. 21 West Sutton Slate ................... 22 Bonsecours Facies ................... 23 Greenstones ..................... 24 Stratigraphic Relations of the Greenstones ........ 25 Cheshire Formation ................... 26 Name and Distribution ................ 26 Lithology ...................... 26 Age......................... 27 Bridgeman Hill Formation ................ 28 Name and Distribution ................ 28 Dunham Dolomite .................. 28 Rice Hill Member ................... 29 Oak Hill Slate (Parker Slate) .............. 29 Rugg Brook Dolomite (Scottsmore -
24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. -
Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening. -
Stress and Fluid Control on De Collement Within Competent Limestone
Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement. -
9. Deformation Structures and Magnetic Fabrics at Site 1178
Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 190/196 9. DEFORMATION STRUCTURES AND MAGNETIC FABRICS AT SITE 1178: 1Ujiie, K., Hisamitsu, T., Maltman, IMPLICATION FOR DEFORMATION HISTORY A.J., Morgan, J.K., Sánchez-Gómez, M., and Tobin, H.J., 2003. Deformation RECORDED IN ACCRETED SEDIMENTS structures and magnetic fabrics at Site 1178: implication for deformation history recorded in accreted sediments AT AN EVOLVED PORTION OF THE NANKAI at an evolved portion of the Nankai CCRETIONARY RISM1 accretionary prism. In Mikada, H., A P Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. Kohtaro Ujiie,2 Toshio Hisamitsu,3 Alex J. Maltman,4 ODP, Sci. Results, 190/196, 1–15 [Online]. Available from World Wide 5 6 and 7 Julia K. Morgan, Mario Sánchez-Gómez, Harold J. Tobin Web: <http://www-odp.tamu.edu/ publications/190196SR/VOLUME/ CHAPTERS/202.PDF>. [Cited YYYY- MM-DD] 2Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. [email protected] 3Institute for Frontier Research on ABSTRACT Earth Evolution, Japan Marine Science and Technology Center, 2-15 During Leg 190, accreted sediments at an evolved portion of the Natsushima-cho, Yokosuka 237-0061, Nankai accretionary prism were penetrated. Deformation structures and Japan. 4 anisotropy of magnetic susceptibility (AMS) data from Site 1178 indi- Institute of Geography and Earth Sciences, University of Wales, cate that structural and magnetic fabrics formed at the frontal part of Aberystwyth, Aberystwyth SY23 3DB, the prism have been preserved, even ~65 km landward of the deforma- United Kingdom. -
Study of Small-Scale Structures and Their Significance in Unravelling the Accretionary Character of Singhbhum Shear Zone, Jharkhand, India
J. Earth Syst. Sci. (2020) 129:227 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-020-01496-9 (0123456789().,-volV)(0123456789().,-volV) Study of small-scale structures and their significance in unravelling the accretionary character of Singhbhum shear zone, Jharkhand, India 1 2, ABHINABA ROY and ABDUL MATIN * 1Formerly Geological Survey of India, New Delhi, India. 2Formerly Department of Geology, University of Calcutta, Kolkata, India. *Corresponding author. e-mail: [email protected] MS received 1 April 2020; revised 22 July 2020; accepted 29 August 2020 Localized strain within tabular ductile shear zones is developed from micro- to meso- to even large scales to form complex structures. They grow in width and length through linkage of segments with progressive accumulation of strain and displacement, and Bnally produce shear zone networks characterized by anastomosing patterns. Singhbhum shear zone (SSZ) represents a large composite zone characterized by a collage of different dismembered lithotectonic segments, with heterogeneous structural features, within a matrix typical of a shear zone. Structural features indicate that the material properties of protoliths have a great role in controlling the mechanics of deformation. Meso- and micro-scale structural studies of the east-central part of the SSZ reveal ‘tectonic complex like’ (? deeper level equivalent of melange type complex) assemblage of dismembered lithoteconic units. Shear-induced foliations, S, C and C0, were developed while the main mylonitic foliation is represented by C-plane. Apart from that, shear lenses are exceptionally well developed in both meso- and micro-scale in most of the units, particularly in schistose rocks. They were formed from different processes during progressive simple shear, which includes (1) anastomosing C-planes, (2) intersection between C- and C0-planes, (3) disruption of stretched out longer limbs of asymmetric folds, and (4) cleavage duplex. -
The Orocline Concept in Geotectonics
The Orocline Concept in Geotectonics PART I By S. WARREN CAREY University of Tas'lnnnin (WITH 22 'f};XT FIGURES) A_BSTRACT The face of the globe shows muny areas where orogenic belts wheel in trend 0 through large angles, sometimes as much as 180 • Such a fOHn could have one of two origins. Either the orogenic zon(; had that shape from the beginning, or the bend represents an impressed strain (here defined as an orucline). Classieal geology has always made the first assumption, explicitly or implicitly, using the concept of cratons around which the orogens were moulded. However, logical ~cientific analysis demands that we should also examine the consequences of making the second assump tion. Twenty-five such cases occur on the face of the globe. In e-;m-y casp the major structures of the region not only agree with the assumption, but k'53e1' eomp:ressiona] and tensional structures fall where they would be prpdicted by the impressed strain theory. and quite unexpected solutions of other major tectonic: problems reRulL. Six of these oroclines are workod out in detail in this paper. Six ll101-e are presented more briefly. When all such oroclines, together with other identifiable strains, are reversed, there appears a Laurasia substantially identical with that deduced by Du Toit on wholly different grounds. INTRODUCTION Sir James Hall first made the induction that observed contortions in strata were actual deformations of heds originally flat, and therewith structural geology began. A century and a half has seen much progress, but most of it has been towards increasing our understanding of the internal anatomy of orogens. -
Structural Geology of the Aiken River Deformation Zone, Manitoba (NTS 64A1 and 2) by Y.D
GS-18 Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2) by Y.D. Kuiper1, S. Lin1, C.O. Böhm and M.T. Corkery Kuiper, Y.D., Lin, S., Böhm, C.O. and Corkery, M.T. 2004: Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2); in Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 201–208. Summary The Aiken River deformation zone shows evidence for dextral, north-side-up movement. Some of this movement may be related to movement on the gold-hosting Assean Lake deforma- tion zone to the north, suggesting that the Aiken River deformation zone may also have potential for mineralization. This paper discusses the transition of structures from the Central Split Lake Block into the Aiken River deformation zone. The Split Lake Block shows moderately to steeply southeast-plunging folds. Toward the shear zone, the following modifications occur: 1) folds tighten; 2) shear fabrics develop on the fold limbs but not the fold hinges; 3) fold axes start rotating, which is the initiation of sheath-fold development; and 4) dextral, north-side-up shear fabrics are pervasive and sheath folds are present. This sequence of changes may indicate that the pure shear component of this transpressive shear zone is accommodated over a wider area than the simple shear component. Introduction The Aiken River deformation zone forms the boundary between the Split Lake Block to the north and the Pikwitonei Granulite Domain to the south (Figure GS-18-1). Three and a half weeks of structural mapping were carried out in the Split Lake–Aiken River area in 2003 (Kuiper et al., 2003). -
Brittle Microtectonics: Principles and Practice PURPOSE and SCOPE
Journal of Structural Geology, Vol. 7. Nos. 3/4, pp, 4.3-7to 457. 1985 lllt~l ~i4 I/,~5 $1~3 (l(J ÷ {).0tl Printed in Great Britain ~ It~;~ Pcr~ml~m Pro',', lad Brittle microtectonics: principles and practice P. L. HANCOCK Department of Geology, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K. (Received 8 February 1984; accepted in revised form 17 August 1984) Abstract--Brittle microtectonics as defined here is the application of mesofracture analysis to the solution of tectonic problems. For the determination of regionally significant stress or strain trajectories the ideal suite of structures comprises kinematic indicators such as mesofaults, shear zones, arrays of en echelon cracks, kink bands, stylofites and fibrous veins. However, in many tectonic settings joints are the only widespread structures capable of being analysed. The principal criteria for classifying joints into extension, hybrid and shear classes are fracture-system architecture and symmetry, surface morphology, dihedral angles and thin-section characteristics. The architecture of orthogonal extension joints is commonly T-shaped, the younger joint abutting the older one. Neighbouring conjugate hybrid or shear joints generally define X, Y or V shapes but some X patterns are artefacts of unrelated cross-cutting fractures. Conjugate joints enclosing dihedral angles of less than 45 ° are common; they are interpreted as hybrid failure surfaces initiated in the shear--extension fracture transition. The orientations of many joint sets in platforms are related to far-field stresses generated during plate motion and the subsidence, uplift and inversion of basins. Even within a single joint set there is commonly field evidence to show that it developed during a multiphase failure sequence..Some joints are younger than folds but where a system was established before the close of folding the surfaces commonly become the sites of slip, dilation or pressure solution, and are thus transformed into structures no longer classed as joints. -
The Deformation Cf Inhomogenous Materials and Consequent Geological Inflications
THE DEFORMATION CF INHOMOGENOUS MATERIALS AND CONSEQUENT GEOLOGICAL INFLICATIONS by NICHOLAS CHARLES GAY A thesis submitted for the degree of Doctor of Philosophy at the University of London August, 1966. (±) ABSTRACT This thesis is a theoretical and experimental study of the deformation of inhomogenous materials by- simple and pure shear. The model adopted is that of a homogenous, Newtonian fluid matrix, in which are embedded rigid or deformable inclusions. The inclusions are ellipsoidal or elliptical in shape and the deformable ones are also assumed to be Newtonian bodies, but they may differ from the matrix in coefficient of viscosity. Published work on rock deformation is reviewed to show that rock does, in certain geological environments, approxi- mate closely to a Newtonian body. Equations are derived to describe the motion and changes in shape of the inclusions (or particles as they are called) during deformation of-the model. These equations are checked experimentally and, within the limits of the experimental error, the results agree satisfactorily with the theory. The behaviour of systems containing a large number of particles is discussed and the strains developed in the matrix around the inclusions are examined. The application of the theoretical concepts to certain problems in structural geology, such as the rotation of crys- tals, the development of preferred orientations and the deformation of conglomerates, is considered. Particular emphasis is laid on the use of the theoretical equations to determine the finite strain in rock. (ii) TABLE OF CONTENTS Page CHAPTER I INTRODUCTION A. GENERAL STATEMENT 1 B. ACKNOWLEDGEMENTS 5 C. LIST OF SYMBOLS 6 CHAPTER II VISCOSITY AND THE VISCOUS FLOW OF ROCKS' A. -
Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts
ALUN MASS/AMHERST ‘ 31206600765055e fi A ed ‘ : . te a ‘ : Rea A) ll Od ir Ler yie 5 : ‘ 5 3 : $iifaedst! * ‘ 1 5 me ah a - aor peel segs oS rt shay nyt 1 . : Sybey see Patil Pr ae CEs a os ey ee , Ste ee nts yee ee Tp sl pa) seat D Bataade ee . {FM ave ay og : 5 jos atrs DeVere ns era See) ; Lyesverr POET d ’ i oy Verereiaihey ' . hous : Pathak heche u) PE oS Dalle ene ot a eae it) pica Cris MoM te ELA MLA die 3 LE GEE Ad Ch APTN ORE FEV EE AYO AY AE k par ‘ Date Mowe : : sere (no, phe ey Teast ahd ¢ ity a 23% .4% Ay ts eater ee) pa To Pe Ste ophgraeaiek sdpre aay arena ' Pig by ’ ‘ ‘ yee vere Sry on Fic $e x bdalld cet antec Feb Ata eno ae PUTSNT tet W ee SANTEE eT VOTRE ey J Gf, sees 5 ’ ; . ty : ‘ : 4 DSC LE ih DR Jat SOK AT CR Ra gir al Ao Id, eval tat WC SORES caer y Et poy asses ist dre sg ety" : hie Fis bi : u ; y erie } he 5 wie UPD SO ata th Puede? Lae an to Peres) Gee ems i ar aac rn a neha dyhatype aT aint Spark ey sap ea ee tial petty GUS hstghe Vecye peponeagon ererervet Tp aig paar ” gieteMewner F Phe : reba S : rypiech, : ‘ Oh oll lac ah lil tet nt octane stare? re ee eee a eee ry ' tas 7 : ep oy gk bil an i ‘ nea Ay ce iC ie : ' : : ae ' oe arch ire? es rk .